A Degradation Type Adaptive and Deep CNN-Based Image Classification Model for Degraded Images

Deep Convolutional Neural Networks (CNNs) have achieved high accuracy in image classification tasks, however, most existing models are trained on high-quality images that are not subject to image degradation. In practice, images are often affected by various types of degradation which can significan...

Full description

Saved in:
Bibliographic Details
Published inComputer modeling in engineering & sciences Vol. 138; no. 1; pp. 459 - 472
Main Authors Liu, Huanhua, Wang, Wei, Liu, Hanyu, Yi, Shuheng, Yu, Yonghao, Yao, Xunwen
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2024
Subjects
Online AccessGet full text
ISSN1526-1506
1526-1492
1526-1506
DOI10.32604/cmes.2023.029084

Cover

Loading…
Abstract Deep Convolutional Neural Networks (CNNs) have achieved high accuracy in image classification tasks, however, most existing models are trained on high-quality images that are not subject to image degradation. In practice, images are often affected by various types of degradation which can significantly impact the performance of CNNs. In this work, we investigate the influence of image degradation on three typical image classification CNNs and propose a Degradation Type Adaptive Image Classification Model (DTA-ICM) to improve the existing CNNs’ classification accuracy on degraded images. The proposed DTA-ICM comprises two key components: a Degradation Type Predictor (DTP) and a Degradation Type Specified Image Classifier (DTS-IC) set, which is trained on existing CNNs for specified types of degradation. The DTP predicts the degradation type of a test image, and the corresponding DTS-IC is then selected to classify the image. We evaluate the performance of both the proposed DTP and the DTA-ICM on the Caltech 101 database. The experimental results demonstrate that the proposed DTP achieves an average accuracy of 99.70%. Moreover, the proposed DTA-ICM, based on AlexNet, VGG19, and ResNet152, exhibits an average accuracy improvement of 20.63%, 18.22%, and 12.9%, respectively, compared with the original CNNs in classifying degraded images. It suggests that the proposed DTA-ICM can effectively improve the classification performance of existing CNNs on degraded images, which has important practical implications.
AbstractList Deep Convolutional Neural Networks (CNNs) have achieved high accuracy in image classification tasks, however, most existing models are trained on high-quality images that are not subject to image degradation. In practice, images are often affected by various types of degradation which can significantly impact the performance of CNNs. In this work, we investigate the influence of image degradation on three typical image classification CNNs and propose a Degradation Type Adaptive Image Classification Model (DTA-ICM) to improve the existing CNNs’ classification accuracy on degraded images. The proposed DTA-ICM comprises two key components: a Degradation Type Predictor (DTP) and a Degradation Type Specified Image Classifier (DTS-IC) set, which is trained on existing CNNs for specified types of degradation. The DTP predicts the degradation type of a test image, and the corresponding DTS-IC is then selected to classify the image. We evaluate the performance of both the proposed DTP and the DTA-ICM on the Caltech 101 database. The experimental results demonstrate that the proposed DTP achieves an average accuracy of 99.70%. Moreover, the proposed DTA-ICM, based on AlexNet, VGG19, and ResNet152, exhibits an average accuracy improvement of 20.63%, 18.22%, and 12.9%, respectively, compared with the original CNNs in classifying degraded images. It suggests that the proposed DTA-ICM can effectively improve the classification performance of existing CNNs on degraded images, which has important practical implications.
Author Yu, Yonghao
Yi, Shuheng
Liu, Huanhua
Wang, Wei
Yao, Xunwen
Liu, Hanyu
Author_xml – sequence: 1
  givenname: Huanhua
  surname: Liu
  fullname: Liu, Huanhua
– sequence: 2
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
– sequence: 3
  givenname: Hanyu
  surname: Liu
  fullname: Liu, Hanyu
– sequence: 4
  givenname: Shuheng
  surname: Yi
  fullname: Yi, Shuheng
– sequence: 5
  givenname: Yonghao
  surname: Yu
  fullname: Yu, Yonghao
– sequence: 6
  givenname: Xunwen
  surname: Yao
  fullname: Yao, Xunwen
BookMark eNpNkE1rwzAMhs3oYG23H7CbYed0sp046bHLvgpdd-mOw7ixXFKSOLPTQf_90qWDHYQEevQKngkZNa5BQm4ZzASXEN8XNYYZBy5mwOeQxRdkzBIuI5aAHP2br8gkhD2AkCKbj8nngj7izmuju9I1dHNskS6MbrvyG6luTL_FlubrdfSgAxq6rPUOaV7pEEpbFsPVmzNYUev8OeuPC9fk0uoq4M25T8nH89Mmf41W7y_LfLGKCi6zLuJapFvDUtR8a5MsSQRjcVZY7Asgg7nEglm5TXXMUyEZGoil1IZbw5i0VkzJ3ZDbevd1wNCpvTv4pn-pBAdgXEge9xQbqMK7EDxa1fqy1v6oGKhfi-pkUZ0sqsGi-AF3WGZZ
Cites_doi 10.1109/TCSVT.2021.3076224
10.1109/TIP.2020.3002478
10.1109/TPAMI.2019.2950923
10.3390/app122312236
10.1109/TIP.2019.2933743
21775262
26761735
10.1007/s11263-009-0275-4
10.1109/ACCESS.2018.2802498
10.1109/TPAMI.2006.79
10.1145/3065386
ContentType Journal Article
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7TB
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
JQ2
KR7
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmes.2023.029084
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
Computer and Information Systems Abstracts Professional
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
Engineering Research Database
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1526-1506
EndPage 472
ExternalDocumentID 10_32604_cmes_2023_029084
GroupedDBID -~X
AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
F5P
IPNFZ
J9A
OK1
PHGZM
PHGZT
PIMPY
RTS
7SC
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c268t-2a37bd17ea2bf585531148cfe8cf008096ec1f6b7a427361ed0466ad2fd116ff3
IEDL.DBID BENPR
ISSN 1526-1506
1526-1492
IngestDate Mon Jun 30 11:02:01 EDT 2025
Tue Jul 01 05:20:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-2a37bd17ea2bf585531148cfe8cf008096ec1f6b7a427361ed0466ad2fd116ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3200123624?pq-origsite=%requestingapplication%
PQID 3200123624
PQPubID 2048798
PageCount 14
ParticipantIDs proquest_journals_3200123624
crossref_primary_10_32604_cmes_2023_029084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computer modeling in engineering & sciences
PublicationYear 2024
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References ref13
Li (ref15) 2018
Li (ref26) 2006; 28
He (ref5) 2015
Dodge (ref22) 2016
Deng (ref6) 2009
Qu (ref16) 2019
Krizhevsky (ref3) 2012; 60
He (ref7) 2016
Lin (ref24) 2019
Yang (ref1) 2009
Baek (ref18) 2018
Everingham (ref8) 2010; 88
Wu (ref23) 2020; 29
Liu (ref21) 2022; 12
Zhang (ref11) 2022; 32
Liu (ref10) 2020; 29
Dong (ref20) 2016; 38
Zou (ref9) 2012; 21
Moller (ref19) 2017
Sanchez (ref2) 2011
ref4
Moosavi-Dezfooli (ref12) 2016
Fan (ref25) 2018; 6
Pei (ref14) 2022; 43
Lu (ref17) 2019
References_xml – volume: 32
  start-page: 1197
  year: 2022
  ident: ref11
  article-title: Deep learning based just noticeable difference and perceptual quality prediction models for compressed video
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2021.3076224
– volume: 29
  start-page: 7414
  year: 2020
  ident: ref23
  article-title: End-to-end blind image quality prediction with cascaded deep neural network
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2020.3002478
– start-page: 1794
  year: 2009
  ident: ref1
  article-title: Linear spatial pyramid matching using sparse coding for image classification
– volume: 43
  start-page: 1239
  year: 2022
  ident: ref14
  article-title: Effects of image degradation and degradation removal to CNN-based image classification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2019.2950923
– volume: 12
  start-page: 12236
  year: 2022
  ident: ref21
  article-title: A military object setection model of UAV reconnaissance image and feature visualization
  publication-title: Applied Science
  doi: 10.3390/app122312236
– volume: 29
  start-page: 641
  year: 2020
  ident: ref10
  article-title: Deep learning-based picture-wise just noticeable distortion prediction model for image compression
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2019.2933743
– start-page: 2891
  year: 2017
  ident: ref19
  article-title: Active learning for the classification of species in underwater images from a fixed observatory
– start-page: 1
  year: 2019
  ident: ref24
  article-title: KADID-10k: A large-scale artificially distorted IQA database
– start-page: 8202
  year: 2018
  ident: ref15
  article-title: Single image dehazing via conditional generative adversarial network
– volume: 21
  start-page: 327
  year: 2012
  ident: ref9
  article-title: Very low resolution face recognition problem
  publication-title: IEEE Transactions on Image Processing
  doi: 21775262
– start-page: 447
  year: 2018
  ident: ref18
  article-title: Realtime detection, tracking, and classification of moving and stationary objects using multiple fisheye images
– start-page: 1665
  year: 2011
  ident: ref2
  article-title: High-dimensional signature compression for large-scale image classification
– start-page: 1026
  year: 2015
  ident: ref5
  article-title: Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
– start-page: 248
  year: 2009
  ident: ref6
  article-title: ImageNet: A large-scale hierarchical image database
– volume: 38
  start-page: 295
  year: 2016
  ident: ref20
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 26761735
– volume: 88
  start-page: 303
  year: 2010
  ident: ref8
  article-title: The pascal visual object classes (VOC) challenge
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-009-0275-4
– start-page: 1
  year: 2016
  ident: ref22
  article-title: Understanding how image quality affects deep neural networks
– volume: 6
  start-page: 8934
  year: 2018
  ident: ref25
  article-title: No reference image quality assessment based on multi-expert convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2802498
– start-page: 2574
  year: 2016
  ident: ref12
  article-title: Deepfool: A simple and accurate method to fool deep neural networks
– ident: ref13
– ident: ref4
– start-page: 8160
  year: 2019
  ident: ref16
  article-title: Enhanced pix2pix dehazing network
– start-page: 770
  year: 2016
  ident: ref7
  article-title: Deep residual learning for image recognition
– volume: 28
  start-page: 594
  year: 2006
  ident: ref26
  article-title: One-shot learning of object categories
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2006.79
– start-page: 10225
  year: 2019
  ident: ref17
  article-title: Unsupervised domainspecific deblurring via disentangled representations
– volume: 60
  start-page: 84
  year: 2012
  ident: ref3
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
  doi: 10.1145/3065386
SSID ssj0036389
Score 2.3643138
Snippet Deep Convolutional Neural Networks (CNNs) have achieved high accuracy in image classification tasks, however, most existing models are trained on high-quality...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 459
SubjectTerms Accuracy
Artificial neural networks
Classification
Differential thermal analysis
Image classification
Image degradation
Image quality
Performance evaluation
Title A Degradation Type Adaptive and Deep CNN-Based Image Classification Model for Degraded Images
URI https://www.proquest.com/docview/3200123624
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXVj4RhQK8sCEZNo4xkkm1JZWBYkIISp1QVEc2xNNAw3_n7vYEbAwZHLs4Szfe-9s3SPkKpHCAvBHTBrNmQBIY7GOchYqI22iJIAelgaeUjlfiMfl7dIX3Db-WWWbE5tErdcF1sgHIXftxri4qz4Yukbh7aq30NgmXUjBMYiv7niaPr-0uThEPG46pnLJQAtwd68JlGUoBsXKYL9uHt4MedK0N_2NTH8Tc4M2s32y62kiHbl9PSBbpjwke60FA_Un8oi8jeg9tntwzkgUVSUd6bzCJEbzUsOoqegkTdkY4ErThxXkD9o4YeIbITcL_dDeKbBXv1b73-aYLGbT18mceccEVnAZ14znYaR0EJmcKwtCAA4YyJ3CGviQGybSFIGVKsoF0BYZGA3yWOaaWx0E0trwhHTKdWlOCY2Mim2kbWxDKyzeJyqlVZEAoQqA9CU9ct1GK6tcY4wMBEUT2gxDm2FoMxfaHum38cz8GdlkPzt69v_wOdmBtYQrfPRJp_78MhdABWp16ff7G2rqsOg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED2VdoCFb8Q3HmBBMiWOcZoBoUJbtbSNEGqlLijEsT3RUmgR4k_xGznHiYCFjSGTEw-Xy733bOcewHEouEHgD6jQilGOkEZrKkioL7UwoRQIenZpoB-J9pDfji5GJfgs_oWxxyqLmpgVavWc2jXyqs9cuzHGr6Yv1LpG2d3VwkLDpUVXf7yjZJtddhr4fk8YazUHN22auwrQlInanLLED6TyAp0waZAsYxKiJEiNxsvyp1Do1DNCBglHaBeeVighRaKYUZ4njPFx3gWocB-lTBkq183o7r6o_b7F_6xDKxMUtQdz-6hIkc55NR1r2x-c-WfnLMzaqf5Ewt9AkKFbaxWWc1pK6i6P1qCkJ-uwUlg-kLwCbMBDnTRsewnnxESsiiV1lUxt0STJROGonpKbKKLXCI-KdMZYr0jmvGnPJLmnrP_aE0G2nM9V3DfbhOG_xHILypPnid4GEmhZM4EyNeMbbuz-pZRKpiESOA9JZrgDp0W04qlrxBGjgMlCG9vQxja0sQvtDuwX8Yzzb3IWf2fQ7t_DR7DYHvR7ca8TdfdgCeflbtFlH8rz1zd9gDRkLg_zd0_g8b_T7QseW-3j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Degradation+Type+Adaptive+and+Deep+CNN-Based+Image+Classification+Model+for+Degraded+Images&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Liu%2C+Huanhua&rft.au=Wang%2C+Wei&rft.au=Liu%2C+Hanyu&rft.au=Yi%2C+Shuheng&rft.date=2024&rft.issn=1526-1506&rft.volume=138&rft.issue=1&rft.spage=459&rft.epage=472&rft_id=info:doi/10.32604%2Fcmes.2023.029084&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2023_029084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon