[omega]-Hydroxylation of Oleic Acid in Vicia sativa Microsomes (Inhibition by Substrate Analogs and Inactivation by Terminal Acetylenes)

Oleic acid (18:1) is hydroxylated exclusively on the terminal methyl by a microsomal cytochrome P-450-dependent system ([omega]-OAH) from clofibrate-induced Vicia sativa L. (var minor) seedlings (F. Pinot, J.-P. Salaun, H. Bosch, A. Lesot, C. Mioskowski, F. Durst [1992] Biochem Biophys Res Commun 18...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 102; no. 4; pp. 1313 - 1318
Main Authors Pinot, F., Bosch, H., Alayrac, C., Mioskowski, C., Vendais, A., Durst, F., Salaun, J. P.
Format Journal Article
LanguageEnglish
Published United States 01.08.1993
Online AccessGet full text

Cover

Loading…
More Information
Summary:Oleic acid (18:1) is hydroxylated exclusively on the terminal methyl by a microsomal cytochrome P-450-dependent system ([omega]-OAH) from clofibrate-induced Vicia sativa L. (var minor) seedlings (F. Pinot, J.-P. Salaun, H. Bosch, A. Lesot, C. Mioskowski, F. Durst [1992] Biochem Biophys Res Commun 184: 183-193). This reaction was inactivated by two terminal acetylenes: (Z)-9-octadecen-17-ynoic acid (17-ODCYA) and the corresponding epoxide, (Z)-9,10-epoxyoctadecan-17-ynoic acid (17-EODCYA). Inactivation was mechanism-based, with an apparent binding constant of 21 and 32 [mu]M and half-lives of 16 and 19 min for 17-ODCYA and 17-EODCYA, respectively. We have investigated the participation of one or more [omega]-hydroxylase isoforms in the oxidation of fatty acids in this plant system. Lauric acid (12:0) is [omega]-hydroxylated by the cytochrome P-450 [omega]-hydroxylase [omega]-LAH (J.-P. Salaun, A. Simon, F. Durst [1986] Lipids 21: 776-779). Half-lives of [omega]-OAH and [omega]-LAH in the presence of 40 [mu]M 17-ODCYA were 23 and 41 min, respectively. Inhibition of oleic acid [omega]-hydroxylation was competitive with linoleic acid (18:2), but noncompetitive with lauric acid (12:0). In contrast, oleic acid did not inhibit [omega]-hydroxylation of lauric acid. Furthermore, 1-pentadecyltriazole inhibited [omega]-hydroxylation of oleic acid but not of lauric acid. These results suggest that distinct monooxygenases catalyze [omega]-hydroxylation of medium- and long-chain fatty acids in V. sativa microsomes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.102.4.1313