Effect of Current Densities on the Microstructure and Electrochemical Behavior of the Porous β-PbO2 Electrode

In order to obtain a titanium-based PbO2 electrode with high electrocatalytic activity and good stability, A porous β-PbO2 electrode is prepared by electrodepositing on titanium substrate Sn-Sb-RuOx coating. The surface morphology and phase analysis of the porous β-PbO2 electrode prepared at differe...

Full description

Saved in:
Bibliographic Details
Published inMaterials science forum Vol. 956; pp. 21 - 34
Main Authors Chen, Bu Ming, Xu, Rui Dong, Chen, Sheng, He, Ya Peng, Yang, Hai Tao, Wang, Shi Chuan, Huang, Tai Xiang, Huang, Hui, Yan, Wen Kai, Guo, Zhong Cheng
Format Journal Article
LanguageEnglish
Published Pfaffikon Trans Tech Publications Ltd 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to obtain a titanium-based PbO2 electrode with high electrocatalytic activity and good stability, A porous β-PbO2 electrode is prepared by electrodepositing on titanium substrate Sn-Sb-RuOx coating. The surface morphology and phase analysis of the porous β-PbO2 electrode prepared at different current density were investigated by SEM and XRD. Results showed that the current density changes the surface morphology and active surface area of the porous β-PbO2 electrode. When the current density is 2 A/dm2, the surface of the porous β-PbO2 prepared by electrodeposition has a uniform porous morphology with a pore diameter of 50-200 µm with main crystal phase of β-PbO2. Influence of current density on the electrochemical activity of the electrode was analyzed using anodic polarization curve, electrochemical impedance spectroscopy and galvanostatic polarization. Results revealed that with the increase of current density, the oxygen evolution potential of the porous β-PbO2 electrode decreases first and then increases while the exchange current density first increases and then decreases. When the current density is 2 A/dm2, the oxygen evolution potential is 2.0075 V(at 0.05 A/cm2) and the maximum exchange current density is 1.77×10-4 A/cm2. According to the electrochemical impedance spectroscopy, when the current density is 2 A/dm2, Qf and Qdl are the largest, Rf and Rct are the smallest, and the RF first increases and then decreases with the current density increases. When the current density is 2 A/dm2, the maximum RF value is 655.7. The results with galvanostatic polarization at current density of 0.05 A/cm2 showed that the electrode has a minimum electrode voltage of 2.05 V at a current density of 2 A/dm2. Accelerated life experiments were carried out in 2 g/L Cl- and 150 g/L H2SO4 bath at 25 °C, and the porous β-PbO2 electrode obtained under the current density of 2 A/dm2 has the longest life, and the electrode life is 68 h, which is 2.5 times of the PbO2 electrode obtained under the current density of 4 A/dm2.
AbstractList In order to obtain a titanium-based PbO 2 electrode with high electrocatalytic activity and good stability, A porous β-PbO 2 electrode is prepared by electrodepositing on titanium substrate Sn-Sb-RuOx coating. The surface morphology and phase analysis of the porous β-PbO 2 electrode prepared at different current density were investigated by SEM and XRD. Results showed that the current density changes the surface morphology and active surface area of the porous β-PbO 2 electrode. When the current density is 2 A/dm 2 , the surface of the porous β-PbO 2 prepared by electrodeposition has a uniform porous morphology with a pore diameter of 50-200 µm with main crystal phase of β-PbO 2 . Influence of current density on the electrochemical activity of the electrode was analyzed using anodic polarization curve, electrochemical impedance spectroscopy and galvanostatic polarization. Results revealed that with the increase of current density, the oxygen evolution potential of the porous β-PbO 2 electrode decreases first and then increases while the exchange current density first increases and then decreases. When the current density is 2 A/dm 2 , the oxygen evolution potential is 2.0075 V(at 0.05 A/cm 2 ) and the maximum exchange current density is 1.77×10 -4 A/cm 2 . According to the electrochemical impedance spectroscopy, when the current density is 2 A/dm 2 , Q f and Q dl are the largest, R f and R ct are the smallest, and the R F first increases and then decreases with the current density increases. When the current density is 2 A/dm 2 , the maximum R F value is 655.7. The results with galvanostatic polarization at current density of 0.05 A/cm 2 showed that the electrode has a minimum electrode voltage of 2.05 V at a current density of 2 A/dm 2 . Accelerated life experiments were carried out in 2 g/L Cl - and 150 g/L H 2 SO 4 bath at 25 °C, and the porous β-PbO 2 electrode obtained under the current density of 2 A/dm 2 has the longest life, and the electrode life is 68 h, which is 2.5 times of the PbO 2 electrode obtained under the current density of 4 A/dm 2 .
In order to obtain a titanium-based PbO2 electrode with high electrocatalytic activity and good stability, A porous β-PbO2 electrode is prepared by electrodepositing on titanium substrate Sn-Sb-RuOx coating. The surface morphology and phase analysis of the porous β-PbO2 electrode prepared at different current density were investigated by SEM and XRD. Results showed that the current density changes the surface morphology and active surface area of the porous β-PbO2 electrode. When the current density is 2 A/dm2, the surface of the porous β-PbO2 prepared by electrodeposition has a uniform porous morphology with a pore diameter of 50-200 µm with main crystal phase of β-PbO2. Influence of current density on the electrochemical activity of the electrode was analyzed using anodic polarization curve, electrochemical impedance spectroscopy and galvanostatic polarization. Results revealed that with the increase of current density, the oxygen evolution potential of the porous β-PbO2 electrode decreases first and then increases while the exchange current density first increases and then decreases. When the current density is 2 A/dm2, the oxygen evolution potential is 2.0075 V(at 0.05 A/cm2) and the maximum exchange current density is 1.77×10-4 A/cm2. According to the electrochemical impedance spectroscopy, when the current density is 2 A/dm2, Qf and Qdl are the largest, Rf and Rct are the smallest, and the RF first increases and then decreases with the current density increases. When the current density is 2 A/dm2, the maximum RF value is 655.7. The results with galvanostatic polarization at current density of 0.05 A/cm2 showed that the electrode has a minimum electrode voltage of 2.05 V at a current density of 2 A/dm2. Accelerated life experiments were carried out in 2 g/L Cl- and 150 g/L H2SO4 bath at 25 °C, and the porous β-PbO2 electrode obtained under the current density of 2 A/dm2 has the longest life, and the electrode life is 68 h, which is 2.5 times of the PbO2 electrode obtained under the current density of 4 A/dm2.
Author Chen, Bu Ming
Xu, Rui Dong
Chen, Sheng
Guo, Zhong Cheng
Huang, Tai Xiang
Huang, Hui
Wang, Shi Chuan
Yang, Hai Tao
He, Ya Peng
Yan, Wen Kai
Author_xml – givenname: Bu Ming
  surname: Chen
  fullname: Chen, Bu Ming
  organization: Kunming University of Science and Technology : Faculty of Metallurgy and Energy Engineering
– givenname: Rui Dong
  surname: Xu
  fullname: Xu, Rui Dong
  organization: Kunming University of Science and Technology : Faculty of Metallurgy and Energy Engineering
– givenname: Sheng
  surname: Chen
  fullname: Chen, Sheng
  organization: Kunming University of Science and Technology : Faculty of Metallurgy and Energy Engineering
– givenname: Ya Peng
  surname: He
  fullname: He, Ya Peng
  organization: Kunming University of Science and Technology : Faculty of Metallurgy and Energy Engineering
– givenname: Hai Tao
  surname: Yang
  fullname: Yang, Hai Tao
  organization: Kunming University of Science and Technology : Faculty of Metallurgy and Energy Engineering
– givenname: Shi Chuan
  surname: Wang
  fullname: Wang, Shi Chuan
  organization: Kunming University of Science and Technology : Faculty of Metallurgy and Energy Engineering
– givenname: Tai Xiang
  surname: Huang
  fullname: Huang, Tai Xiang
  organization: Kunming Hengda Technology Co. LTD
– givenname: Hui
  surname: Huang
  fullname: Huang, Hui
  organization: Kunming University of Science and Technology : Faculty of Metallurgy and Energy Engineering
– givenname: Wen Kai
  surname: Yan
  fullname: Yan, Wen Kai
  organization: Kunming University of Science and Technology : Faculty of Metallurgy and Energy Engineering
– givenname: Zhong Cheng
  surname: Guo
  fullname: Guo, Zhong Cheng
  organization: Kunming University of Science and Technology : Faculty of Metallurgy and Energy Engineering
BookMark eNqNkNFKwzAUhoMouKnvEBAvW5O0TdsLEZ2bCsoE9To06QmLbMlMUoev5YP4TLZM2a1X5-b_v5_zjdG-dRYQOqMkzQmrzjebTRqUARuNNiq1EM8fn2dpXfCU0T00opyzpC4Lto9GhBVFUuQlP0TjEN4IyWhF-QjZqdagInYaTzrvexa-ARtMNBCwszguAD8a5V2IvlOx84Ab2-Lpsi95pxawMqpZ4mtYNB_G-YEzVJ6cd13A31_Jk5yzv3gLx-hAN8sAJ7_3CL3Opi-Tu-Rhfns_uXpIFOMVTZq8Ashr3RKidUVyBRJkLaUuCWullGVBCFc8b8ucqwwaWlBC6ooSResMJM2O0OmWu_buvYMQxZvrvO0nBWMZZwXPKtanLrap4b_gQYu1N6vGfwpKxKBY9IrFTrHoFYtesegVCzasXG770Tc2RFCL3cz_CD8J95Dc
CitedBy_id crossref_primary_10_1039_D1RA02815D
crossref_primary_10_1016_j_ijhydene_2022_06_222
crossref_primary_10_1016_j_est_2022_106264
crossref_primary_10_1360_TB_2022_0014
crossref_primary_10_1007_s10800_023_01867_2
Cites_doi 10.1016/s0304-386x(00)00097-9
10.3724/sp.j.1095.2013.20264
10.1016/j.ijhydene.2010.11.046
10.1016/j.electacta.2017.02.072
10.1016/s0010-938x(01)00165-2
10.1016/s1006-7191(08)60111-8
10.3724/j.issn.1000-0518.1990.2.25
10.1016/j.electacta.2007.09.005
10.1590/s0103-50532006000400017
10.1016/j.hydromet.2013.10.003
10.1016/s0013-4686(98)00276-x
10.1016/j.hydromet.2010.02.012
10.1016/j.electacta.2008.10.004
10.1016/s0022-0728(98)00098-9
10.1016/j.electacta.2009.04.024
10.1016/j.jelechem.2015.01.021
10.1016/j.cej.2011.09.035
10.1021/es049313a
10.1016/s0013-4686(03)00527-9
10.1016/j.hydromet.2012.04.012
10.1016/j.jelechem.2012.02.011
10.1016/s1003-6326(14)63482-8
ContentType Journal Article
Copyright 2019 Trans Tech Publications Ltd
Copyright Trans Tech Publications Ltd. Jun 2019
Copyright_xml – notice: 2019 Trans Tech Publications Ltd
– notice: Copyright Trans Tech Publications Ltd. Jun 2019
DBID AAYXX
CITATION
3V.
7SR
7XB
88I
8BQ
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
M2P
PDBOC
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.4028/www.scientific.net/MSF.956.21
DatabaseName CrossRef
ProQuest Central (Corporate)
Engineered Materials Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
Science Database
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Materials Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1662-9752
EndPage 34
ExternalDocumentID 10_4028_www_scientific_net_MSF_956_21
GroupedDBID .4S
4.4
88I
8FE
8FG
ABDNZ
ABJCF
ABJNI
ABUWG
ACGFS
ACIWK
AFKRA
AKQKA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DB1
DKFMR
DWQXO
EBS
EJD
GNUQQ
HCIFZ
KB.
M2P
PDBOC
RNS
RTP
YNT
YQT
~02
8WZ
A6W
AAYXX
ACYGS
CITATION
3V.
7SR
7XB
8BQ
8FD
8FK
JG9
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2681-a48ee49fd00ff804cebeb9bbf702dbbb75006c64d746c3ea151009810c193eb13
IEDL.DBID 8FG
ISSN 0255-5476
1662-9752
IngestDate Thu Oct 10 18:30:36 EDT 2024
Wed Jul 24 12:28:11 EDT 2024
Fri Jul 05 15:09:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrochemical Behavior
Porous PbO2
Current Density
Sn-Sb-RuOx Interlayer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2681-a48ee49fd00ff804cebeb9bbf702dbbb75006c64d746c3ea151009810c193eb13
Notes Selected, peer reviewed papers from the Second Academic Conference on Frontiers in Advanced Materials (ACFAM), November 2-4, 2018, Nanjing, China
PQID 2236256382
PQPubID 2040939
PageCount 14
ParticipantIDs proquest_journals_2236256382
crossref_primary_10_4028_www_scientific_net_MSF_956_21
transtech_journals_10_4028_www_scientific_net_MSF_956_21
PublicationCentury 2000
PublicationDate 20190601
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 20190601
  day: 01
PublicationDecade 2010
PublicationPlace Pfaffikon
PublicationPlace_xml – name: Pfaffikon
PublicationTitle Materials science forum
PublicationYear 2019
Publisher Trans Tech Publications Ltd
Publisher_xml – name: Trans Tech Publications Ltd
References 3809912
3809934
3809913
3809935
3809914
3809936
3809915
3809937
3809930
3809931
3809910
3809932
3809911
3809933
3809916
3809938
3809917
3809939
3809918
3809919
3809923
3809924
3809925
3809926
3809920
3809921
3809922
3809909
3809905
3809927
3809906
3809928
3809907
3809929
3809908
References_xml – ident: 3809910
  doi: 10.1016/s0304-386x(00)00097-9
– ident: 3809912
– ident: 3809918
– ident: 3809915
  doi: 10.3724/sp.j.1095.2013.20264
– ident: 3809935
– ident: 3809933
– ident: 3809908
  doi: 10.1016/j.ijhydene.2010.11.046
– ident: 3809920
  doi: 10.1016/j.electacta.2017.02.072
– ident: 3809926
  doi: 10.1016/s0010-938x(01)00165-2
– ident: 3809928
  doi: 10.1016/s1006-7191(08)60111-8
– ident: 3809939
  doi: 10.3724/j.issn.1000-0518.1990.2.25
– ident: 3809909
– ident: 3809916
  doi: 10.1016/j.electacta.2007.09.005
– ident: 3809924
– ident: 3809913
– ident: 3809936
– ident: 3809929
  doi: 10.1590/s0103-50532006000400017
– ident: 3809931
  doi: 10.1016/j.hydromet.2013.10.003
– ident: 3809938
– ident: 3809930
  doi: 10.1016/s0013-4686(98)00276-x
– ident: 3809911
  doi: 10.1016/j.hydromet.2010.02.012
– ident: 3809927
  doi: 10.1016/j.electacta.2008.10.004
– ident: 3809906
  doi: 10.1016/s0022-0728(98)00098-9
– ident: 3809907
  doi: 10.1016/j.electacta.2009.04.024
– ident: 3809934
– ident: 3809919
– ident: 3809917
  doi: 10.1016/j.jelechem.2015.01.021
– ident: 3809937
  doi: 10.1016/j.cej.2011.09.035
– ident: 3809905
  doi: 10.1021/es049313a
– ident: 3809932
  doi: 10.1016/s0013-4686(03)00527-9
– ident: 3809922
  doi: 10.1016/j.hydromet.2012.04.012
– ident: 3809923
  doi: 10.1016/j.jelechem.2012.02.011
– ident: 3809921
  doi: 10.1016/s1003-6326(14)63482-8
– ident: 3809914
  doi: 10.1016/j.hydromet.2013.10.003
– ident: 3809925
SSID ssj0031816
Score 2.2670426
Snippet In order to obtain a titanium-based PbO2 electrode with high electrocatalytic activity and good stability, A porous β-PbO2 electrode is prepared by...
In order to obtain a titanium-based PbO 2 electrode with high electrocatalytic activity and good stability, A porous β-PbO 2 electrode is prepared by...
SourceID proquest
crossref
transtech
SourceType Aggregation Database
Publisher
StartPage 21
SubjectTerms Accelerated life tests
Anodic polarization
Antimony
Chemical evolution
Coated electrodes
Current density
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrode polarization
Electrodes
Exchanging
Lead oxides
Morphology
Spectrum analysis
Substrates
Sulfuric acid
Tin
Titanium
Title Effect of Current Densities on the Microstructure and Electrochemical Behavior of the Porous β-PbO2 Electrode
URI https://www.scientific.net/MSF.956.21
https://www.proquest.com/docview/2236256382
Volume 956
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB21RKL0UBUoalqI9lCOS9f2Zm2fEKUxUaWEiBaJ28r74aOdJuGP8UP4TczY6wYuqGfbY-nNeubNevYNwDdVOkwSseKJU47LVEpurCh5gqWYU1maJRUdFJ7N1fRW_rob34UNt3Voq-xjYhuoXWNpj_w7pjGk6rha4vPlX05To-jvahih8RYGESnh0Unx4qqPxLhc29GnRJv5WKZqF04xSGDFlLXv6Y4cUkdOuw0w-12cYbVwFkcvc9SWeL7bUP4gcdVnOaj4CB8CeWQXnbf34Y2vD-D9M0nBQ6g7OWLWVCxIL7Gf1KNOuqmsqRnyPTajJrxOOPZ-5VlZOzbppuHYIB_AgmziiuzQI4tm1dyv2eMDX5jruL_d-U9wW0z-XE55mKnAbayyiJcy817mlROiqjIhLTrR5MZUqYidMQYJhFBWSZdKZRNfIiEgydFIWGR6GNeTI9ipm9p_BpaMVYU2kMAkmbRClXHqS5nmwuYGQ4EbgupR1MtOOkNjyUHwa4Rfb-HXCL9G-DXCr-NoCMc95jp8UWu99f8Qsn9-2F7_L8tfXrf8FfaQD-VdJ9gx7KAj_Alyjo0ZtQtrBIMfk_ni5gmyKNuR
link.rule.ids 315,786,790,12792,21416,27955,27956,33406,33777,43633,43838
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB61VGLbA6KlVbe8fGiP3npjr-OcUAUsC-wuSLDS3qz4kWNC9_HH-kP4TYwTh4VLxTnJRPpmMvPZGX8D8FPmDotEIil30lGRCkGNZTnluBRzUqWKF-Gg8GQqRzNxNR_M44bbMrZVtjmxTtSusmGP_DeWMaTqGC3JycNfGqZGhb-rcYTGe_gguOQhztXwos3EGK716NNAm-lApHIbfmGSwBWTqt_THDkMHTn1NsDkbtjD1UIv6b-uURvi2VmF-hHEVV_UoOEu7ETySP403v4M73z5BT69kBTcg7KRIyZVQaL0EjkLPepBN5VUJUG-RyahCa8Rjl0vPMlLR86baTg2ygeQKJu4CHbCI7fVolovyeM_emtukvZ257_CbHh-fzqicaYCtYlUfZoL5b3ICsdYUSgmLDrRZMYUKUucMQYJBJNWCpcKabnPkRAEydE-s8j0MK_zb7BVVqX_DoQPZIE2kMBwJSyTeZL6XKQZs5nBVOC6IFsU9UMjnaFxyRHg1wi_3sCvEX6N8GuEXyf9Lhy0mOv4RS31xv9dUM9-2Fx_k-Uf_7d8DJ3R_WSsx5fT6334iNwoa7rCDmALneIPkX-szFEdZE8x6dzf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Current+Densities+on+the+Microstructure+and+Electrochemical+Behavior+of+the+Porous+%CE%B2-PbO2+Electrode&rft.jtitle=Materials+science+forum&rft.au=Chen%2C+Bu+Ming&rft.au=Xu%2C+Rui+Dong&rft.au=Chen%2C+Sheng&rft.au=He%2C+Ya+Peng&rft.date=2019-06-01&rft.pub=Trans+Tech+Publications+Ltd&rft.issn=0255-5476&rft.eissn=1662-9752&rft.volume=956&rft.spage=21&rft.epage=34&rft_id=info:doi/10.4028%2Fwww.scientific.net%2FMSF.956.21&rft.externalDocID=10_4028_www_scientific_net_MSF_956_21
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.scientific.net%2FImage%2FTitleCover%2F4825%3Fwidth%3D600