A Molecularly Engineered Zwitterionic Hydrogel with Strengthened Anti‐Polyelectrolyte Effect: from High‐Rate Solar Desalination to Efficient Electricity Generation
Polyzwitterionic hydrogel is an emerging material for solar‐driven water evaporation in saline environment due to its special anti‐polyelectrolyte effect, which is a promising approach to co‐generation of freshwater and electricity. However, the molecular impact on anti‐polyelectrolyte effect remain...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 43 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
18.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polyzwitterionic hydrogel is an emerging material for solar‐driven water evaporation in saline environment due to its special anti‐polyelectrolyte effect, which is a promising approach to co‐generation of freshwater and electricity. However, the molecular impact on anti‐polyelectrolyte effect remains unclear, let alone to optimize the zwitterionic structure to promote water evaporation efficiency in high‐salinity brine. Herein, a molecularly engineered zwitterionic hydrogel is developed and the incorporated phenyl‐methylene‐imidazole motif greatly enhances the salt binding ability and strengthens anti‐polyelectrolyte effect, leading to boosted hydration, improved salt tolerance, ultra‐low evaporation enthalpy (almost half of traditional zwitterionic gel), and durable anti‐microbial ability in brine. Besides, gradient solar‐thermal network is penetrated to optimize water transport channel and heat confinement. The gel exhibits excellent evaporation rate of 3.17 kg m
−2
h
−1
in seawater, which is 1.6 times of that in water and such high efficiency could be maintained during 8 h continuous desalination, demonstrating outstanding salt tolerance. The high flux of ion stream can generate considerable voltage (321.3 mV) simultaneously. This work will bring new insights to the understanding of anti‐polyelectrolyte effect at molecular level and promote materials design for saline water evaporation. |
---|---|
AbstractList | Polyzwitterionic hydrogel is an emerging material for solar‐driven water evaporation in saline environment due to its special anti‐polyelectrolyte effect, which is a promising approach to co‐generation of freshwater and electricity. However, the molecular impact on anti‐polyelectrolyte effect remains unclear, let alone to optimize the zwitterionic structure to promote water evaporation efficiency in high‐salinity brine. Herein, a molecularly engineered zwitterionic hydrogel is developed and the incorporated phenyl‐methylene‐imidazole motif greatly enhances the salt binding ability and strengthens anti‐polyelectrolyte effect, leading to boosted hydration, improved salt tolerance, ultra‐low evaporation enthalpy (almost half of traditional zwitterionic gel), and durable anti‐microbial ability in brine. Besides, gradient solar‐thermal network is penetrated to optimize water transport channel and heat confinement. The gel exhibits excellent evaporation rate of 3.17 kg m−2 h−1 in seawater, which is 1.6 times of that in water and such high efficiency could be maintained during 8 h continuous desalination, demonstrating outstanding salt tolerance. The high flux of ion stream can generate considerable voltage (321.3 mV) simultaneously. This work will bring new insights to the understanding of anti‐polyelectrolyte effect at molecular level and promote materials design for saline water evaporation. Polyzwitterionic hydrogel is an emerging material for solar‐driven water evaporation in saline environment due to its special anti‐polyelectrolyte effect, which is a promising approach to co‐generation of freshwater and electricity. However, the molecular impact on anti‐polyelectrolyte effect remains unclear, let alone to optimize the zwitterionic structure to promote water evaporation efficiency in high‐salinity brine. Herein, a molecularly engineered zwitterionic hydrogel is developed and the incorporated phenyl‐methylene‐imidazole motif greatly enhances the salt binding ability and strengthens anti‐polyelectrolyte effect, leading to boosted hydration, improved salt tolerance, ultra‐low evaporation enthalpy (almost half of traditional zwitterionic gel), and durable anti‐microbial ability in brine. Besides, gradient solar‐thermal network is penetrated to optimize water transport channel and heat confinement. The gel exhibits excellent evaporation rate of 3.17 kg m −2 h −1 in seawater, which is 1.6 times of that in water and such high efficiency could be maintained during 8 h continuous desalination, demonstrating outstanding salt tolerance. The high flux of ion stream can generate considerable voltage (321.3 mV) simultaneously. This work will bring new insights to the understanding of anti‐polyelectrolyte effect at molecular level and promote materials design for saline water evaporation. |
Author | Zhou, Jiahui Fu, Jimin Zhang, Dong Zheng, Si Yu Zhu, Fengbo Yang, Jintao Wang, Shuaibing Lin, Ji Si, Mengjie |
Author_xml | – sequence: 1 givenname: Si Yu orcidid: 0000-0001-7602-6731 surname: Zheng fullname: Zheng, Si Yu organization: Zhejiang Key Laboratory of Plastic Modification and Processing Technology College of Materials Science & Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China – sequence: 2 givenname: Jiahui surname: Zhou fullname: Zhou, Jiahui organization: Zhejiang Key Laboratory of Plastic Modification and Processing Technology College of Materials Science & Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China – sequence: 3 givenname: Mengjie surname: Si fullname: Si, Mengjie organization: Zhejiang Key Laboratory of Plastic Modification and Processing Technology College of Materials Science & Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China – sequence: 4 givenname: Shuaibing surname: Wang fullname: Wang, Shuaibing organization: Zhejiang Key Laboratory of Plastic Modification and Processing Technology College of Materials Science & Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China – sequence: 5 givenname: Fengbo surname: Zhu fullname: Zhu, Fengbo organization: College of Materials Science & Engineering Taiyuan University of Technology Taiyuan 030024 P. R. China – sequence: 6 givenname: Ji surname: Lin fullname: Lin, Ji organization: School of Mechanical Engineering & Mechanics Ningbo University Ningbo 315211 P. R. China – sequence: 7 givenname: Jimin orcidid: 0000-0003-2591-9198 surname: Fu fullname: Fu, Jimin organization: Research Institute for Intelligent Wearable Systems School of Fashion and Textiles Hong Kong Polytechnic University Hong Kong SAR 999077 P. R. China – sequence: 8 givenname: Dong orcidid: 0000-0001-7002-7661 surname: Zhang fullname: Zhang, Dong organization: The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA – sequence: 9 givenname: Jintao orcidid: 0000-0002-3133-1246 surname: Yang fullname: Yang, Jintao organization: Zhejiang Key Laboratory of Plastic Modification and Processing Technology College of Materials Science & Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China |
BookMark | eNp1UbtOwzAUtRBIPFdmS8wtfiRxwlZBaZFAIMqAWCI3vmmNUhscVygbn8Bf8F98CbctYkBi8rn2eVz57JNt5x0QcsxZnzMmTrWpF33BhGRSKLFF9njGs55kIt_-xfxxl-y37TNjXCmZ7JHPAb3xDVTLRoemo0M3sw4ggKFPbzZGCNY7W9FxZ4KfQUPxck4nMYCbxTk45A1ctF_vH3e-6QCNYkAQgQ7rGoczWge_oGM7myPnXuPDxGMUvYBWN9bpiP40-hXdVhZcpMO1CQ6xoyNMCGvOIdmpddPC0c95QB4uhw_n49717ejqfHDdq0SmYq8GM80gkYlITMamqUkLhIXhCUsU5HUhVc60MFClSk4FT1kB0wr_C5RJZSYPyMnG9iX41yW0sXz2y-AwsRS5yoVgRcGRlWxYVfBtG6Aucdv1mjFo25SclatGylUj5W8jKOv_kb0Eu9Ch-0_wDYJllWs |
CitedBy_id | crossref_primary_10_1002_ange_202402726 crossref_primary_10_1016_j_cej_2024_148536 crossref_primary_10_1002_adfm_202316504 crossref_primary_10_3390_gels10060371 crossref_primary_10_1021_acsami_4c10854 crossref_primary_10_1016_j_applthermaleng_2024_124639 crossref_primary_10_1021_acsami_4c06121 crossref_primary_10_1039_D3LC00975K crossref_primary_10_1021_acsapm_4c00022 crossref_primary_10_1016_j_cis_2024_103359 crossref_primary_10_1016_j_cej_2024_154827 crossref_primary_10_1016_j_cej_2023_145185 crossref_primary_10_1016_j_desal_2024_118155 crossref_primary_10_1039_D4TA04084H crossref_primary_10_1016_j_desal_2024_118234 crossref_primary_10_1039_D4GC05004E crossref_primary_10_1016_j_cej_2023_147519 crossref_primary_10_1016_j_cej_2024_150781 crossref_primary_10_1002_smll_202409754 crossref_primary_10_1002_ange_202314456 crossref_primary_10_1021_acssuschemeng_4c00100 crossref_primary_10_1016_j_desal_2024_117814 crossref_primary_10_1021_acsnano_5c00564 crossref_primary_10_1002_anie_202402726 crossref_primary_10_1016_j_desal_2025_118689 crossref_primary_10_1016_j_desal_2025_118843 crossref_primary_10_1021_acsnano_4c16998 crossref_primary_10_1002_adfm_202421164 crossref_primary_10_1016_j_cej_2024_150118 crossref_primary_10_1002_aenm_202404117 crossref_primary_10_1002_anie_202314456 crossref_primary_10_1016_j_seppur_2024_130965 crossref_primary_10_1002_smll_202411624 crossref_primary_10_1002_aenm_202402926 crossref_primary_10_1016_j_desal_2025_118719 crossref_primary_10_1021_acs_biomac_4c01782 crossref_primary_10_1016_j_cej_2024_154802 crossref_primary_10_1002_adfm_202314651 crossref_primary_10_1039_D3TA05941C crossref_primary_10_20517_cs_2023_50 crossref_primary_10_1016_j_cej_2024_148524 crossref_primary_10_1002_smtd_202401541 crossref_primary_10_1039_D4MH01778A crossref_primary_10_1039_D4TA00069B crossref_primary_10_1021_acs_macromol_4c02688 crossref_primary_10_1002_advs_202407501 crossref_primary_10_1021_acs_est_3c09703 crossref_primary_10_1002_adma_202311151 crossref_primary_10_1016_j_cej_2024_151691 crossref_primary_10_1002_adfm_202412870 crossref_primary_10_1002_adfm_202306223 crossref_primary_10_1021_jacs_4c15126 crossref_primary_10_1016_j_seppur_2025_131816 crossref_primary_10_1021_acsapm_4c01363 crossref_primary_10_1002_adfm_202408269 crossref_primary_10_1016_j_desal_2025_118627 crossref_primary_10_1016_j_seppur_2024_129848 crossref_primary_10_1002_adma_202403039 crossref_primary_10_1002_aenm_202303991 crossref_primary_10_1002_adfm_202315211 |
Cites_doi | 10.1039/D0EE03991H 10.1002/aenm.202100481 10.1002/adfm.202108135 10.1021/la300394c 10.1002/adfm.202205597 10.1038/s41467-022-30505-2 10.1021/acsnano.1c01294 10.1002/adfm.202113264 10.1038/s41565-018-0097-z 10.1002/adfm.202206287 10.1038/s41467-021-23174-0 10.1016/j.joule.2021.04.009 10.1002/aenm.201900250 10.1038/s41565-018-0228-6 10.1016/j.nanoen.2022.107287 10.1002/adfm.202104464 10.1016/j.nanoen.2022.107180 10.1021/acsnano.9b02331 10.1021/acsnano.7b01965 10.1038/s41565-019-0562-3 10.1002/adfm.202104380 10.1002/adma.202007012 10.1039/D0MH01259A 10.1038/s41467-022-30973-6 10.1021/acsnano.1c01900 10.1016/j.nanoen.2019.104385 10.1039/D1EE00113B 10.1039/D1TA06255G 10.1002/anie.202014556 10.1002/adfm.202100025 10.1002/adfm.202214045 10.1016/j.cej.2021.130344 10.1021/acs.chemmater.1c02781 10.1016/j.nanoen.2019.104311 10.1126/sciadv.aaw7013 10.1039/D1TA01032H 10.1002/adma.202207262 10.1038/s41467-022-31221-7 10.1021/acsmaterialslett.1c00723 10.1039/C7EE01804E 10.1038/s41467-022-32051-3 10.1021/acsami.2c02464 10.1021/acsnano.0c07677 10.1038/s41467-022-34528-7 10.1021/acs.chemrev.2c00344 10.1021/acsnano.1c07391 10.1039/D2EE01394K 10.1039/D1EE01381E 10.1038/s41560-018-0260-7 10.1038/nnano.2016.300 10.1016/j.nanoen.2021.106468 10.1002/anie.202208487 10.1002/adma.202203137 10.1021/acsnano.1c09124 10.1002/anie.202200271 10.1002/adfm.202008681 10.1039/C9EE00692C 10.1002/adma.201404059 10.1002/anie.202007885 10.1002/adfm.202101036 10.1038/s41578-020-0182-4 10.1039/C8EE01146J 10.1038/s41467-022-32820-0 10.1038/s41893-022-00880-1 10.1039/D0EE01572E 10.1039/D1EE01505B 10.1016/j.nanoen.2021.106882 10.1038/s41467-022-28457-8 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202303272 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
ExternalDocumentID | 10_1002_adfm_202303272 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c267t-fedb6e43424d60b5d594249d14047e8f93780a2dec573b21509ebc327e7d5363 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 04:12:07 EDT 2025 Tue Jul 01 00:30:45 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c267t-fedb6e43424d60b5d594249d14047e8f93780a2dec573b21509ebc327e7d5363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3133-1246 0000-0001-7002-7661 0000-0001-7602-6731 0000-0003-2591-9198 |
PQID | 2878220991 |
PQPubID | 2045204 |
ParticipantIDs | proquest_journals_2878220991 crossref_citationtrail_10_1002_adfm_202303272 crossref_primary_10_1002_adfm_202303272 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-18 |
PublicationDateYYYYMMDD | 2023-10-18 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 Guo Y. (e_1_2_8_32_1) 2020; 13 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_30_1 e_1_2_8_29_1 Zhao X. (e_1_2_8_51_1) 2022; 32 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Bai J. (e_1_2_8_5_1) 2022; 15 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – ident: e_1_2_8_28_1 doi: 10.1039/D0EE03991H – ident: e_1_2_8_13_1 doi: 10.1002/aenm.202100481 – ident: e_1_2_8_63_1 doi: 10.1002/adfm.202108135 – ident: e_1_2_8_65_1 doi: 10.1021/la300394c – ident: e_1_2_8_66_1 doi: 10.1002/adfm.202205597 – ident: e_1_2_8_69_1 doi: 10.1038/s41467-022-30505-2 – ident: e_1_2_8_33_1 doi: 10.1021/acsnano.1c01294 – ident: e_1_2_8_47_1 doi: 10.1002/adfm.202113264 – ident: e_1_2_8_22_1 doi: 10.1038/s41565-018-0097-z – ident: e_1_2_8_10_1 doi: 10.1002/adfm.202206287 – ident: e_1_2_8_49_1 doi: 10.1038/s41467-021-23174-0 – volume: 15 start-page: 386 year: 2022 ident: e_1_2_8_5_1 publication-title: Energy Environ. Sci. – ident: e_1_2_8_6_1 doi: 10.1016/j.joule.2021.04.009 – ident: e_1_2_8_19_1 doi: 10.1002/aenm.201900250 – ident: e_1_2_8_1_1 doi: 10.1038/s41565-018-0228-6 – ident: e_1_2_8_36_1 doi: 10.1016/j.nanoen.2022.107287 – ident: e_1_2_8_37_1 doi: 10.1002/adfm.202104464 – ident: e_1_2_8_12_1 doi: 10.1016/j.nanoen.2022.107180 – ident: e_1_2_8_26_1 doi: 10.1021/acsnano.9b02331 – ident: e_1_2_8_53_1 doi: 10.1021/acsnano.7b01965 – ident: e_1_2_8_29_1 doi: 10.1038/s41565-019-0562-3 – ident: e_1_2_8_42_1 doi: 10.1002/adfm.202104380 – ident: e_1_2_8_24_1 doi: 10.1002/adma.202007012 – ident: e_1_2_8_40_1 doi: 10.1039/D0MH01259A – volume: 32 year: 2022 ident: e_1_2_8_51_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_58_1 doi: 10.1038/s41467-022-30973-6 – ident: e_1_2_8_48_1 doi: 10.1021/acsnano.1c01900 – ident: e_1_2_8_15_1 doi: 10.1016/j.nanoen.2019.104385 – ident: e_1_2_8_46_1 doi: 10.1039/D1EE00113B – ident: e_1_2_8_11_1 doi: 10.1039/D1TA06255G – ident: e_1_2_8_23_1 doi: 10.1002/anie.202014556 – ident: e_1_2_8_39_1 doi: 10.1002/adfm.202100025 – ident: e_1_2_8_62_1 doi: 10.1002/adfm.202214045 – ident: e_1_2_8_64_1 doi: 10.1016/j.cej.2021.130344 – ident: e_1_2_8_60_1 doi: 10.1021/acs.chemmater.1c02781 – ident: e_1_2_8_34_1 doi: 10.1016/j.nanoen.2019.104311 – ident: e_1_2_8_55_1 doi: 10.1126/sciadv.aaw7013 – ident: e_1_2_8_27_1 doi: 10.1039/D1TA01032H – ident: e_1_2_8_56_1 doi: 10.1002/adma.202207262 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-022-31221-7 – ident: e_1_2_8_71_1 doi: 10.1021/acsmaterialslett.1c00723 – ident: e_1_2_8_9_1 doi: 10.1039/C7EE01804E – ident: e_1_2_8_31_1 doi: 10.1038/s41467-022-32051-3 – ident: e_1_2_8_67_1 doi: 10.1021/acsami.2c02464 – ident: e_1_2_8_45_1 doi: 10.1021/acsnano.0c07677 – ident: e_1_2_8_54_1 doi: 10.1038/s41467-022-34528-7 – ident: e_1_2_8_59_1 doi: 10.1021/acs.chemrev.2c00344 – ident: e_1_2_8_25_1 doi: 10.1021/acsnano.1c07391 – ident: e_1_2_8_16_1 doi: 10.1039/D2EE01394K – ident: e_1_2_8_50_1 doi: 10.1039/D1EE01381E – ident: e_1_2_8_3_1 doi: 10.1038/s41560-018-0260-7 – ident: e_1_2_8_17_1 doi: 10.1038/nnano.2016.300 – ident: e_1_2_8_35_1 doi: 10.1016/j.nanoen.2021.106468 – ident: e_1_2_8_61_1 doi: 10.1002/anie.202208487 – ident: e_1_2_8_43_1 doi: 10.1002/adma.202203137 – ident: e_1_2_8_52_1 doi: 10.1021/acsnano.1c09124 – ident: e_1_2_8_68_1 doi: 10.1002/anie.202200271 – ident: e_1_2_8_20_1 doi: 10.1002/adfm.202008681 – ident: e_1_2_8_41_1 doi: 10.1039/C9EE00692C – ident: e_1_2_8_57_1 doi: 10.1002/adma.201404059 – ident: e_1_2_8_70_1 doi: 10.1002/anie.202007885 – ident: e_1_2_8_30_1 doi: 10.1002/adfm.202101036 – ident: e_1_2_8_2_1 doi: 10.1038/s41578-020-0182-4 – ident: e_1_2_8_7_1 doi: 10.1039/C8EE01146J – ident: e_1_2_8_8_1 doi: 10.1038/s41467-022-32820-0 – ident: e_1_2_8_4_1 doi: 10.1038/s41893-022-00880-1 – volume: 13 start-page: 287 year: 2020 ident: e_1_2_8_32_1 publication-title: Energy Environ. Sci. – ident: e_1_2_8_14_1 doi: 10.1039/D0EE01572E – ident: e_1_2_8_44_1 doi: 10.1039/D1EE01505B – ident: e_1_2_8_21_1 doi: 10.1016/j.nanoen.2021.106882 – ident: e_1_2_8_38_1 doi: 10.1038/s41467-022-28457-8 |
SSID | ssj0017734 |
Score | 2.6697724 |
Snippet | Polyzwitterionic hydrogel is an emerging material for solar‐driven water evaporation in saline environment due to its special anti‐polyelectrolyte effect,... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Brines Desalination Electricity Enthalpy Evaporation rate Hydrogels Imidazole Materials science Microorganisms Polyelectrolytes Saline environments Saline water Seawater Zwitterions |
Title | A Molecularly Engineered Zwitterionic Hydrogel with Strengthened Anti‐Polyelectrolyte Effect: from High‐Rate Solar Desalination to Efficient Electricity Generation |
URI | https://www.proquest.com/docview/2878220991 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaW9gIHxK8oFOQDEodVIHH-uUWw1QotBdFUWnqJ4sTZplolqE2ElhOPwFvwMjwFT8KM7fwsfypcoqx3FEWeL-OZ8fgbQh5ndhikQSYMHuYQoISFa6SWxY0iSFmQ-RbjqkD20JsfO6-W7nIy-TaqWmob_jT79NtzJf-jVRgDveIp2X_QbP9QGIB70C9cQcNwvZSOI_gkdXfb9aanFgQX8uRjiad0StneZr7Jz-uV0OXouA1drZDzAOSiqin7coe39Xqju-KsN42YKmJjTBnIMyhYEdLLvgMXdXqEYTFYrIsUT_VKIIEnO5OkFFhiMJMPgx_g6Ct66x4FHe9tV4GAy6vOSoILreauT_6U0_ft9ATeeDWkuetW4q9MT9tyEJTpXZA7K4ctpy4hftqmJe8Wap3nYLJiTpvmy1nTkRX3LCzok714YJEbj-mT6Nr0Kw4ODXFFF_XLkqIoatO8QN4CCNhspnoNbXN3H75JDo4XiySeLeMrZJdB0AJWdzd6-Xpx1O9q-b6qcuheryMRNdmz7edvO0nbPoJ0fOIb5LqOWGik4HeTTER1i1wb8VjeJl8jOgIiHYBIx0CkHRApApGOgUgRiN8_f_kJglRB8DlFAFIEIMgg9KiEHh1DjzY17aFHR9CjA_TukPhgFr-YG7oDiJExz2-MQuTcE47tMCf3TO7mbgi3YFUc0_FFUIBvHZgpy0Xm-jYH79UMBc9gBoWfu7Zn3yU7VV2Je4Ry30mZJ1hh8tCxMidFUiLGHeQrRMKoPWJ0M55kmh0fm7SsE8XrzRLUUNJraI886eU_KF6YP0rudwpMtO24SFiAnjlEZ9b9v__9gFwdPoZ9stOct-IhuMENf6TR9QO5GL0z |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Molecularly+Engineered+Zwitterionic+Hydrogel+with+Strengthened+Anti%E2%80%90Polyelectrolyte+Effect%3A+from+High%E2%80%90Rate+Solar+Desalination+to+Efficient+Electricity+Generation&rft.jtitle=Advanced+functional+materials&rft.au=Si+Yu+Zheng&rft.au=Zhou%2C+Jiahui&rft.au=Si%2C+Mengjie&rft.au=Wang%2C+Shuaibing&rft.date=2023-10-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=43&rft_id=info:doi/10.1002%2Fadfm.202303272&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |