A Molecularly Engineered Zwitterionic Hydrogel with Strengthened Anti‐Polyelectrolyte Effect: from High‐Rate Solar Desalination to Efficient Electricity Generation

Polyzwitterionic hydrogel is an emerging material for solar‐driven water evaporation in saline environment due to its special anti‐polyelectrolyte effect, which is a promising approach to co‐generation of freshwater and electricity. However, the molecular impact on anti‐polyelectrolyte effect remain...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 43
Main Authors Zheng, Si Yu, Zhou, Jiahui, Si, Mengjie, Wang, Shuaibing, Zhu, Fengbo, Lin, Ji, Fu, Jimin, Zhang, Dong, Yang, Jintao
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 18.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polyzwitterionic hydrogel is an emerging material for solar‐driven water evaporation in saline environment due to its special anti‐polyelectrolyte effect, which is a promising approach to co‐generation of freshwater and electricity. However, the molecular impact on anti‐polyelectrolyte effect remains unclear, let alone to optimize the zwitterionic structure to promote water evaporation efficiency in high‐salinity brine. Herein, a molecularly engineered zwitterionic hydrogel is developed and the incorporated phenyl‐methylene‐imidazole motif greatly enhances the salt binding ability and strengthens anti‐polyelectrolyte effect, leading to boosted hydration, improved salt tolerance, ultra‐low evaporation enthalpy (almost half of traditional zwitterionic gel), and durable anti‐microbial ability in brine. Besides, gradient solar‐thermal network is penetrated to optimize water transport channel and heat confinement. The gel exhibits excellent evaporation rate of 3.17 kg m −2 h −1 in seawater, which is 1.6 times of that in water and such high efficiency could be maintained during 8 h continuous desalination, demonstrating outstanding salt tolerance. The high flux of ion stream can generate considerable voltage (321.3 mV) simultaneously. This work will bring new insights to the understanding of anti‐polyelectrolyte effect at molecular level and promote materials design for saline water evaporation.
AbstractList Polyzwitterionic hydrogel is an emerging material for solar‐driven water evaporation in saline environment due to its special anti‐polyelectrolyte effect, which is a promising approach to co‐generation of freshwater and electricity. However, the molecular impact on anti‐polyelectrolyte effect remains unclear, let alone to optimize the zwitterionic structure to promote water evaporation efficiency in high‐salinity brine. Herein, a molecularly engineered zwitterionic hydrogel is developed and the incorporated phenyl‐methylene‐imidazole motif greatly enhances the salt binding ability and strengthens anti‐polyelectrolyte effect, leading to boosted hydration, improved salt tolerance, ultra‐low evaporation enthalpy (almost half of traditional zwitterionic gel), and durable anti‐microbial ability in brine. Besides, gradient solar‐thermal network is penetrated to optimize water transport channel and heat confinement. The gel exhibits excellent evaporation rate of 3.17 kg m−2 h−1 in seawater, which is 1.6 times of that in water and such high efficiency could be maintained during 8 h continuous desalination, demonstrating outstanding salt tolerance. The high flux of ion stream can generate considerable voltage (321.3 mV) simultaneously. This work will bring new insights to the understanding of anti‐polyelectrolyte effect at molecular level and promote materials design for saline water evaporation.
Polyzwitterionic hydrogel is an emerging material for solar‐driven water evaporation in saline environment due to its special anti‐polyelectrolyte effect, which is a promising approach to co‐generation of freshwater and electricity. However, the molecular impact on anti‐polyelectrolyte effect remains unclear, let alone to optimize the zwitterionic structure to promote water evaporation efficiency in high‐salinity brine. Herein, a molecularly engineered zwitterionic hydrogel is developed and the incorporated phenyl‐methylene‐imidazole motif greatly enhances the salt binding ability and strengthens anti‐polyelectrolyte effect, leading to boosted hydration, improved salt tolerance, ultra‐low evaporation enthalpy (almost half of traditional zwitterionic gel), and durable anti‐microbial ability in brine. Besides, gradient solar‐thermal network is penetrated to optimize water transport channel and heat confinement. The gel exhibits excellent evaporation rate of 3.17 kg m −2 h −1 in seawater, which is 1.6 times of that in water and such high efficiency could be maintained during 8 h continuous desalination, demonstrating outstanding salt tolerance. The high flux of ion stream can generate considerable voltage (321.3 mV) simultaneously. This work will bring new insights to the understanding of anti‐polyelectrolyte effect at molecular level and promote materials design for saline water evaporation.
Author Zhou, Jiahui
Fu, Jimin
Zhang, Dong
Zheng, Si Yu
Zhu, Fengbo
Yang, Jintao
Wang, Shuaibing
Lin, Ji
Si, Mengjie
Author_xml – sequence: 1
  givenname: Si Yu
  orcidid: 0000-0001-7602-6731
  surname: Zheng
  fullname: Zheng, Si Yu
  organization: Zhejiang Key Laboratory of Plastic Modification and Processing Technology College of Materials Science & Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
– sequence: 2
  givenname: Jiahui
  surname: Zhou
  fullname: Zhou, Jiahui
  organization: Zhejiang Key Laboratory of Plastic Modification and Processing Technology College of Materials Science & Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
– sequence: 3
  givenname: Mengjie
  surname: Si
  fullname: Si, Mengjie
  organization: Zhejiang Key Laboratory of Plastic Modification and Processing Technology College of Materials Science & Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
– sequence: 4
  givenname: Shuaibing
  surname: Wang
  fullname: Wang, Shuaibing
  organization: Zhejiang Key Laboratory of Plastic Modification and Processing Technology College of Materials Science & Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
– sequence: 5
  givenname: Fengbo
  surname: Zhu
  fullname: Zhu, Fengbo
  organization: College of Materials Science & Engineering Taiyuan University of Technology Taiyuan 030024 P. R. China
– sequence: 6
  givenname: Ji
  surname: Lin
  fullname: Lin, Ji
  organization: School of Mechanical Engineering & Mechanics Ningbo University Ningbo 315211 P. R. China
– sequence: 7
  givenname: Jimin
  orcidid: 0000-0003-2591-9198
  surname: Fu
  fullname: Fu, Jimin
  organization: Research Institute for Intelligent Wearable Systems School of Fashion and Textiles Hong Kong Polytechnic University Hong Kong SAR 999077 P. R. China
– sequence: 8
  givenname: Dong
  orcidid: 0000-0001-7002-7661
  surname: Zhang
  fullname: Zhang, Dong
  organization: The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
– sequence: 9
  givenname: Jintao
  orcidid: 0000-0002-3133-1246
  surname: Yang
  fullname: Yang, Jintao
  organization: Zhejiang Key Laboratory of Plastic Modification and Processing Technology College of Materials Science & Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
BookMark eNp1UbtOwzAUtRBIPFdmS8wtfiRxwlZBaZFAIMqAWCI3vmmNUhscVygbn8Bf8F98CbctYkBi8rn2eVz57JNt5x0QcsxZnzMmTrWpF33BhGRSKLFF9njGs55kIt_-xfxxl-y37TNjXCmZ7JHPAb3xDVTLRoemo0M3sw4ggKFPbzZGCNY7W9FxZ4KfQUPxck4nMYCbxTk45A1ctF_vH3e-6QCNYkAQgQ7rGoczWge_oGM7myPnXuPDxGMUvYBWN9bpiP40-hXdVhZcpMO1CQ6xoyNMCGvOIdmpddPC0c95QB4uhw_n49717ejqfHDdq0SmYq8GM80gkYlITMamqUkLhIXhCUsU5HUhVc60MFClSk4FT1kB0wr_C5RJZSYPyMnG9iX41yW0sXz2y-AwsRS5yoVgRcGRlWxYVfBtG6Aucdv1mjFo25SclatGylUj5W8jKOv_kb0Eu9Ch-0_wDYJllWs
CitedBy_id crossref_primary_10_1002_ange_202402726
crossref_primary_10_1016_j_cej_2024_148536
crossref_primary_10_1002_adfm_202316504
crossref_primary_10_3390_gels10060371
crossref_primary_10_1021_acsami_4c10854
crossref_primary_10_1016_j_applthermaleng_2024_124639
crossref_primary_10_1021_acsami_4c06121
crossref_primary_10_1039_D3LC00975K
crossref_primary_10_1021_acsapm_4c00022
crossref_primary_10_1016_j_cis_2024_103359
crossref_primary_10_1016_j_cej_2024_154827
crossref_primary_10_1016_j_cej_2023_145185
crossref_primary_10_1016_j_desal_2024_118155
crossref_primary_10_1039_D4TA04084H
crossref_primary_10_1016_j_desal_2024_118234
crossref_primary_10_1039_D4GC05004E
crossref_primary_10_1016_j_cej_2023_147519
crossref_primary_10_1016_j_cej_2024_150781
crossref_primary_10_1002_smll_202409754
crossref_primary_10_1002_ange_202314456
crossref_primary_10_1021_acssuschemeng_4c00100
crossref_primary_10_1016_j_desal_2024_117814
crossref_primary_10_1021_acsnano_5c00564
crossref_primary_10_1002_anie_202402726
crossref_primary_10_1016_j_desal_2025_118689
crossref_primary_10_1016_j_desal_2025_118843
crossref_primary_10_1021_acsnano_4c16998
crossref_primary_10_1002_adfm_202421164
crossref_primary_10_1016_j_cej_2024_150118
crossref_primary_10_1002_aenm_202404117
crossref_primary_10_1002_anie_202314456
crossref_primary_10_1016_j_seppur_2024_130965
crossref_primary_10_1002_smll_202411624
crossref_primary_10_1002_aenm_202402926
crossref_primary_10_1016_j_desal_2025_118719
crossref_primary_10_1021_acs_biomac_4c01782
crossref_primary_10_1016_j_cej_2024_154802
crossref_primary_10_1002_adfm_202314651
crossref_primary_10_1039_D3TA05941C
crossref_primary_10_20517_cs_2023_50
crossref_primary_10_1016_j_cej_2024_148524
crossref_primary_10_1002_smtd_202401541
crossref_primary_10_1039_D4MH01778A
crossref_primary_10_1039_D4TA00069B
crossref_primary_10_1021_acs_macromol_4c02688
crossref_primary_10_1002_advs_202407501
crossref_primary_10_1021_acs_est_3c09703
crossref_primary_10_1002_adma_202311151
crossref_primary_10_1016_j_cej_2024_151691
crossref_primary_10_1002_adfm_202412870
crossref_primary_10_1002_adfm_202306223
crossref_primary_10_1021_jacs_4c15126
crossref_primary_10_1016_j_seppur_2025_131816
crossref_primary_10_1021_acsapm_4c01363
crossref_primary_10_1002_adfm_202408269
crossref_primary_10_1016_j_desal_2025_118627
crossref_primary_10_1016_j_seppur_2024_129848
crossref_primary_10_1002_adma_202403039
crossref_primary_10_1002_aenm_202303991
crossref_primary_10_1002_adfm_202315211
Cites_doi 10.1039/D0EE03991H
10.1002/aenm.202100481
10.1002/adfm.202108135
10.1021/la300394c
10.1002/adfm.202205597
10.1038/s41467-022-30505-2
10.1021/acsnano.1c01294
10.1002/adfm.202113264
10.1038/s41565-018-0097-z
10.1002/adfm.202206287
10.1038/s41467-021-23174-0
10.1016/j.joule.2021.04.009
10.1002/aenm.201900250
10.1038/s41565-018-0228-6
10.1016/j.nanoen.2022.107287
10.1002/adfm.202104464
10.1016/j.nanoen.2022.107180
10.1021/acsnano.9b02331
10.1021/acsnano.7b01965
10.1038/s41565-019-0562-3
10.1002/adfm.202104380
10.1002/adma.202007012
10.1039/D0MH01259A
10.1038/s41467-022-30973-6
10.1021/acsnano.1c01900
10.1016/j.nanoen.2019.104385
10.1039/D1EE00113B
10.1039/D1TA06255G
10.1002/anie.202014556
10.1002/adfm.202100025
10.1002/adfm.202214045
10.1016/j.cej.2021.130344
10.1021/acs.chemmater.1c02781
10.1016/j.nanoen.2019.104311
10.1126/sciadv.aaw7013
10.1039/D1TA01032H
10.1002/adma.202207262
10.1038/s41467-022-31221-7
10.1021/acsmaterialslett.1c00723
10.1039/C7EE01804E
10.1038/s41467-022-32051-3
10.1021/acsami.2c02464
10.1021/acsnano.0c07677
10.1038/s41467-022-34528-7
10.1021/acs.chemrev.2c00344
10.1021/acsnano.1c07391
10.1039/D2EE01394K
10.1039/D1EE01381E
10.1038/s41560-018-0260-7
10.1038/nnano.2016.300
10.1016/j.nanoen.2021.106468
10.1002/anie.202208487
10.1002/adma.202203137
10.1021/acsnano.1c09124
10.1002/anie.202200271
10.1002/adfm.202008681
10.1039/C9EE00692C
10.1002/adma.201404059
10.1002/anie.202007885
10.1002/adfm.202101036
10.1038/s41578-020-0182-4
10.1039/C8EE01146J
10.1038/s41467-022-32820-0
10.1038/s41893-022-00880-1
10.1039/D0EE01572E
10.1039/D1EE01505B
10.1016/j.nanoen.2021.106882
10.1038/s41467-022-28457-8
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202303272
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202303272
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c267t-fedb6e43424d60b5d594249d14047e8f93780a2dec573b21509ebc327e7d5363
ISSN 1616-301X
IngestDate Sun Jul 13 04:12:07 EDT 2025
Tue Jul 01 00:30:45 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-fedb6e43424d60b5d594249d14047e8f93780a2dec573b21509ebc327e7d5363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3133-1246
0000-0001-7002-7661
0000-0001-7602-6731
0000-0003-2591-9198
PQID 2878220991
PQPubID 2045204
ParticipantIDs proquest_journals_2878220991
crossref_citationtrail_10_1002_adfm_202303272
crossref_primary_10_1002_adfm_202303272
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-18
PublicationDateYYYYMMDD 2023-10-18
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-18
  day: 18
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
Guo Y. (e_1_2_8_32_1) 2020; 13
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_30_1
e_1_2_8_29_1
Zhao X. (e_1_2_8_51_1) 2022; 32
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Bai J. (e_1_2_8_5_1) 2022; 15
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – ident: e_1_2_8_28_1
  doi: 10.1039/D0EE03991H
– ident: e_1_2_8_13_1
  doi: 10.1002/aenm.202100481
– ident: e_1_2_8_63_1
  doi: 10.1002/adfm.202108135
– ident: e_1_2_8_65_1
  doi: 10.1021/la300394c
– ident: e_1_2_8_66_1
  doi: 10.1002/adfm.202205597
– ident: e_1_2_8_69_1
  doi: 10.1038/s41467-022-30505-2
– ident: e_1_2_8_33_1
  doi: 10.1021/acsnano.1c01294
– ident: e_1_2_8_47_1
  doi: 10.1002/adfm.202113264
– ident: e_1_2_8_22_1
  doi: 10.1038/s41565-018-0097-z
– ident: e_1_2_8_10_1
  doi: 10.1002/adfm.202206287
– ident: e_1_2_8_49_1
  doi: 10.1038/s41467-021-23174-0
– volume: 15
  start-page: 386
  year: 2022
  ident: e_1_2_8_5_1
  publication-title: Energy Environ. Sci.
– ident: e_1_2_8_6_1
  doi: 10.1016/j.joule.2021.04.009
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.201900250
– ident: e_1_2_8_1_1
  doi: 10.1038/s41565-018-0228-6
– ident: e_1_2_8_36_1
  doi: 10.1016/j.nanoen.2022.107287
– ident: e_1_2_8_37_1
  doi: 10.1002/adfm.202104464
– ident: e_1_2_8_12_1
  doi: 10.1016/j.nanoen.2022.107180
– ident: e_1_2_8_26_1
  doi: 10.1021/acsnano.9b02331
– ident: e_1_2_8_53_1
  doi: 10.1021/acsnano.7b01965
– ident: e_1_2_8_29_1
  doi: 10.1038/s41565-019-0562-3
– ident: e_1_2_8_42_1
  doi: 10.1002/adfm.202104380
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.202007012
– ident: e_1_2_8_40_1
  doi: 10.1039/D0MH01259A
– volume: 32
  year: 2022
  ident: e_1_2_8_51_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_58_1
  doi: 10.1038/s41467-022-30973-6
– ident: e_1_2_8_48_1
  doi: 10.1021/acsnano.1c01900
– ident: e_1_2_8_15_1
  doi: 10.1016/j.nanoen.2019.104385
– ident: e_1_2_8_46_1
  doi: 10.1039/D1EE00113B
– ident: e_1_2_8_11_1
  doi: 10.1039/D1TA06255G
– ident: e_1_2_8_23_1
  doi: 10.1002/anie.202014556
– ident: e_1_2_8_39_1
  doi: 10.1002/adfm.202100025
– ident: e_1_2_8_62_1
  doi: 10.1002/adfm.202214045
– ident: e_1_2_8_64_1
  doi: 10.1016/j.cej.2021.130344
– ident: e_1_2_8_60_1
  doi: 10.1021/acs.chemmater.1c02781
– ident: e_1_2_8_34_1
  doi: 10.1016/j.nanoen.2019.104311
– ident: e_1_2_8_55_1
  doi: 10.1126/sciadv.aaw7013
– ident: e_1_2_8_27_1
  doi: 10.1039/D1TA01032H
– ident: e_1_2_8_56_1
  doi: 10.1002/adma.202207262
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-022-31221-7
– ident: e_1_2_8_71_1
  doi: 10.1021/acsmaterialslett.1c00723
– ident: e_1_2_8_9_1
  doi: 10.1039/C7EE01804E
– ident: e_1_2_8_31_1
  doi: 10.1038/s41467-022-32051-3
– ident: e_1_2_8_67_1
  doi: 10.1021/acsami.2c02464
– ident: e_1_2_8_45_1
  doi: 10.1021/acsnano.0c07677
– ident: e_1_2_8_54_1
  doi: 10.1038/s41467-022-34528-7
– ident: e_1_2_8_59_1
  doi: 10.1021/acs.chemrev.2c00344
– ident: e_1_2_8_25_1
  doi: 10.1021/acsnano.1c07391
– ident: e_1_2_8_16_1
  doi: 10.1039/D2EE01394K
– ident: e_1_2_8_50_1
  doi: 10.1039/D1EE01381E
– ident: e_1_2_8_3_1
  doi: 10.1038/s41560-018-0260-7
– ident: e_1_2_8_17_1
  doi: 10.1038/nnano.2016.300
– ident: e_1_2_8_35_1
  doi: 10.1016/j.nanoen.2021.106468
– ident: e_1_2_8_61_1
  doi: 10.1002/anie.202208487
– ident: e_1_2_8_43_1
  doi: 10.1002/adma.202203137
– ident: e_1_2_8_52_1
  doi: 10.1021/acsnano.1c09124
– ident: e_1_2_8_68_1
  doi: 10.1002/anie.202200271
– ident: e_1_2_8_20_1
  doi: 10.1002/adfm.202008681
– ident: e_1_2_8_41_1
  doi: 10.1039/C9EE00692C
– ident: e_1_2_8_57_1
  doi: 10.1002/adma.201404059
– ident: e_1_2_8_70_1
  doi: 10.1002/anie.202007885
– ident: e_1_2_8_30_1
  doi: 10.1002/adfm.202101036
– ident: e_1_2_8_2_1
  doi: 10.1038/s41578-020-0182-4
– ident: e_1_2_8_7_1
  doi: 10.1039/C8EE01146J
– ident: e_1_2_8_8_1
  doi: 10.1038/s41467-022-32820-0
– ident: e_1_2_8_4_1
  doi: 10.1038/s41893-022-00880-1
– volume: 13
  start-page: 287
  year: 2020
  ident: e_1_2_8_32_1
  publication-title: Energy Environ. Sci.
– ident: e_1_2_8_14_1
  doi: 10.1039/D0EE01572E
– ident: e_1_2_8_44_1
  doi: 10.1039/D1EE01505B
– ident: e_1_2_8_21_1
  doi: 10.1016/j.nanoen.2021.106882
– ident: e_1_2_8_38_1
  doi: 10.1038/s41467-022-28457-8
SSID ssj0017734
Score 2.6697724
Snippet Polyzwitterionic hydrogel is an emerging material for solar‐driven water evaporation in saline environment due to its special anti‐polyelectrolyte effect,...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Brines
Desalination
Electricity
Enthalpy
Evaporation rate
Hydrogels
Imidazole
Materials science
Microorganisms
Polyelectrolytes
Saline environments
Saline water
Seawater
Zwitterions
Title A Molecularly Engineered Zwitterionic Hydrogel with Strengthened Anti‐Polyelectrolyte Effect: from High‐Rate Solar Desalination to Efficient Electricity Generation
URI https://www.proquest.com/docview/2878220991
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaW9gIHxK8oFOQDEodVIHH-uUWw1QotBdFUWnqJ4sTZplolqE2ElhOPwFvwMjwFT8KM7fwsfypcoqx3FEWeL-OZ8fgbQh5ndhikQSYMHuYQoISFa6SWxY0iSFmQ-RbjqkD20JsfO6-W7nIy-TaqWmob_jT79NtzJf-jVRgDveIp2X_QbP9QGIB70C9cQcNwvZSOI_gkdXfb9aanFgQX8uRjiad0StneZr7Jz-uV0OXouA1drZDzAOSiqin7coe39Xqju-KsN42YKmJjTBnIMyhYEdLLvgMXdXqEYTFYrIsUT_VKIIEnO5OkFFhiMJMPgx_g6Ct66x4FHe9tV4GAy6vOSoILreauT_6U0_ft9ATeeDWkuetW4q9MT9tyEJTpXZA7K4ctpy4hftqmJe8Wap3nYLJiTpvmy1nTkRX3LCzok714YJEbj-mT6Nr0Kw4ODXFFF_XLkqIoatO8QN4CCNhspnoNbXN3H75JDo4XiySeLeMrZJdB0AJWdzd6-Xpx1O9q-b6qcuheryMRNdmz7edvO0nbPoJ0fOIb5LqOWGik4HeTTER1i1wb8VjeJl8jOgIiHYBIx0CkHRApApGOgUgRiN8_f_kJglRB8DlFAFIEIMgg9KiEHh1DjzY17aFHR9CjA_TukPhgFr-YG7oDiJExz2-MQuTcE47tMCf3TO7mbgi3YFUc0_FFUIBvHZgpy0Xm-jYH79UMBc9gBoWfu7Zn3yU7VV2Je4Ry30mZJ1hh8tCxMidFUiLGHeQrRMKoPWJ0M55kmh0fm7SsE8XrzRLUUNJraI886eU_KF6YP0rudwpMtO24SFiAnjlEZ9b9v__9gFwdPoZ9stOct-IhuMENf6TR9QO5GL0z
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Molecularly+Engineered+Zwitterionic+Hydrogel+with+Strengthened+Anti%E2%80%90Polyelectrolyte+Effect%3A+from+High%E2%80%90Rate+Solar+Desalination+to+Efficient+Electricity+Generation&rft.jtitle=Advanced+functional+materials&rft.au=Si+Yu+Zheng&rft.au=Zhou%2C+Jiahui&rft.au=Si%2C+Mengjie&rft.au=Wang%2C+Shuaibing&rft.date=2023-10-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=43&rft_id=info:doi/10.1002%2Fadfm.202303272&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon