Toward Flexible Embodied Energy: Scale‐Inspired Overlapping Lithium‐Ion Batteries with High‐Energy‐Density and Variable Stiffness

High performance flexible batteries are essential ingredients for flexible devices. However, general isolated flexible batteries face critical challenges in developing multifunctional embodied energy systems, owing to the lack of integrative design. Herein, inspired by scales in creatures, overlappi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 37
Main Authors Bao, Yinhua, Liu, Haojie, Zhao, Zeang, Ma, Xu, Zhang, Xing‐Yu, Liu, Guanzhong, Song, Wei‐Li
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 12.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High performance flexible batteries are essential ingredients for flexible devices. However, general isolated flexible batteries face critical challenges in developing multifunctional embodied energy systems, owing to the lack of integrative design. Herein, inspired by scales in creatures, overlapping flexible lithium‐ion batteries (FLIBs) consisting of energy storage scales and connections using LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM523) and graphite electrodes are presented. The scale‐dermis structure ensures a high energy density of 374.4 Wh L −1 as well as a high capacity retention of 93.2% after 200 charge/discharge cycles and 40 000 bending times. A variable stiffness property is revealed that can be controlled by battery configurations and deformation modes. Furthermore, the overlapping FLIBs can be housed directly into the architecture of several flexible devices, such as robots and grippers, allowing to create multifunctionalities that go far beyond energy storage and include load‐bearing and variable flexibility. This study broadens the versatility of FLIBs toward energy storage structure engineering of flexible devices.
AbstractList High performance flexible batteries are essential ingredients for flexible devices. However, general isolated flexible batteries face critical challenges in developing multifunctional embodied energy systems, owing to the lack of integrative design. Herein, inspired by scales in creatures, overlapping flexible lithium‐ion batteries (FLIBs) consisting of energy storage scales and connections using LiNi0.5Co0.2Mn0.3O2 (NCM523) and graphite electrodes are presented. The scale‐dermis structure ensures a high energy density of 374.4 Wh L−1 as well as a high capacity retention of 93.2% after 200 charge/discharge cycles and 40 000 bending times. A variable stiffness property is revealed that can be controlled by battery configurations and deformation modes. Furthermore, the overlapping FLIBs can be housed directly into the architecture of several flexible devices, such as robots and grippers, allowing to create multifunctionalities that go far beyond energy storage and include load‐bearing and variable flexibility. This study broadens the versatility of FLIBs toward energy storage structure engineering of flexible devices.
High performance flexible batteries are essential ingredients for flexible devices. However, general isolated flexible batteries face critical challenges in developing multifunctional embodied energy systems, owing to the lack of integrative design. Herein, inspired by scales in creatures, overlapping flexible lithium‐ion batteries (FLIBs) consisting of energy storage scales and connections using LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM523) and graphite electrodes are presented. The scale‐dermis structure ensures a high energy density of 374.4 Wh L −1 as well as a high capacity retention of 93.2% after 200 charge/discharge cycles and 40 000 bending times. A variable stiffness property is revealed that can be controlled by battery configurations and deformation modes. Furthermore, the overlapping FLIBs can be housed directly into the architecture of several flexible devices, such as robots and grippers, allowing to create multifunctionalities that go far beyond energy storage and include load‐bearing and variable flexibility. This study broadens the versatility of FLIBs toward energy storage structure engineering of flexible devices.
Author Bao, Yinhua
Zhao, Zeang
Zhang, Xing‐Yu
Liu, Haojie
Liu, Guanzhong
Ma, Xu
Song, Wei‐Li
Author_xml – sequence: 1
  givenname: Yinhua
  orcidid: 0000-0003-2462-5219
  surname: Bao
  fullname: Bao, Yinhua
  organization: Shanghai Institute of Applied Mathematics and Mechanics School of Mechanics and Engineering Science Shanghai Key Laboratory of Mechanics in Energy Engineering Shanghai University Shanghai 200444 China, Shanghai Frontier Science Center of Mechanoinformatics Shanghai 200444 China
– sequence: 2
  givenname: Haojie
  surname: Liu
  fullname: Liu, Haojie
  organization: Shanghai Institute of Applied Mathematics and Mechanics School of Mechanics and Engineering Science Shanghai Key Laboratory of Mechanics in Energy Engineering Shanghai University Shanghai 200444 China
– sequence: 3
  givenname: Zeang
  surname: Zhao
  fullname: Zhao, Zeang
  organization: Institute of Advanced Structure Technology Beijing Institute of Technology Beijing 100081 China
– sequence: 4
  givenname: Xu
  surname: Ma
  fullname: Ma, Xu
  organization: Shanghai Institute of Applied Mathematics and Mechanics School of Mechanics and Engineering Science Shanghai Key Laboratory of Mechanics in Energy Engineering Shanghai University Shanghai 200444 China
– sequence: 5
  givenname: Xing‐Yu
  surname: Zhang
  fullname: Zhang, Xing‐Yu
  organization: State Key Laboratory of Mechanics and Control for Aerospace Structures College of Aerospace Engineering Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
– sequence: 6
  givenname: Guanzhong
  surname: Liu
  fullname: Liu, Guanzhong
  organization: Shanghai Institute of Applied Mathematics and Mechanics School of Mechanics and Engineering Science Shanghai Key Laboratory of Mechanics in Energy Engineering Shanghai University Shanghai 200444 China
– sequence: 7
  givenname: Wei‐Li
  surname: Song
  fullname: Song, Wei‐Li
  organization: Institute of Advanced Structure Technology Beijing Institute of Technology Beijing 100081 China
BookMark eNp1UMtKAzEUDaJgfWxdB1y35uF0Unda6wMKLqzibriT3NSUaWZMUmt3bt35jX6JUyouBFf3cM8Lzh7Z9rVHQo4463HGxAkYO-8JJiTjmeJbpMP7vN-VTKjtX8yfdslejDPGeJ7L0w75mNRLCIZeVfjmygrpaF7WxqGhI49hujqj9xoq_Hr_vPWxcaEl7l4xVNA0zk_p2KVnt5iv6drTC0gJg8NIl-2f3rjpc8tsglpwiT66tKLgDX2E4GDdd5-ctR5jPCA7FqqIhz93nzxcjSbDm-747vp2eD7uatHPU9cqUeoysyrTA6a45rrULDM8lwpzYw0wWYIG4Jm1YoDMcC1zBJBK8FxlKPfJ8Sa3CfXLAmMqZvUi-LayEKovBwPGctGqehuVDnWMAW3RBDeHsCo4K9ZzF-u5i9-5W8PpH4N2CZKrfQrgqv9s39lejRA
CitedBy_id crossref_primary_10_1007_s11705_024_2444_y
crossref_primary_10_1016_j_nanoen_2024_109497
crossref_primary_10_1038_s43246_024_00703_0
crossref_primary_10_1002_advs_202402380
crossref_primary_10_1016_j_compstruct_2024_118457
crossref_primary_10_1016_j_nanoen_2024_110032
crossref_primary_10_1016_j_scib_2024_09_032
crossref_primary_10_1016_j_ensm_2023_103021
crossref_primary_10_1002_smll_202408457
crossref_primary_10_1016_j_scib_2025_01_018
crossref_primary_10_1021_acs_langmuir_3c03679
crossref_primary_10_1016_j_vacuum_2024_113647
crossref_primary_10_3390_nano14221856
crossref_primary_10_1002_adma_202303165
crossref_primary_10_1039_D4TA04682J
crossref_primary_10_1089_soro_2024_0098
crossref_primary_10_1126_scirobotics_adl0307
crossref_primary_10_1002_adfm_202421160
Cites_doi 10.1002/adma.202105947
10.1089/soro.2020.0175
10.1021/acsami.9b18232
10.1016/j.ensm.2018.11.019
10.1039/C3EE43182G
10.1002/adfm.202107662
10.1016/j.vrih.2019.08.001
10.1007/s42114-021-00375-1
10.1002/adma.201704947
10.1002/adma.201502403
10.1016/j.ijsolstr.2013.10.001
10.1016/j.joule.2020.07.027
10.1002/adma.202107345
10.1016/j.ensm.2019.04.019
10.1002/adma.202209980
10.1038/s41586-021-03772-0
10.1002/admt.202100018
10.1002/smll.202201793
10.1002/aenm.201701076
10.1016/j.jsv.2020.115592
10.1039/D1SM00618E
10.1016/j.ijsolstr.2010.04.018
10.1002/aenm.201802998
10.1088/0964-1726/24/8/085021
10.1016/j.jmps.2014.01.005
10.1016/j.ijmecsci.2011.09.008
10.1007/s42114-022-00436-z
10.1109/LRA.2022.3147454
10.1126/scirobotics.aav4494
10.1089/soro.2018.0046
10.1007/s42114-021-00412-z
10.1016/j.mattod.2021.11.020
10.1016/j.ensm.2022.01.062
10.1021/acsenergylett.8b02496
10.1089/soro.2019.0203
10.1021/acs.nanolett.2c01820
10.1038/s41586-021-04138-2
10.1126/scirobotics.aav7874
10.1002/adma.201405127
10.1038/ncomms2553
10.1016/j.fmre.2021.06.007
10.1002/advs.202101372
10.1016/j.eml.2019.100532
10.1038/srep10988
10.1039/D1EE00480H
10.1021/acsnano.2c09509
10.1002/admt.201700032
10.1126/scirobotics.aba1912
10.1002/adma.202107902
10.1038/ncomms4140
10.1016/j.jmbbm.2017.05.015
10.1109/JSEN.2017.2705700
10.1002/aenm.201801917
10.1002/aenm.202100997
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202301581
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202301581
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c267t-f82bcb5f85c9081c1cbc05d1738e7dfda03bacaa15ff29e0d1c37eaa3821785e3
ISSN 1616-301X
IngestDate Mon Jul 14 10:33:49 EDT 2025
Tue Jul 01 00:30:44 EDT 2025
Thu Apr 24 23:09:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-f82bcb5f85c9081c1cbc05d1738e7dfda03bacaa15ff29e0d1c37eaa3821785e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2462-5219
PQID 2863990072
PQPubID 2045204
ParticipantIDs proquest_journals_2863990072
crossref_primary_10_1002_adfm_202301581
crossref_citationtrail_10_1002_adfm_202301581
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-12
PublicationDateYYYYMMDD 2023-09-12
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-12
  day: 12
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_13_1
  doi: 10.1002/adma.202105947
– ident: e_1_2_8_51_1
  doi: 10.1089/soro.2020.0175
– ident: e_1_2_8_22_1
  doi: 10.1021/acsami.9b18232
– ident: e_1_2_8_25_1
  doi: 10.1016/j.ensm.2018.11.019
– ident: e_1_2_8_12_1
  doi: 10.1039/C3EE43182G
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.202107662
– ident: e_1_2_8_5_1
  doi: 10.1016/j.vrih.2019.08.001
– ident: e_1_2_8_6_1
  doi: 10.1007/s42114-021-00375-1
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.201704947
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.201502403
– ident: e_1_2_8_44_1
  doi: 10.1016/j.ijsolstr.2013.10.001
– ident: e_1_2_8_27_1
  doi: 10.1016/j.joule.2020.07.027
– ident: e_1_2_8_32_1
  doi: 10.1002/adma.202107345
– ident: e_1_2_8_9_1
  doi: 10.1016/j.ensm.2019.04.019
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.202209980
– ident: e_1_2_8_16_1
  doi: 10.1038/s41586-021-03772-0
– ident: e_1_2_8_31_1
  doi: 10.1002/admt.202100018
– ident: e_1_2_8_10_1
  doi: 10.1002/smll.202201793
– ident: e_1_2_8_17_1
  doi: 10.1002/aenm.201701076
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jsv.2020.115592
– ident: e_1_2_8_37_1
  doi: 10.1039/D1SM00618E
– ident: e_1_2_8_43_1
  doi: 10.1016/j.ijsolstr.2010.04.018
– ident: e_1_2_8_24_1
  doi: 10.1002/aenm.201802998
– ident: e_1_2_8_36_1
  doi: 10.1088/0964-1726/24/8/085021
– ident: e_1_2_8_45_1
  doi: 10.1016/j.jmps.2014.01.005
– ident: e_1_2_8_54_1
  doi: 10.1016/j.ijmecsci.2011.09.008
– ident: e_1_2_8_29_1
  doi: 10.1007/s42114-022-00436-z
– ident: e_1_2_8_34_1
  doi: 10.1109/LRA.2022.3147454
– ident: e_1_2_8_2_1
  doi: 10.1126/scirobotics.aav4494
– ident: e_1_2_8_38_1
  doi: 10.1089/soro.2018.0046
– ident: e_1_2_8_7_1
  doi: 10.1007/s42114-021-00412-z
– ident: e_1_2_8_15_1
  doi: 10.1016/j.mattod.2021.11.020
– ident: e_1_2_8_42_1
  doi: 10.1016/j.ensm.2022.01.062
– ident: e_1_2_8_11_1
  doi: 10.1021/acsenergylett.8b02496
– ident: e_1_2_8_30_1
  doi: 10.1089/soro.2019.0203
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.nanolett.2c01820
– ident: e_1_2_8_39_1
  doi: 10.1038/s41586-021-04138-2
– ident: e_1_2_8_3_1
  doi: 10.1126/scirobotics.aav7874
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.201405127
– ident: e_1_2_8_19_1
  doi: 10.1038/ncomms2553
– ident: e_1_2_8_48_1
  doi: 10.1016/j.fmre.2021.06.007
– ident: e_1_2_8_46_1
  doi: 10.1002/advs.202101372
– ident: e_1_2_8_53_1
  doi: 10.1016/j.eml.2019.100532
– ident: e_1_2_8_21_1
  doi: 10.1038/srep10988
– ident: e_1_2_8_50_1
  doi: 10.1039/D1EE00480H
– ident: e_1_2_8_14_1
  doi: 10.1021/acsnano.2c09509
– ident: e_1_2_8_47_1
  doi: 10.1002/admt.201700032
– ident: e_1_2_8_52_1
  doi: 10.1126/scirobotics.aba1912
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.202107902
– ident: e_1_2_8_20_1
  doi: 10.1038/ncomms4140
– ident: e_1_2_8_41_1
  doi: 10.1016/j.jmbbm.2017.05.015
– ident: e_1_2_8_1_1
  doi: 10.1109/JSEN.2017.2705700
– ident: e_1_2_8_49_1
  doi: 10.1002/aenm.201801917
– ident: e_1_2_8_28_1
  doi: 10.1002/aenm.202100997
SSID ssj0017734
Score 2.5259442
Snippet High performance flexible batteries are essential ingredients for flexible devices. However, general isolated flexible batteries face critical challenges in...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Energy storage
Grippers
Lithium-ion batteries
Materials science
Stiffness
Title Toward Flexible Embodied Energy: Scale‐Inspired Overlapping Lithium‐Ion Batteries with High‐Energy‐Density and Variable Stiffness
URI https://www.proquest.com/docview/2863990072
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHxFOUFrQHJA7IEK-9scOtoqkKKnBIi0Iv1u7aqxhRJwK7B05cufE3-Fv8Emb2FQeKVLhYzu54lXi-eB6e-ZaQR2WiwW3QeZSIMY9SiDEiIRmPcjAOqVYZ-uhYbfFmfHiSvprz-WDwo1e11LXyqfpyYV_J_2gVxkCv2CX7D5oNi8IAnIN-4QgahuPldGxqXp8cIKkldkBNz-SyRJ9yajr6MNqfKSwY9hUNLxt8sQ4Cb88xj7da2R6ndlF3Z2shAISl3YQo2iZqsRokzLvF_cd9LIFvLY3TO4i8TS_WrK21bnx1h2e59fUGaExdDhIcZnun1ilVk7x9XzeLLpiMo7ozNlIsP9QBiacLK3paCWd-TWYdh-ZdP5vBksjsxtB7AI9jrMUz2-iAfeqPuSZy99S29BkOnZY35g9rYNllRamRcgBirZjb7WE2abd_M4ehSNESOrMCry_C9VfIFoOIhA3J1t7-66NZeGWVZbaEwf8AzxA6Ys82v8GmB7TpABiv5vgGue7CEbpnsXWTDKrmFrnWI6m8Tb5ZlFGPMupRRi0QnlODsZ9fv3t00R66qEMXTi8bGnBFEVcUcQUzdiE4cViigCXqsUQDlu6Qk4Pp8YvDyG3gESk2ztpI50wqyXXO1QRcTxUrqUa8jLMkr7JSl2KUSKGEiLnWbFKNylglWSVEkkOgnPMquUuGzbKp7hGaJwJCmQmK81RpLuBupzwDazLKJZNym0T-phbKsdvjJisfi4vVuE0eB_mV5XX5q-Su11Hh_vufC5ajZ4-0-_cvvdAOubpG_C4Ztp-66gF4tK186LD0Cz7eo4Y
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Flexible+Embodied+Energy%3A+Scale%E2%80%90Inspired+Overlapping+Lithium%E2%80%90Ion+Batteries+with+High%E2%80%90Energy%E2%80%90Density+and+Variable+Stiffness&rft.jtitle=Advanced+functional+materials&rft.au=Bao%2C+Yinhua&rft.au=Liu%2C+Haojie&rft.au=Zhao%2C+Zeang&rft.au=Ma%2C+Xu&rft.date=2023-09-12&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=37&rft_id=info:doi/10.1002%2Fadfm.202301581&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202301581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon