Toward Flexible Embodied Energy: Scale‐Inspired Overlapping Lithium‐Ion Batteries with High‐Energy‐Density and Variable Stiffness
High performance flexible batteries are essential ingredients for flexible devices. However, general isolated flexible batteries face critical challenges in developing multifunctional embodied energy systems, owing to the lack of integrative design. Herein, inspired by scales in creatures, overlappi...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 37 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
12.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High performance flexible batteries are essential ingredients for flexible devices. However, general isolated flexible batteries face critical challenges in developing multifunctional embodied energy systems, owing to the lack of integrative design. Herein, inspired by scales in creatures, overlapping flexible lithium‐ion batteries (FLIBs) consisting of energy storage scales and connections using LiNi
0.5
Co
0.2
Mn
0.3
O
2
(NCM523) and graphite electrodes are presented. The scale‐dermis structure ensures a high energy density of 374.4 Wh L
−1
as well as a high capacity retention of 93.2% after 200 charge/discharge cycles and 40 000 bending times. A variable stiffness property is revealed that can be controlled by battery configurations and deformation modes. Furthermore, the overlapping FLIBs can be housed directly into the architecture of several flexible devices, such as robots and grippers, allowing to create multifunctionalities that go far beyond energy storage and include load‐bearing and variable flexibility. This study broadens the versatility of FLIBs toward energy storage structure engineering of flexible devices. |
---|---|
AbstractList | High performance flexible batteries are essential ingredients for flexible devices. However, general isolated flexible batteries face critical challenges in developing multifunctional embodied energy systems, owing to the lack of integrative design. Herein, inspired by scales in creatures, overlapping flexible lithium‐ion batteries (FLIBs) consisting of energy storage scales and connections using LiNi0.5Co0.2Mn0.3O2 (NCM523) and graphite electrodes are presented. The scale‐dermis structure ensures a high energy density of 374.4 Wh L−1 as well as a high capacity retention of 93.2% after 200 charge/discharge cycles and 40 000 bending times. A variable stiffness property is revealed that can be controlled by battery configurations and deformation modes. Furthermore, the overlapping FLIBs can be housed directly into the architecture of several flexible devices, such as robots and grippers, allowing to create multifunctionalities that go far beyond energy storage and include load‐bearing and variable flexibility. This study broadens the versatility of FLIBs toward energy storage structure engineering of flexible devices. High performance flexible batteries are essential ingredients for flexible devices. However, general isolated flexible batteries face critical challenges in developing multifunctional embodied energy systems, owing to the lack of integrative design. Herein, inspired by scales in creatures, overlapping flexible lithium‐ion batteries (FLIBs) consisting of energy storage scales and connections using LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM523) and graphite electrodes are presented. The scale‐dermis structure ensures a high energy density of 374.4 Wh L −1 as well as a high capacity retention of 93.2% after 200 charge/discharge cycles and 40 000 bending times. A variable stiffness property is revealed that can be controlled by battery configurations and deformation modes. Furthermore, the overlapping FLIBs can be housed directly into the architecture of several flexible devices, such as robots and grippers, allowing to create multifunctionalities that go far beyond energy storage and include load‐bearing and variable flexibility. This study broadens the versatility of FLIBs toward energy storage structure engineering of flexible devices. |
Author | Bao, Yinhua Zhao, Zeang Zhang, Xing‐Yu Liu, Haojie Liu, Guanzhong Ma, Xu Song, Wei‐Li |
Author_xml | – sequence: 1 givenname: Yinhua orcidid: 0000-0003-2462-5219 surname: Bao fullname: Bao, Yinhua organization: Shanghai Institute of Applied Mathematics and Mechanics School of Mechanics and Engineering Science Shanghai Key Laboratory of Mechanics in Energy Engineering Shanghai University Shanghai 200444 China, Shanghai Frontier Science Center of Mechanoinformatics Shanghai 200444 China – sequence: 2 givenname: Haojie surname: Liu fullname: Liu, Haojie organization: Shanghai Institute of Applied Mathematics and Mechanics School of Mechanics and Engineering Science Shanghai Key Laboratory of Mechanics in Energy Engineering Shanghai University Shanghai 200444 China – sequence: 3 givenname: Zeang surname: Zhao fullname: Zhao, Zeang organization: Institute of Advanced Structure Technology Beijing Institute of Technology Beijing 100081 China – sequence: 4 givenname: Xu surname: Ma fullname: Ma, Xu organization: Shanghai Institute of Applied Mathematics and Mechanics School of Mechanics and Engineering Science Shanghai Key Laboratory of Mechanics in Energy Engineering Shanghai University Shanghai 200444 China – sequence: 5 givenname: Xing‐Yu surname: Zhang fullname: Zhang, Xing‐Yu organization: State Key Laboratory of Mechanics and Control for Aerospace Structures College of Aerospace Engineering Nanjing University of Aeronautics and Astronautics Nanjing 210016 China – sequence: 6 givenname: Guanzhong surname: Liu fullname: Liu, Guanzhong organization: Shanghai Institute of Applied Mathematics and Mechanics School of Mechanics and Engineering Science Shanghai Key Laboratory of Mechanics in Energy Engineering Shanghai University Shanghai 200444 China – sequence: 7 givenname: Wei‐Li surname: Song fullname: Song, Wei‐Li organization: Institute of Advanced Structure Technology Beijing Institute of Technology Beijing 100081 China |
BookMark | eNp1UMtKAzEUDaJgfWxdB1y35uF0Unda6wMKLqzibriT3NSUaWZMUmt3bt35jX6JUyouBFf3cM8Lzh7Z9rVHQo4463HGxAkYO-8JJiTjmeJbpMP7vN-VTKjtX8yfdslejDPGeJ7L0w75mNRLCIZeVfjmygrpaF7WxqGhI49hujqj9xoq_Hr_vPWxcaEl7l4xVNA0zk_p2KVnt5iv6drTC0gJg8NIl-2f3rjpc8tsglpwiT66tKLgDX2E4GDdd5-ctR5jPCA7FqqIhz93nzxcjSbDm-747vp2eD7uatHPU9cqUeoysyrTA6a45rrULDM8lwpzYw0wWYIG4Jm1YoDMcC1zBJBK8FxlKPfJ8Sa3CfXLAmMqZvUi-LayEKovBwPGctGqehuVDnWMAW3RBDeHsCo4K9ZzF-u5i9-5W8PpH4N2CZKrfQrgqv9s39lejRA |
CitedBy_id | crossref_primary_10_1007_s11705_024_2444_y crossref_primary_10_1016_j_nanoen_2024_109497 crossref_primary_10_1038_s43246_024_00703_0 crossref_primary_10_1002_advs_202402380 crossref_primary_10_1016_j_compstruct_2024_118457 crossref_primary_10_1016_j_nanoen_2024_110032 crossref_primary_10_1016_j_scib_2024_09_032 crossref_primary_10_1016_j_ensm_2023_103021 crossref_primary_10_1002_smll_202408457 crossref_primary_10_1016_j_scib_2025_01_018 crossref_primary_10_1021_acs_langmuir_3c03679 crossref_primary_10_1016_j_vacuum_2024_113647 crossref_primary_10_3390_nano14221856 crossref_primary_10_1002_adma_202303165 crossref_primary_10_1039_D4TA04682J crossref_primary_10_1089_soro_2024_0098 crossref_primary_10_1126_scirobotics_adl0307 crossref_primary_10_1002_adfm_202421160 |
Cites_doi | 10.1002/adma.202105947 10.1089/soro.2020.0175 10.1021/acsami.9b18232 10.1016/j.ensm.2018.11.019 10.1039/C3EE43182G 10.1002/adfm.202107662 10.1016/j.vrih.2019.08.001 10.1007/s42114-021-00375-1 10.1002/adma.201704947 10.1002/adma.201502403 10.1016/j.ijsolstr.2013.10.001 10.1016/j.joule.2020.07.027 10.1002/adma.202107345 10.1016/j.ensm.2019.04.019 10.1002/adma.202209980 10.1038/s41586-021-03772-0 10.1002/admt.202100018 10.1002/smll.202201793 10.1002/aenm.201701076 10.1016/j.jsv.2020.115592 10.1039/D1SM00618E 10.1016/j.ijsolstr.2010.04.018 10.1002/aenm.201802998 10.1088/0964-1726/24/8/085021 10.1016/j.jmps.2014.01.005 10.1016/j.ijmecsci.2011.09.008 10.1007/s42114-022-00436-z 10.1109/LRA.2022.3147454 10.1126/scirobotics.aav4494 10.1089/soro.2018.0046 10.1007/s42114-021-00412-z 10.1016/j.mattod.2021.11.020 10.1016/j.ensm.2022.01.062 10.1021/acsenergylett.8b02496 10.1089/soro.2019.0203 10.1021/acs.nanolett.2c01820 10.1038/s41586-021-04138-2 10.1126/scirobotics.aav7874 10.1002/adma.201405127 10.1038/ncomms2553 10.1016/j.fmre.2021.06.007 10.1002/advs.202101372 10.1016/j.eml.2019.100532 10.1038/srep10988 10.1039/D1EE00480H 10.1021/acsnano.2c09509 10.1002/admt.201700032 10.1126/scirobotics.aba1912 10.1002/adma.202107902 10.1038/ncomms4140 10.1016/j.jmbbm.2017.05.015 10.1109/JSEN.2017.2705700 10.1002/aenm.201801917 10.1002/aenm.202100997 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202301581 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
ExternalDocumentID | 10_1002_adfm_202301581 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c267t-f82bcb5f85c9081c1cbc05d1738e7dfda03bacaa15ff29e0d1c37eaa3821785e3 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 10:33:49 EDT 2025 Tue Jul 01 00:30:44 EDT 2025 Thu Apr 24 23:09:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c267t-f82bcb5f85c9081c1cbc05d1738e7dfda03bacaa15ff29e0d1c37eaa3821785e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2462-5219 |
PQID | 2863990072 |
PQPubID | 2045204 |
ParticipantIDs | proquest_journals_2863990072 crossref_primary_10_1002_adfm_202301581 crossref_citationtrail_10_1002_adfm_202301581 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-12 |
PublicationDateYYYYMMDD | 2023-09-12 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_13_1 doi: 10.1002/adma.202105947 – ident: e_1_2_8_51_1 doi: 10.1089/soro.2020.0175 – ident: e_1_2_8_22_1 doi: 10.1021/acsami.9b18232 – ident: e_1_2_8_25_1 doi: 10.1016/j.ensm.2018.11.019 – ident: e_1_2_8_12_1 doi: 10.1039/C3EE43182G – ident: e_1_2_8_33_1 doi: 10.1002/adfm.202107662 – ident: e_1_2_8_5_1 doi: 10.1016/j.vrih.2019.08.001 – ident: e_1_2_8_6_1 doi: 10.1007/s42114-021-00375-1 – ident: e_1_2_8_23_1 doi: 10.1002/adma.201704947 – ident: e_1_2_8_40_1 doi: 10.1002/adma.201502403 – ident: e_1_2_8_44_1 doi: 10.1016/j.ijsolstr.2013.10.001 – ident: e_1_2_8_27_1 doi: 10.1016/j.joule.2020.07.027 – ident: e_1_2_8_32_1 doi: 10.1002/adma.202107345 – ident: e_1_2_8_9_1 doi: 10.1016/j.ensm.2019.04.019 – ident: e_1_2_8_8_1 doi: 10.1002/adma.202209980 – ident: e_1_2_8_16_1 doi: 10.1038/s41586-021-03772-0 – ident: e_1_2_8_31_1 doi: 10.1002/admt.202100018 – ident: e_1_2_8_10_1 doi: 10.1002/smll.202201793 – ident: e_1_2_8_17_1 doi: 10.1002/aenm.201701076 – ident: e_1_2_8_35_1 doi: 10.1016/j.jsv.2020.115592 – ident: e_1_2_8_37_1 doi: 10.1039/D1SM00618E – ident: e_1_2_8_43_1 doi: 10.1016/j.ijsolstr.2010.04.018 – ident: e_1_2_8_24_1 doi: 10.1002/aenm.201802998 – ident: e_1_2_8_36_1 doi: 10.1088/0964-1726/24/8/085021 – ident: e_1_2_8_45_1 doi: 10.1016/j.jmps.2014.01.005 – ident: e_1_2_8_54_1 doi: 10.1016/j.ijmecsci.2011.09.008 – ident: e_1_2_8_29_1 doi: 10.1007/s42114-022-00436-z – ident: e_1_2_8_34_1 doi: 10.1109/LRA.2022.3147454 – ident: e_1_2_8_2_1 doi: 10.1126/scirobotics.aav4494 – ident: e_1_2_8_38_1 doi: 10.1089/soro.2018.0046 – ident: e_1_2_8_7_1 doi: 10.1007/s42114-021-00412-z – ident: e_1_2_8_15_1 doi: 10.1016/j.mattod.2021.11.020 – ident: e_1_2_8_42_1 doi: 10.1016/j.ensm.2022.01.062 – ident: e_1_2_8_11_1 doi: 10.1021/acsenergylett.8b02496 – ident: e_1_2_8_30_1 doi: 10.1089/soro.2019.0203 – ident: e_1_2_8_26_1 doi: 10.1021/acs.nanolett.2c01820 – ident: e_1_2_8_39_1 doi: 10.1038/s41586-021-04138-2 – ident: e_1_2_8_3_1 doi: 10.1126/scirobotics.aav7874 – ident: e_1_2_8_18_1 doi: 10.1002/adma.201405127 – ident: e_1_2_8_19_1 doi: 10.1038/ncomms2553 – ident: e_1_2_8_48_1 doi: 10.1016/j.fmre.2021.06.007 – ident: e_1_2_8_46_1 doi: 10.1002/advs.202101372 – ident: e_1_2_8_53_1 doi: 10.1016/j.eml.2019.100532 – ident: e_1_2_8_21_1 doi: 10.1038/srep10988 – ident: e_1_2_8_50_1 doi: 10.1039/D1EE00480H – ident: e_1_2_8_14_1 doi: 10.1021/acsnano.2c09509 – ident: e_1_2_8_47_1 doi: 10.1002/admt.201700032 – ident: e_1_2_8_52_1 doi: 10.1126/scirobotics.aba1912 – ident: e_1_2_8_4_1 doi: 10.1002/adma.202107902 – ident: e_1_2_8_20_1 doi: 10.1038/ncomms4140 – ident: e_1_2_8_41_1 doi: 10.1016/j.jmbbm.2017.05.015 – ident: e_1_2_8_1_1 doi: 10.1109/JSEN.2017.2705700 – ident: e_1_2_8_49_1 doi: 10.1002/aenm.201801917 – ident: e_1_2_8_28_1 doi: 10.1002/aenm.202100997 |
SSID | ssj0017734 |
Score | 2.5259442 |
Snippet | High performance flexible batteries are essential ingredients for flexible devices. However, general isolated flexible batteries face critical challenges in... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Energy storage Grippers Lithium-ion batteries Materials science Stiffness |
Title | Toward Flexible Embodied Energy: Scale‐Inspired Overlapping Lithium‐Ion Batteries with High‐Energy‐Density and Variable Stiffness |
URI | https://www.proquest.com/docview/2863990072 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHxFOUFrQHJA7IEK-9scOtoqkKKnBIi0Iv1u7aqxhRJwK7B05cufE3-Fv8Emb2FQeKVLhYzu54lXi-eB6e-ZaQR2WiwW3QeZSIMY9SiDEiIRmPcjAOqVYZ-uhYbfFmfHiSvprz-WDwo1e11LXyqfpyYV_J_2gVxkCv2CX7D5oNi8IAnIN-4QgahuPldGxqXp8cIKkldkBNz-SyRJ9yajr6MNqfKSwY9hUNLxt8sQ4Cb88xj7da2R6ndlF3Z2shAISl3YQo2iZqsRokzLvF_cd9LIFvLY3TO4i8TS_WrK21bnx1h2e59fUGaExdDhIcZnun1ilVk7x9XzeLLpiMo7ozNlIsP9QBiacLK3paCWd-TWYdh-ZdP5vBksjsxtB7AI9jrMUz2-iAfeqPuSZy99S29BkOnZY35g9rYNllRamRcgBirZjb7WE2abd_M4ehSNESOrMCry_C9VfIFoOIhA3J1t7-66NZeGWVZbaEwf8AzxA6Ys82v8GmB7TpABiv5vgGue7CEbpnsXWTDKrmFrnWI6m8Tb5ZlFGPMupRRi0QnlODsZ9fv3t00R66qEMXTi8bGnBFEVcUcQUzdiE4cViigCXqsUQDlu6Qk4Pp8YvDyG3gESk2ztpI50wqyXXO1QRcTxUrqUa8jLMkr7JSl2KUSKGEiLnWbFKNylglWSVEkkOgnPMquUuGzbKp7hGaJwJCmQmK81RpLuBupzwDazLKJZNym0T-phbKsdvjJisfi4vVuE0eB_mV5XX5q-Su11Hh_vufC5ajZ4-0-_cvvdAOubpG_C4Ztp-66gF4tK186LD0Cz7eo4Y |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Flexible+Embodied+Energy%3A+Scale%E2%80%90Inspired+Overlapping+Lithium%E2%80%90Ion+Batteries+with+High%E2%80%90Energy%E2%80%90Density+and+Variable+Stiffness&rft.jtitle=Advanced+functional+materials&rft.au=Bao%2C+Yinhua&rft.au=Liu%2C+Haojie&rft.au=Zhao%2C+Zeang&rft.au=Ma%2C+Xu&rft.date=2023-09-12&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=37&rft_id=info:doi/10.1002%2Fadfm.202301581&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202301581 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |