Solution for the Continuous-Time Infinite-Horizon Linear Quadratic Regulator Subject to Scalar State Constraints

This letter provides a solution for the continuous-time linear quadratic regulator (LQR) subject to a scalar state constraint. Using a dichotomy transformation, novel properties for the finite-horizon LQR are derived; the unknown boundary conditions are explicitly expressed as a function of the hori...

Full description

Saved in:
Bibliographic Details
Published inIEEE control systems letters Vol. 4; no. 1; pp. 133 - 138
Main Author van Keulen, Thijs
Format Journal Article
LanguageEnglish
Published IEEE 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This letter provides a solution for the continuous-time linear quadratic regulator (LQR) subject to a scalar state constraint. Using a dichotomy transformation, novel properties for the finite-horizon LQR are derived; the unknown boundary conditions are explicitly expressed as a function of the horizon length, the initial state, and the final state or cost of the final state. Practical relevance of these novel properties are demonstrated with an algorithm to compute the continuous-time LQR subject to a scalar state constraint. The proposed algorithm uses the analytical conditions for optimality, without a priori discretization, to find only those sampling time instances that mark the start and end of a constrained interval. Each subinterval consists of a finite-horizon LQR, hence, a solution can be efficiently computed and the computational complexity does not grow with the horizon length. In fact, an infinite horizon can be handled. The algorithm is demonstrated with a simulation example.
AbstractList This letter provides a solution for the continuous-time linear quadratic regulator (LQR) subject to a scalar state constraint. Using a dichotomy transformation, novel properties for the finite-horizon LQR are derived; the unknown boundary conditions are explicitly expressed as a function of the horizon length, the initial state, and the final state or cost of the final state. Practical relevance of these novel properties are demonstrated with an algorithm to compute the continuous-time LQR subject to a scalar state constraint. The proposed algorithm uses the analytical conditions for optimality, without a priori discretization, to find only those sampling time instances that mark the start and end of a constrained interval. Each subinterval consists of a finite-horizon LQR, hence, a solution can be efficiently computed and the computational complexity does not grow with the horizon length. In fact, an infinite horizon can be handled. The algorithm is demonstrated with a simulation example.
Author van Keulen, Thijs
Author_xml – sequence: 1
  givenname: Thijs
  surname: van Keulen
  fullname: van Keulen, Thijs
  email: t.a.c.v.keulen@tue.nl
  organization: Dept. of Mech. Eng., Eindhoven Univ. of Technol., Eindhoven, Netherlands
BookMark eNp9kM9OxCAQh4lZE9d1X0AvfYGuQCktR9Oou0kTo10PnhpKQdl0YQP0oE8v-yfGePA0k8nvm4HvEkyMNRKAawQXCEF2W1fNW7PAELEFZhgjlp2BKSZFniKS08mv_gLMvd9ACFGJC4jZFOwaO4xBW5Mo65LwIZPKmqDNaEefrvVWJiujtNFBpkvr9FcM1tpI7pLnkfeOBy2SF_k-DjxEvhm7jRQhCTZpBB9iqgk8HHb64Lg2wV-Bc8UHL-enOgOvD_frapnWT4-r6q5OBaZFSFXRU0Yp5n2fMSRQDwnpOZGQ0a7rio7GAeVZj1UpkSIQUtVRkWc85zGPcDYD-LhXOOu9k6rdOb3l7rNFsN1raw_a2r229qQtQuUfSOj4gahn__rhf_TmiGop5c-tsshIScrsGyNhf1I
CODEN ICSLBO
CitedBy_id crossref_primary_10_1137_20M1348765
Cites_doi 10.1016/S0898-1221(01)00278-4
10.1515/9781400842643
10.1016/S0005-1098(99)00214-9
10.1016/0022-247X(71)90219-8
10.1002/9781118122631
10.1016/S0895-7177(98)00035-1
10.1007/978-3-642-58223-3
10.1137/06065756X
10.1109/TAC.1972.1099976
10.1137/1037043
10.1007/978-3-8348-8202-8
10.1016/S0005-1098(01)00174-1
10.1016/j.automatica.2013.09.039
10.3182/20140824-6-ZA-1003.01626
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LCSYS.2019.2922193
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2475-1456
EndPage 138
ExternalDocumentID 10_1109_LCSYS_2019_2922193
8734848
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c267t-f7d69662add391c1d044da4e096bbb7b6d046a3d2f8e1f4006fb6c53a5a391123
IEDL.DBID RIE
ISSN 2475-1456
IngestDate Thu Apr 24 23:07:50 EDT 2025
Tue Jul 01 04:06:34 EDT 2025
Wed Aug 27 02:46:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-f7d69662add391c1d044da4e096bbb7b6d046a3d2f8e1f4006fb6c53a5a391123
ORCID 0000-0001-5099-5585
PageCount 6
ParticipantIDs crossref_citationtrail_10_1109_LCSYS_2019_2922193
crossref_primary_10_1109_LCSYS_2019_2922193
ieee_primary_8734848
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationTitle IEEE control systems letters
PublicationTitleAbbrev LCSYS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref15
seierstad (ref17) 1987
ref11
vinter (ref18) 2000
ref2
ref16
ref19
anderson (ref1) 1990
kwakernaak (ref10) 1972
ref8
ref7
ref9
ref4
ref3
ref6
ref5
liberzon (ref12) 2012
maciejowski (ref14) 2002
References_xml – ident: ref13
  doi: 10.1016/S0898-1221(01)00278-4
– year: 2012
  ident: ref12
  publication-title: Calculus of Variations and Optimal Control Theory A Concise Introduction
  doi: 10.1515/9781400842643
– ident: ref15
  doi: 10.1016/S0005-1098(99)00214-9
– ident: ref6
  doi: 10.1016/0022-247X(71)90219-8
– ident: ref11
  doi: 10.1002/9781118122631
– ident: ref16
  doi: 10.1016/S0895-7177(98)00035-1
– ident: ref4
  doi: 10.1007/978-3-642-58223-3
– ident: ref3
  doi: 10.1137/06065756X
– year: 1990
  ident: ref1
  publication-title: Optimal Control Linear Quadratic Methods
– year: 2000
  ident: ref18
  publication-title: Optimal Control
– ident: ref19
  doi: 10.1109/TAC.1972.1099976
– ident: ref5
  doi: 10.1137/1037043
– year: 1987
  ident: ref17
  publication-title: Optimal Control Theory with Economic Applications
– ident: ref9
  doi: 10.1007/978-3-8348-8202-8
– year: 1972
  ident: ref10
  publication-title: Linear Optimal Control Systems
– year: 2002
  ident: ref14
  publication-title: Predictive Control with Constraints
– ident: ref2
  doi: 10.1016/S0005-1098(01)00174-1
– ident: ref7
  doi: 10.1016/j.automatica.2013.09.039
– ident: ref8
  doi: 10.3182/20140824-6-ZA-1003.01626
SSID ssj0001827029
Score 2.1076612
Snippet This letter provides a solution for the continuous-time linear quadratic regulator (LQR) subject to a scalar state constraint. Using a dichotomy...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 133
SubjectTerms Boundary conditions
Eigenvalues and eigenfunctions
Optimal control
predictive control for linear systems
Regulators
Trajectory
Title Solution for the Continuous-Time Infinite-Horizon Linear Quadratic Regulator Subject to Scalar State Constraints
URI https://ieeexplore.ieee.org/document/8734848
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anrz4oIr1xR68adJkk-ZxlGKpYgWthXoK-woUJSltcumvd2aT1CIiHgIhzIYl32RnvtmdGUKuHR6nQnNgJ6EnLR98ZCsSSlnMFWkYCrBxDLORJ8_BeOY_zgfzFrnd5sJorc3hM23jrdnLV7ksMVTWj7AUix-1SRuIW5Wr9R1PiTCzKm7yYpy4_zScvk_x8FZss5gxs7e8Y3t2mqkYWzI6IJNmFtURkg-7LIQtNz8KNP53modkv3Yq6V2lBUekpbMuWTYRLwp-KQU_j2IlqkVWAte3MPODPmTpAl1Oa5yvFhsQBGIKik9fSq5QMSR9rTrVw3hYYDBiQ4ucTgFWkDJuKr5zbdpMFOtjMhvdvw3HVt1fwZIsCAsrDVUAbIfBEufFrnSV4_uK-xpYjRACgIIHAfcUSyPtpvCzB6kI5MDjAw7yYPJOSCfLM31KqJs6IRPMCXUg_UB43IcLuAtXWOLPUz3iNl8-kXXxcZzcZ2JIiBMnBq0E0UpqtHrkZjtmWZXe-FO6i0hsJWsQzn5_fE72GBJnE0u5IJ1iVepL8C4KcWXU6gtng87g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qPejFB1Wszz1409Rkk-ZxlGJptS1oW6insK9AUdLSJpf-emc2aS0i4iEQwmxY8k125pvdmSHk1uZRIjQHdhK40vLAR7ZCoZTFHJEEgQAbxzAbuT_wO2PvedKcVMj9JhdGa20On-kG3pq9fDWTOYbKHkIsxeKFO2QX7H6TFdla3xGVEHOronVmjB099FrD9yEe34oaLGLM7C5vWZ-tdirGmrQPSX89j-IQyUcjz0RDrn6UaPzvRI_IQelW0sdCD45JRac1Ml_HvCh4phQ8PYq1qKZpDmzfwtwP2k2TKTqdVme2mK5AEKgpqD59zblC1ZD0rehVD-NhicGYDc1mdAjAgpRxVPGdS9NoIluekHH7adTqWGWHBUsyP8isJFA-8B0Gi5wbOdJRtucp7mngNUIIgAoe-NxVLAm1k8Dv7ifCl02XNznIg9E7JdV0luozQp3EDphgdqB96fnC5R5cwF64wiJ_rqoTZ_3lY1mWH8fJfcaGhthRbNCKEa24RKtO7jZj5kXxjT-la4jERrIE4fz3xzdkrzPq9-Jed_ByQfYZ0mgTWbkk1WyR6yvwNTJxbVTsC12J0io
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+for+the+Continuous-Time+Infinite-Horizon+Linear+Quadratic+Regulator+Subject+to+Scalar+State+Constraints&rft.jtitle=IEEE+control+systems+letters&rft.au=van+Keulen%2C+Thijs&rft.date=2020-01-01&rft.pub=IEEE&rft.eissn=2475-1456&rft.volume=4&rft.issue=1&rft.spage=133&rft.epage=138&rft_id=info:doi/10.1109%2FLCSYS.2019.2922193&rft.externalDocID=8734848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon