Engineered nanostructures within sol-gel bioactive glass for enhanced bioactivity and modulated drug delivery

The engineering of nanocrystalline phase in amorphous oxide materials such as bioactive glass is emerging as a new area of great technological and scientific interest in the field of biomaterials. This study reports for the first time the infusion of apatite nanocrystals in sol-gel-derived bioactive...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. B, Materials for biology and medicine Vol. 1; no. 48; pp. 1112 - 1127
Main Authors Mukundan, Lakshmi M, Nirmal, Remya, Kumar, Nikhil, Dhara, Santanu, Chattopadhyay, Santanu
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 14.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The engineering of nanocrystalline phase in amorphous oxide materials such as bioactive glass is emerging as a new area of great technological and scientific interest in the field of biomaterials. This study reports for the first time the infusion of apatite nanocrystals in sol-gel-derived bioactive glass using P123 as the structure-directing agent. The synthesis of a multicomponent 80SiO 2 -15CaO-5P 2 O 5 bioactive glass material having a hierarchically ordered mesoporous structure with uniformly grown nanocrystals of apatite was achieved through a sono-assisted surfactant-templated sol-gel method. The bulk crystallographic analysis together with microstructural characterizations shows that the nanocrystalline apatite domains are uniformly dispersed as well as embedded along the mesopores. These nanocrystalline domains were found to influence the textural properties. In addition, macroscopic evidence for higher signs of bonelike matrix formation was observed by the biomineralization study in simulated body fluids. Osteostimulatory effects of these glass samples were evident by cultures in a osteogenic and non-osteogenic mediums with human osteosarcoma cells and a higher osteopromotive potential was authenticated by the alkaline phosphatase activity and alizarin red staining. Further, this study shows a new strategy to prolong the drug release period on account of the nanocrystalline phase and hierarchically positioned mesopores, thus making it a better drug delivery matrix as well. Infusion of apatite nanocrystals into non-crystalline glass matrix was achieved. The nanocrystalline domains are well dispersed and embedded along the hierarchically positioned mesopores.
AbstractList The engineering of nanocrystalline phase in amorphous oxide materials such as bioactive glass is emerging as a new area of great technological and scientific interest in the field of biomaterials. This study reports for the first time the infusion of apatite nanocrystals in sol–gel-derived bioactive glass using P123 as the structure-directing agent. The synthesis of a multicomponent 80SiO2–15CaO–5P2O5 bioactive glass material having a hierarchically ordered mesoporous structure with uniformly grown nanocrystals of apatite was achieved through a sono-assisted surfactant-templated sol–gel method. The bulk crystallographic analysis together with microstructural characterizations shows that the nanocrystalline apatite domains are uniformly dispersed as well as embedded along the mesopores. These nanocrystalline domains were found to influence the textural properties. In addition, macroscopic evidence for higher signs of bonelike matrix formation was observed by the biomineralization study in simulated body fluids. Osteostimulatory effects of these glass samples were evident by cultures in a osteogenic and non-osteogenic mediums with human osteosarcoma cells and a higher osteopromotive potential was authenticated by the alkaline phosphatase activity and alizarin red staining. Further, this study shows a new strategy to prolong the drug release period on account of the nanocrystalline phase and hierarchically positioned mesopores, thus making it a better drug delivery matrix as well.
The engineering of nanocrystalline phase in amorphous oxide materials such as bioactive glass is emerging as a new area of great technological and scientific interest in the field of biomaterials. This study reports for the first time the infusion of apatite nanocrystals in sol-gel-derived bioactive glass using P123 as the structure-directing agent. The synthesis of a multicomponent 80SiO 2 -15CaO-5P 2 O 5 bioactive glass material having a hierarchically ordered mesoporous structure with uniformly grown nanocrystals of apatite was achieved through a sono-assisted surfactant-templated sol-gel method. The bulk crystallographic analysis together with microstructural characterizations shows that the nanocrystalline apatite domains are uniformly dispersed as well as embedded along the mesopores. These nanocrystalline domains were found to influence the textural properties. In addition, macroscopic evidence for higher signs of bonelike matrix formation was observed by the biomineralization study in simulated body fluids. Osteostimulatory effects of these glass samples were evident by cultures in a osteogenic and non-osteogenic mediums with human osteosarcoma cells and a higher osteopromotive potential was authenticated by the alkaline phosphatase activity and alizarin red staining. Further, this study shows a new strategy to prolong the drug release period on account of the nanocrystalline phase and hierarchically positioned mesopores, thus making it a better drug delivery matrix as well. Infusion of apatite nanocrystals into non-crystalline glass matrix was achieved. The nanocrystalline domains are well dispersed and embedded along the hierarchically positioned mesopores.
The engineering of nanocrystalline phase in amorphous oxide materials such as bioactive glass is emerging as a new area of great technological and scientific interest in the field of biomaterials. This study reports for the first time the infusion of apatite nanocrystals in sol-gel-derived bioactive glass using P123 as the structure-directing agent. The synthesis of a multicomponent 80SiO -15CaO-5P O bioactive glass material having a hierarchically ordered mesoporous structure with uniformly grown nanocrystals of apatite was achieved through a sono-assisted surfactant-templated sol-gel method. The bulk crystallographic analysis together with microstructural characterizations shows that the nanocrystalline apatite domains are uniformly dispersed as well as embedded along the mesopores. These nanocrystalline domains were found to influence the textural properties. In addition, macroscopic evidence for higher signs of bonelike matrix formation was observed by the biomineralization study in simulated body fluids. Osteostimulatory effects of these glass samples were evident by cultures in a osteogenic and non-osteogenic mediums with human osteosarcoma cells and a higher osteopromotive potential was authenticated by the alkaline phosphatase activity and alizarin red staining. Further, this study shows a new strategy to prolong the drug release period on account of the nanocrystalline phase and hierarchically positioned mesopores, thus making it a better drug delivery matrix as well.
The engineering of nanocrystalline phase in amorphous oxide materials such as bioactive glass is emerging as a new area of great technological and scientific interest in the field of biomaterials. This study reports for the first time the infusion of apatite nanocrystals in sol–gel-derived bioactive glass using P123 as the structure-directing agent. The synthesis of a multicomponent 80SiO 2 –15CaO–5P 2 O 5 bioactive glass material having a hierarchically ordered mesoporous structure with uniformly grown nanocrystals of apatite was achieved through a sono-assisted surfactant-templated sol–gel method. The bulk crystallographic analysis together with microstructural characterizations shows that the nanocrystalline apatite domains are uniformly dispersed as well as embedded along the mesopores. These nanocrystalline domains were found to influence the textural properties. In addition, macroscopic evidence for higher signs of bonelike matrix formation was observed by the biomineralization study in simulated body fluids. Osteostimulatory effects of these glass samples were evident by cultures in a osteogenic and non-osteogenic mediums with human osteosarcoma cells and a higher osteopromotive potential was authenticated by the alkaline phosphatase activity and alizarin red staining. Further, this study shows a new strategy to prolong the drug release period on account of the nanocrystalline phase and hierarchically positioned mesopores, thus making it a better drug delivery matrix as well.
Author Dhara, Santanu
Mukundan, Lakshmi M
Kumar, Nikhil
Chattopadhyay, Santanu
Nirmal, Remya
AuthorAffiliation Rubber Technology Center
Division of Toxicology
School of Medical Science and Technology
Sree Chitra Tirunal Institute for Medical Sciences & Technology
Indian Institute of Technology Kharagpur
AuthorAffiliation_xml – name: Rubber Technology Center
– name: Sree Chitra Tirunal Institute for Medical Sciences & Technology
– name: School of Medical Science and Technology
– name: Division of Toxicology
– name: Indian Institute of Technology Kharagpur
Author_xml – sequence: 1
  givenname: Lakshmi M
  surname: Mukundan
  fullname: Mukundan, Lakshmi M
– sequence: 2
  givenname: Remya
  surname: Nirmal
  fullname: Nirmal, Remya
– sequence: 3
  givenname: Nikhil
  surname: Kumar
  fullname: Kumar, Nikhil
– sequence: 4
  givenname: Santanu
  surname: Dhara
  fullname: Dhara, Santanu
– sequence: 5
  givenname: Santanu
  surname: Chattopadhyay
  fullname: Chattopadhyay, Santanu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36468610$$D View this record in MEDLINE/PubMed
BookMark eNpFkctLAzEQxoNUbK29eFcC3oTVPHaz26PW-oCClwrelmwe2y3bpCZZpf-9qX04l2_g-80MfHMOesYaBcAlRncY0fG9JKFCmI2JOAEDgjKU5BkuesceffbByPslilVgVtD0DPQpS1nBMBqA1dTUjVHKKQkNN9YH14nQOeXhTxMWjYHetkmtWlg1lovQfCtYt9x7qK2Dyiy4EXH0YDZhA7mRcGVl1_IQHem6GkrVxkG3uQCnmrdejfY6BB_P0_nkNZm9v7xNHmaJICwPiaaS5AViOZMZFlXKpc41kalATBBBkVaKETSWW0W6wlJiSVFGZCUQJpTTIbjZ7V07-9UpH8ql7ZyJJ0uSZ2nMK8VppG53lHDWe6d0uXbNirtNiVG5Dbd8IvPHv3AnEb7er-yqlZJH9BBlBK52gPPi6P5_h_4CxL-Ceg
CitedBy_id crossref_primary_10_1021_acsami_4c02418
Cites_doi 10.3389/fchem.2017.00118
10.1016/j.actbio.2016.11.028
10.1039/B610570J
10.1039/c3tb20275e
10.1023/A:1008643303888
10.1039/b710936a
10.1016/j.ijpharm.2016.06.133
10.1016/j.jinorgbio.2005.01.011
10.1021/cm203416x
10.4155/tde.11.84
10.1002/adfm.200600361
10.1038/nmat1043
10.1016/j.actbio.2005.12.006
10.1002/jab.770020403
10.12659/MSMBR.895463
10.3390/ma11030415
10.1002/(SICI)1521-4095(199803)10:4<313::AID-ADMA313>3.0.CO;2-M
10.1016/S0142-9612(01)00295-2
10.1002/jbm.b.31447
10.1063/1.1503154
10.1126/science.267.5199.865
10.1016/j.msec.2013.03.016
10.1002/adem.200900034
10.1039/C4TB00089G
10.1016/j.actbio.2009.10.031
10.1016/j.matlet.2021.129677
10.1016/j.apsusc.2006.05.031
10.1007/s12274-020-3112-2
10.1016/j.pcrysgrow.2012.11.001
10.1016/j.biomaterials.2006.01.043
10.1002/9780470909898.ch16
10.1021/cm200355n
10.1021/cm900288x
10.1016/j.actbio.2007.11.003
10.1016/j.msec.2006.05.015
10.1529/biophysj.106.103168
10.1351/pac198557040603
10.1016/j.cis.2017.03.008
10.3390/nano10122571
10.1016/j.orthres.2003.10.016
10.1039/C3TB21307B
10.1038/24132
10.1039/b914379c
10.1016/j.jnoncrysol.2016.02.013
10.1016/j.actbio.2010.04.022
10.1016/j.solidstatesciences.2007.11.037
10.1039/c2nr31775c
10.1039/c4tb00106k
10.3390/ma13030540
10.1002/mawe.200700229
10.3390/ma9040288
10.1038/nprot.2008.75
10.1088/1748-605X/ac01af
10.1002/jbm.820240607
10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
10.1002/anie.200460598
10.1016/j.saa.2009.09.021
10.1007/s12274-016-1015-z
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1039/d2tb01692c
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Materials Research Database

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7518
EndPage 1127
ExternalDocumentID 10_1039_D2TB01692C
36468610
d2tb01692c
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -JG
0-7
0R~
4.4
53G
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AENEX
AFOGI
AFRAH
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
D0L
EBS
ECGLT
EE0
EF-
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAJAE
AAWGC
AAXHV
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AGEGJ
AHGCF
APEMP
CGR
CUY
CVF
ECM
EIF
GGIMP
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c267t-f3d2780676d51cb4adf7f2d4c06c2c30fee6209dfee60fb1dd1d3052dbc0123a3
ISSN 2050-750X
IngestDate Thu Oct 10 18:34:32 EDT 2024
Fri Aug 23 03:21:51 EDT 2024
Sat Sep 28 08:16:54 EDT 2024
Thu Dec 15 04:11:35 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-f3d2780676d51cb4adf7f2d4c06c2c30fee6209dfee60fb1dd1d3052dbc0123a3
Notes https://doi.org/10.1039/d2tb01692c
Electronic supplementary information (ESI) available. See DOI
ORCID 0000-0001-5647-3585
0000-0003-0914-6009
0000-0001-7438-2943
0000-0003-4443-7610
PMID 36468610
PQID 2754016414
PQPubID 2047522
PageCount 16
ParticipantIDs proquest_journals_2754016414
crossref_primary_10_1039_D2TB01692C
pubmed_primary_36468610
rsc_primary_d2tb01692c
PublicationCentury 2000
PublicationDate 2022-12-14
PublicationDateYYYYMMDD 2022-12-14
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-14
  day: 14
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Journal of materials chemistry. B, Materials for biology and medicine
PublicationTitleAlternate J Mater Chem B
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References 36594733 - J Mater Chem B. 2023 Jan 3
Brinker (D2TB01692C/cit17/1) 1999; 1
Barroug (D2TB01692C/cit57/1) 2004; 22
Wang (D2TB01692C/cit38/1) 2016; 9
Chen (D2TB01692C/cit36/1) 2010; 6
Wu (D2TB01692C/cit58/1) 2016; 511
Diaza (D2TB01692C/cit37/1) 2006; 2
Wan (D2TB01692C/cit19/1) 2007
Palazzo (D2TB01692C/cit61/1) 2007; 17
Gómez-Morales (D2TB01692C/cit24/1) 2013; 59
Sneha (D2TB01692C/cit40/1) 2021; 16
Tanev (D2TB01692C/cit20/1) 1995; 10
Cicuéndez (D2TB01692C/cit12/1) 2014; 2
Liu (D2TB01692C/cit34/1) 2002; 23
Autefage (D2TB01692C/cit54/1) 2009; 91B
Li (D2TB01692C/cit43/1) 1991; 2
Dorozhkin (D2TB01692C/cit25/1) 2010; 6
Mukundan (D2TB01692C/cit41/1) 2021; 293
Innocenzi (D2TB01692C/cit18/1) 2009; 14
Midy (D2TB01692C/cit55/1) 2001; 12
Fiume (D2TB01692C/cit35/1) 2020; 13
Eichert (D2TB01692C/cit23/1) 2013
Hench (D2TB01692C/cit44/1) 1998; 13
Wu (D2TB01692C/cit7/1) 2013; 1
Kokubo (D2TB01692C/cit28/1) 1990; 24
Singh (D2TB01692C/cit47/1) 1985; 1
El-Fiqi (D2TB01692C/cit49/1) 2012; 4
Vichery (D2TB01692C/cit3/1) 2016; 9
Cicuendez (D2TB01692C/cit8/1) 2012; 24
Wu (D2TB01692C/cit6/1) 2011; 2
Caldas (D2TB01692C/cit10/1) 2016; 439
Prabakaran (D2TB01692C/cit33/1) 2009; 74
Wu (D2TB01692C/cit1/1) 2012; 2
Rey (D2TB01692C/cit26/1) 2007; 38
Hu (D2TB01692C/cit32/1) 2011; 23
Köseoglu (D2TB01692C/cit48/1) 2009; 11
Boix (D2TB01692C/cit52/1) 2005; 99
Repetto (D2TB01692C/cit29/1) 2008; 3
Liu (D2TB01692C/cit30/1) 2015; 21
Lei (D2TB01692C/cit42/1) 2021; 14
Li (D2TB01692C/cit13/1) 2004; 3
Chiodini (D2TB01692C/cit14/1) 2002; 81
Yun (D2TB01692C/cit22/1) 2008; 10
Yan (D2TB01692C/cit4/1) 2004; 43
Sousa (D2TB01692C/cit16/1) 2008; 4
Errassifi (D2TB01692C/cit53/1) 2010
Iafisco (D2TB01692C/cit60/1) 2009; 19
García-Alvarez (D2TB01692C/cit9/1) 2017; 49
Zhao (D2TB01692C/cit39/1) 2017; 5
Hu (D2TB01692C/cit50/1) 2007; 17
García-Muñoz (D2TB01692C/cit59/1) 2014; 2
Cicuéndez (D2TB01692C/cit11/1) 2014; 2
Deng (D2TB01692C/cit31/1) 2013; 33
Vallet-Regi (D2TB01692C/cit45/1) 2018; 11
Migneco (D2TB01692C/cit2/1) 2020; 10
Zheng (D2TB01692C/cit46/1) 2017; 249
McLeod (D2TB01692C/cit56/1) 2006; 253
Dong (D2TB01692C/cit51/1) 2007; 93
Rey (D2TB01692C/cit27/1) 2007; 27
Yang (D2TB01692C/cit15/1) 1998; 396
Yan (D2TB01692C/cit5/1) 2006; 27
Wei (D2TB01692C/cit21/1) 1998; 10
References_xml – issn: 2013
  end-page: p 13-28
  publication-title: Nanocrystalline apatite - Based Biomaterials
  doi: Eichert Drouet Sfihi Rey Combes
– issn: 2010
  end-page: p 159-174
  publication-title: Adv. Bioceram. Biotechnol.
  doi: Errassifi Menbaoui Autefage Benaziz Ouizat Santran Sarda Lebugle Combes Barroug Sfihi Rey
– volume: 5
  start-page: 1
  year: 2017
  ident: D2TB01692C/cit39/1
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2017.00118
  contributor:
    fullname: Zhao
– volume: 49
  start-page: 113
  year: 2017
  ident: D2TB01692C/cit9/1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.11.028
  contributor:
    fullname: García-Alvarez
– start-page: 897
  year: 2007
  ident: D2TB01692C/cit19/1
  publication-title: Chem. Commun.
  doi: 10.1039/B610570J
  contributor:
    fullname: Wan
– volume: 1
  start-page: 2710
  year: 2013
  ident: D2TB01692C/cit7/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb20275e
  contributor:
    fullname: Wu
– volume: 13
  start-page: 245
  year: 1998
  ident: D2TB01692C/cit44/1
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1023/A:1008643303888
  contributor:
    fullname: Hench
– volume: 17
  start-page: 4690
  year: 2007
  ident: D2TB01692C/cit50/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/b710936a
  contributor:
    fullname: Hu
– volume: 511
  start-page: 65
  year: 2016
  ident: D2TB01692C/cit58/1
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2016.06.133
  contributor:
    fullname: Wu
– volume: 99
  start-page: 1043
  year: 2005
  ident: D2TB01692C/cit52/1
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2005.01.011
  contributor:
    fullname: Boix
– volume: 24
  start-page: 1100
  year: 2012
  ident: D2TB01692C/cit8/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm203416x
  contributor:
    fullname: Cicuendez
– volume: 2
  start-page: 1189
  year: 2011
  ident: D2TB01692C/cit6/1
  publication-title: Ther. Delivery
  doi: 10.4155/tde.11.84
  contributor:
    fullname: Wu
– volume: 17
  start-page: 2180
  year: 2007
  ident: D2TB01692C/cit61/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200600361
  contributor:
    fullname: Palazzo
– volume: 3
  start-page: 65
  year: 2004
  ident: D2TB01692C/cit13/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1043
  contributor:
    fullname: Li
– volume: 2
  start-page: 173
  year: 2006
  ident: D2TB01692C/cit37/1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2005.12.006
  contributor:
    fullname: Diaza
– volume: 2
  start-page: 231
  year: 1991
  ident: D2TB01692C/cit43/1
  publication-title: J. Appl. Biomater.
  doi: 10.1002/jab.770020403
  contributor:
    fullname: Li
– volume: 21
  start-page: 15
  year: 2015
  ident: D2TB01692C/cit30/1
  publication-title: Med. Sci. Monit. Basic Res.
  doi: 10.12659/MSMBR.895463
  contributor:
    fullname: Liu
– volume: 11
  start-page: 1
  year: 2018
  ident: D2TB01692C/cit45/1
  publication-title: Materials
  doi: 10.3390/ma11030415
  contributor:
    fullname: Vallet-Regi
– volume: 10
  start-page: 313
  year: 1998
  ident: D2TB01692C/cit21/1
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(199803)10:4<313::AID-ADMA313>3.0.CO;2-M
  contributor:
    fullname: Wei
– volume: 23
  start-page: 1679
  year: 2002
  ident: D2TB01692C/cit34/1
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(01)00295-2
  contributor:
    fullname: Liu
– volume: 91B
  start-page: 706
  year: 2009
  ident: D2TB01692C/cit54/1
  publication-title: J. Biomed. Mater. Res., Part B
  doi: 10.1002/jbm.b.31447
  contributor:
    fullname: Autefage
– volume: 81
  start-page: 1702
  year: 2002
  ident: D2TB01692C/cit14/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1503154
  contributor:
    fullname: Chiodini
– volume: 10
  start-page: 865
  year: 1995
  ident: D2TB01692C/cit20/1
  publication-title: Science
  doi: 10.1126/science.267.5199.865
  contributor:
    fullname: Tanev
– volume: 33
  start-page: 2905
  year: 2013
  ident: D2TB01692C/cit31/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2013.03.016
  contributor:
    fullname: Deng
– volume: 11
  start-page: 194
  year: 2009
  ident: D2TB01692C/cit48/1
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200900034
  contributor:
    fullname: Köseoglu
– volume: 2
  start-page: 7996
  year: 2014
  ident: D2TB01692C/cit59/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB00089G
  contributor:
    fullname: García-Muñoz
– volume: 6
  start-page: 715
  year: 2010
  ident: D2TB01692C/cit25/1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.10.031
  contributor:
    fullname: Dorozhkin
– volume: 293
  start-page: 129677
  year: 2021
  ident: D2TB01692C/cit41/1
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2021.129677
  contributor:
    fullname: Mukundan
– volume: 253
  start-page: 2644
  year: 2006
  ident: D2TB01692C/cit56/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2006.05.031
  contributor:
    fullname: McLeod
– volume: 14
  start-page: 770
  year: 2021
  ident: D2TB01692C/cit42/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3112-2
  contributor:
    fullname: Lei
– volume: 59
  start-page: 1
  year: 2013
  ident: D2TB01692C/cit24/1
  publication-title: Prog. Cryst. Growth Charact. Mater.
  doi: 10.1016/j.pcrysgrow.2012.11.001
  contributor:
    fullname: Gómez-Morales
– volume: 27
  start-page: 3396
  year: 2006
  ident: D2TB01692C/cit5/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.043
  contributor:
    fullname: Yan
– start-page: 159
  volume-title: Adv. Bioceram. Biotechnol.
  year: 2010
  ident: D2TB01692C/cit53/1
  doi: 10.1002/9780470909898.ch16
  contributor:
    fullname: Errassifi
– volume: 23
  start-page: 2481
  year: 2011
  ident: D2TB01692C/cit32/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm200355n
  contributor:
    fullname: Hu
– volume: 14
  start-page: 2555
  year: 2009
  ident: D2TB01692C/cit18/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm900288x
  contributor:
    fullname: Innocenzi
– volume: 4
  start-page: 671
  year: 2008
  ident: D2TB01692C/cit16/1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2007.11.003
  contributor:
    fullname: Sousa
– volume: 2
  start-page: 292
  year: 2012
  ident: D2TB01692C/cit1/1
  publication-title: J. R. Soc., Interface
  contributor:
    fullname: Wu
– volume: 27
  start-page: 198
  year: 2007
  ident: D2TB01692C/cit27/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2006.05.015
  contributor:
    fullname: Rey
– volume: 93
  start-page: 750
  year: 2007
  ident: D2TB01692C/cit51/1
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.103168
  contributor:
    fullname: Dong
– volume: 1
  start-page: 603
  year: 1985
  ident: D2TB01692C/cit47/1
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac198557040603
  contributor:
    fullname: Singh
– volume: 249
  start-page: 363
  year: 2017
  ident: D2TB01692C/cit46/1
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2017.03.008
  contributor:
    fullname: Zheng
– volume: 10
  start-page: 1
  year: 2020
  ident: D2TB01692C/cit2/1
  publication-title: Nanomaterials
  doi: 10.3390/nano10122571
  contributor:
    fullname: Migneco
– volume: 22
  start-page: 703
  year: 2004
  ident: D2TB01692C/cit57/1
  publication-title: J. Orthop. Res.
  doi: 10.1016/j.orthres.2003.10.016
  contributor:
    fullname: Barroug
– volume: 2
  start-page: 49
  year: 2014
  ident: D2TB01692C/cit11/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C3TB21307B
  contributor:
    fullname: Cicuéndez
– volume: 396
  start-page: 152
  year: 1998
  ident: D2TB01692C/cit15/1
  publication-title: Nature
  doi: 10.1038/24132
  contributor:
    fullname: Yang
– volume: 19
  start-page: 8385
  year: 2009
  ident: D2TB01692C/cit60/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/b914379c
  contributor:
    fullname: Iafisco
– volume: 439
  start-page: 30
  year: 2016
  ident: D2TB01692C/cit10/1
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2016.02.013
  contributor:
    fullname: Caldas
– volume: 6
  start-page: 4143
  year: 2010
  ident: D2TB01692C/cit36/1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.04.022
  contributor:
    fullname: Chen
– volume: 10
  start-page: 1083
  year: 2008
  ident: D2TB01692C/cit22/1
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2007.11.037
  contributor:
    fullname: Yun
– volume: 4
  start-page: 7475
  year: 2012
  ident: D2TB01692C/cit49/1
  publication-title: Nanoscale
  doi: 10.1039/c2nr31775c
  contributor:
    fullname: El-Fiqi
– start-page: 13
  volume-title: Nanocrystalline apatite – Based Biomaterials
  year: 2013
  ident: D2TB01692C/cit23/1
  contributor:
    fullname: Eichert
– volume: 12
  start-page: 293
  year: 2001
  ident: D2TB01692C/cit55/1
  publication-title: J. Mater. Sci.: Mater. Med.
  contributor:
    fullname: Midy
– volume: 2
  start-page: 3469
  year: 2014
  ident: D2TB01692C/cit12/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c4tb00106k
  contributor:
    fullname: Cicuéndez
– volume: 13
  start-page: 540
  year: 2020
  ident: D2TB01692C/cit35/1
  publication-title: Materials
  doi: 10.3390/ma13030540
  contributor:
    fullname: Fiume
– volume: 38
  start-page: 996
  year: 2007
  ident: D2TB01692C/cit26/1
  publication-title: Materwiss. Werksttech.
  doi: 10.1002/mawe.200700229
  contributor:
    fullname: Rey
– volume: 9
  start-page: 288
  year: 2016
  ident: D2TB01692C/cit3/1
  publication-title: Materials
  doi: 10.3390/ma9040288
  contributor:
    fullname: Vichery
– volume: 3
  start-page: 1125
  year: 2008
  ident: D2TB01692C/cit29/1
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.75
  contributor:
    fullname: Repetto
– volume: 16
  start-page: 045029
  year: 2021
  ident: D2TB01692C/cit40/1
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-605X/ac01af
  contributor:
    fullname: Sneha
– volume: 24
  start-page: 721
  year: 1990
  ident: D2TB01692C/cit28/1
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.820240607
  contributor:
    fullname: Kokubo
– volume: 1
  start-page: 579
  year: 1999
  ident: D2TB01692C/cit17/1
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
  contributor:
    fullname: Brinker
– volume: 43
  start-page: 5980
  year: 2004
  ident: D2TB01692C/cit4/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200460598
  contributor:
    fullname: Yan
– volume: 74
  start-page: 1127
  year: 2009
  ident: D2TB01692C/cit33/1
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2009.09.021
  contributor:
    fullname: Prabakaran
– volume: 9
  start-page: 1193
  year: 2016
  ident: D2TB01692C/cit38/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1015-z
  contributor:
    fullname: Wang
SSID ssj0000816834
Score 2.2873983
Snippet The engineering of nanocrystalline phase in amorphous oxide materials such as bioactive glass is emerging as a new area of great technological and scientific...
SourceID proquest
crossref
pubmed
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 1112
SubjectTerms Alizarin
Alkaline phosphatase
Amorphous materials
Apatite
Apatites
Biocompatible Materials - chemistry
Bioglass
Biological activity
Biomaterials
Biomedical materials
Body fluids
Crystallography
Crystals
Domains
Drug delivery
Drug Delivery Systems
Glass - chemistry
Humans
Mineralization
Nanocrystals
Nanoparticles - chemistry
Osteosarcoma
Osteosarcoma cells
Sol-gel processes
Title Engineered nanostructures within sol-gel bioactive glass for enhanced bioactivity and modulated drug delivery
URI https://www.ncbi.nlm.nih.gov/pubmed/36468610
https://www.proquest.com/docview/2754016414
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ6HxgLhtFAayBG9RSuIkTvK4GxqI9YVO2lsUX7JGbdNpax62_8P_5NiOc2EgAS9pFTe26u_L8fHxuSD0EYCVRMbC9UQeuSHhgZsyxtzYo5wFeUJCqYKTz2f07CL8ehldjkY_el5L9ZZN-f1v40r-B1W4B7iqKNl_QLbtFG7Ad8AXroAwXP8KY5tMUB3h59XG5IKtYQOtzatl5cDw7pVcOazc5FqwOVpbNnm-q4U5_beNSh9XZvT1RqiaXtAibuorR8iV8t0YHP_21FjQeM1fdbitHTd1jkwYkG3RLqG9bE-_Huif10sVkGKiIPLl7WJddlbaWQlrx8r5bsiwvmvXkdY7fFYuF52nyIlKQW2M3RVovnXfrkF0iRUTTzqVWv4RL_JcdSo0ENZej5QmR2cjekG2GIfsB4uCF6icqoJsmUo9Q3j_RwDo9VrTI6AhTWjT_zAFt216hHZInEbRGO0cns6_fGuNebp6SRDa9LdB-qkbbRc9ts8PdZ8HGxpQb25s2Rmt3syfoacNoPjQkOw5GsnqBXrSy1b5Eq07uuEh3bChG27ohlu6YU03DPhjSzfcoxsGMuCWbljRDVu6vUIXn0_nx2duU63D5YTGW7cIBIkTUH6oiHzOwlwUcUFEyOGtBxHgFVJS4qVCfXoF84XwBSw2RDCu9Po82EPjalPJ1wjDtp1RJmjCoyLkTDIeFEkUSZr73IcBJuiDncfs2iRlybQzRZBmJ2R-pCf-eIIO7BRnzUt7m5EYtig-Df1wgvbNtLddWJgmaA9waG93UL754yNv0W7H4QM0BgDkO9BWt-x9w5WfzN2cow
link.rule.ids 315,786,790,27955,27956
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+nanostructures+within+sol-gel+bioactive+glass+for+enhanced+bioactivity+and+modulated+drug+delivery&rft.jtitle=Journal+of+materials+chemistry.+B%2C+Materials+for+biology+and+medicine&rft.au=Mukundan%2C+Lakshmi+M&rft.au=Nirmal+S%2C+Remya&rft.au=Kumar%2C+Nikhil&rft.au=Dhara%2C+Santanu&rft.date=2022-12-14&rft.eissn=2050-7518&rft.volume=10&rft.issue=48&rft.spage=10112&rft_id=info:doi/10.1039%2Fd2tb01692c&rft_id=info%3Apmid%2F36468610&rft.externalDocID=36468610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-750X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-750X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-750X&client=summon