A Note on Level Sets of Differentiable Functions f(x,y) with Non-Vanishing Gradient
The purpose of this note is to give an alternate proof of a result of M.Elekes. We show that if f : ℝ2 → ℝ is a differentiable function with everywhere non-zero gradient then for every point x ∊ ℝ2 in the level set {x : f(x) = c} there is a neighborhood V of x such that {f = c} ∩ V is homeomorphic t...
Saved in:
Published in | Real analysis exchange Vol. 43; no. 2; pp. 387 - 392 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
East Lansing
Michigan State University Press
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0147-1937 1930-1219 |
DOI | 10.14321/realanalexch.43.2.0387 |
Cover
Loading…
Abstract | The purpose of this note is to give an alternate proof of a result of M.Elekes. We show that if f : ℝ2 → ℝ is a differentiable function with everywhere
non-zero gradient then for every point x ∊ ℝ2 in the level set {x : f(x) = c} there is a neighborhood
V of x such that {f = c} ∩ V is homeomorphic to an open interval or the union of finitely
many open segments passing through a point.
Mathematical Reviews subject classification: Primary: 26B10; Secondary: 26B05
Key words: Implicit Function Theorem, Non-vanishing Gradient, Locally homeomorphic |
---|---|
AbstractList | The purpose of this note is to give an alternate proof of a result of M.Elekes. We show that if f... is a differentiable function with everywhere non-zero gradient then for every point ... in the level set ... there is a neighborhood V of x such that {f = c} ∩ V is homeomorphic to an open interval or the union of finitely many open segments passing through a point.(ProQuest: ... denotes formulae omitted.) The purpose of this note is to give an alternate proof of a result of M.Elekes. We show that if f : ℝ2 → ℝ is a differentiable function with everywhere non-zero gradient then for every point x ∊ ℝ2 in the level set {x : f(x) = c} there is a neighborhood V of x such that {f = c} ∩ V is homeomorphic to an open interval or the union of finitely many open segments passing through a point. Mathematical Reviews subject classification: Primary: 26B10; Secondary: 26B05 Key words: Implicit Function Theorem, Non-vanishing Gradient, Locally homeomorphic |
Author | Wedrychowcz, Christopher M. Savvopoulou, Anna K. |
Author_xml | – sequence: 1 givenname: Anna K. surname: Savvopoulou fullname: Savvopoulou, Anna K. organization: Department of Mathematical Sciences, Indiana University South Bend, South Bend, IN 46615, U.S.A. email – sequence: 2 givenname: Christopher M. surname: Wedrychowcz fullname: Wedrychowcz, Christopher M. organization: Department of Mathematics and Computer Science, Saint Mary's College, Notre Dame, IN, 46556, U.S.A. email |
BookMark | eNp1kM1OAjEURhujiYA-g03caHSwPzPTsiQoaEJ0gbptOuVWhowttkXh7R3FGDeubnJzzrc4XbTvvAOETijp05wzehVAN9rpBjZm0c95n_UJl2IPdeiAk4wyOthHHUJzkbUPcYi6MS4J4bkgRQfNhvjeJ8De4Sm8Q4NnkCL2Fl_X1kIAl2pdNYDHa2dS7V3E9mxzuT3HH3VatKrLnrWr46J2L3gS9LxujSN0YHUT4fjn9tDT-OZxdJtNHyZ3o-E0M6wUKQOw0hppqkqaOTdWFJUkspSCzWlBq0EuKJWyYLwsKgOCF6ayhIAuhbU5s5z30OludxX82xpiUku_Dm2JqBgrRClJTmRLiR1lgo8xgFWrUL_qsFWUqO-C6m9BlXPF1FfB1rzYmcuYfPjV_qE_ASnDeMc |
ContentType | Journal Article |
Copyright | 2018 Real Analysis Exchange Copyright Michigan State University Press 2018 |
Copyright_xml | – notice: 2018 Real Analysis Exchange – notice: Copyright Michigan State University Press 2018 |
DBID | AAYXX CITATION 4T- JQ2 |
DOI | 10.14321/realanalexch.43.2.0387 |
DatabaseName | CrossRef Docstoc ProQuest Computer Science Collection |
DatabaseTitle | CrossRef Docstoc ProQuest Computer Science Collection |
DatabaseTitleList | Docstoc |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1930-1219 |
EndPage | 392 |
ExternalDocumentID | 10_14321_realanalexch_43_2_0387 10.14321/realanalexch.43.2.0387 |
GroupedDBID | -DZ -ET 123 29P 70C 8R4 8R5 AAOJF ABDBF ABIFP ACGOD ACIWK AEEGL AESBA AFFOW AHIZY ALMA_UNASSIGNED_HOLDINGS AMVHM B0M E3Z EAP EBS EJD EMI EMK EPL ESX HDK OK1 PUASD RBF RPE SJN TUS TWZ WS9 YNT ZWISI ~8M 88I 8FE 8FG 8G5 AAYXX ABJCF ABUWG AFFNX AFKRA ARAPS AZQEC BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GUQSH HCIFZ K6V K7- L6V M2O M2P M7S P62 PADUT PHGZM PHGZT PQQKQ PROAC PTHSS Q2X 4T- ACUHS JQ2 |
ID | FETCH-LOGICAL-c267t-eef8fc8cbb8cd3cf75b8086872d151b947118852365bce735cbf00ea67ff42f33 |
ISSN | 0147-1937 |
IngestDate | Fri Jul 25 19:55:00 EDT 2025 Tue Jul 01 01:45:52 EDT 2025 Fri May 30 11:57:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c267t-eef8fc8cbb8cd3cf75b8086872d151b947118852365bce735cbf00ea67ff42f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2257680408 |
PQPubID | 28230 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2257680408 crossref_primary_10_14321_realanalexch_43_2_0387 jstor_primary_realanalexch_43_2_0387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180101 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 1 year: 2018 text: 20180101 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | East Lansing |
PublicationPlace_xml | – name: East Lansing |
PublicationTitle | Real analysis exchange |
PublicationYear | 2018 |
Publisher | Michigan State University Press |
Publisher_xml | – name: Michigan State University Press |
SSID | ssj0034705 |
Score | 2.0276945 |
Snippet | The purpose of this note is to give an alternate proof of a result of M.Elekes. We show that if f : ℝ2 → ℝ is a differentiable function with everywhere... The purpose of this note is to give an alternate proof of a result of M.Elekes. We show that if f... is a differentiable function with everywhere non-zero... |
SourceID | proquest crossref jstor |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 387 |
SubjectTerms | Cattle Differentiable functions Diffraction Implicit functions INROADS Mathematical functions Mathematical theorems Open intervals Rectangles Studies Technology Acceptance Model |
Title | A Note on Level Sets of Differentiable Functions f(x,y) with Non-Vanishing Gradient |
URI | https://www.jstor.org/stable/10.14321/realanalexch.43.2.0387 https://www.proquest.com/docview/2257680408 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcAB8RSlBfnQA6hkSW0ndo5byqpCdA_Qot6i2LFPKKm2u6Xtr--M7YSEFkG5RFGUTBJ_43l5ZkzItnOpKQw4Odj0NhHYBFPLqkikyC3X0tXSN54_nOcHx-LzSXbS7WYfq0uWemKubq0r-R9U4RrgilWyd0C2JwoX4BzwhSMgDMd_wni6M29xmb_Z-YK5PzDxQ2bGftz1BGYvFkbNQHeFhDcH9iRqm0sMBvgQ7Lxtku9V00eifAbYKF7_1fp2ArF3ib0wXT1CiMxU5-ftabv60a5-LfLUC5SqP83VMKYwFIDgMckEjDo5lJChkVLkBDYQdzwoyxtiWHCGcnjh0zNB0cGnTQSfsEkanxg3vv5NIfVpguigIKlySKgUvGQlErpP1hk4ByCO16d7-3uzTgNzIbvU1fAvMa8PSX24_ZtGVklITL2hnL3FcfSYPIquAp0G3J-Qe7Z5Sh4e9n12z56Rb1OKHEDbhnoOoMgBtHV0zAG05wDq3l68v3xHEXs6wp522D8nx7NPRx8PkrhNRmJYLpeJtU45o4zWytTcOJlpBY6qkqwGc04XYH7sKpUxnmfaWMkzo12a2iqXzgnmOH9B1pq2sS8JZbJQeVWz2mgYLYFLrJXQbpeZIq3hoQ2SdsNUnoZuKOVfQNog2344-_v_dNtWN9plnGFnJfPeMKgZ9eruL94kD5C1Q7hsi6wtFyv7GgzIpX4T-eUarWR0gg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Note+on+Level+Sets+of+Differentiable+Functions+f%28x%2Cy%29+with+Non-Vanishing+Gradient&rft.jtitle=Real+analysis+exchange&rft.au=Savvopoulou&rft.au=Wedrychowcz&rft.date=2018&rft.issn=0147-1937&rft.volume=43&rft.issue=2&rft.spage=387&rft_id=info:doi/10.14321%2Frealanalexch.43.2.0387&rft.externalDBID=n%2Fa&rft.externalDocID=10_14321_realanalexch_43_2_0387 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-1937&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-1937&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-1937&client=summon |