A Note on Level Sets of Differentiable Functions f(x,y) with Non-Vanishing Gradient

The purpose of this note is to give an alternate proof of a result of M.Elekes. We show that if f : ℝ2 → ℝ is a differentiable function with everywhere non-zero gradient then for every point x ∊ ℝ2 in the level set {x : f(x) = c} there is a neighborhood V of x such that {f = c} ∩ V is homeomorphic t...

Full description

Saved in:
Bibliographic Details
Published inReal analysis exchange Vol. 43; no. 2; pp. 387 - 392
Main Authors Savvopoulou, Anna K., Wedrychowcz, Christopher M.
Format Journal Article
LanguageEnglish
Published East Lansing Michigan State University Press 01.01.2018
Subjects
Online AccessGet full text
ISSN0147-1937
1930-1219
DOI10.14321/realanalexch.43.2.0387

Cover

Loading…
Abstract The purpose of this note is to give an alternate proof of a result of M.Elekes. We show that if f : ℝ2 → ℝ is a differentiable function with everywhere non-zero gradient then for every point x ∊ ℝ2 in the level set {x : f(x) = c} there is a neighborhood V of x such that {f = c} ∩ V is homeomorphic to an open interval or the union of finitely many open segments passing through a point. Mathematical Reviews subject classification: Primary: 26B10; Secondary: 26B05 Key words: Implicit Function Theorem, Non-vanishing Gradient, Locally homeomorphic
AbstractList The purpose of this note is to give an alternate proof of a result of M.Elekes. We show that if f... is a differentiable function with everywhere non-zero gradient then for every point ... in the level set ... there is a neighborhood V of x such that {f = c} ∩ V is homeomorphic to an open interval or the union of finitely many open segments passing through a point.(ProQuest: ... denotes formulae omitted.)
The purpose of this note is to give an alternate proof of a result of M.Elekes. We show that if f : ℝ2 → ℝ is a differentiable function with everywhere non-zero gradient then for every point x ∊ ℝ2 in the level set {x : f(x) = c} there is a neighborhood V of x such that {f = c} ∩ V is homeomorphic to an open interval or the union of finitely many open segments passing through a point. Mathematical Reviews subject classification: Primary: 26B10; Secondary: 26B05 Key words: Implicit Function Theorem, Non-vanishing Gradient, Locally homeomorphic
Author Wedrychowcz, Christopher M.
Savvopoulou, Anna K.
Author_xml – sequence: 1
  givenname: Anna K.
  surname: Savvopoulou
  fullname: Savvopoulou, Anna K.
  organization: Department of Mathematical Sciences, Indiana University South Bend, South Bend, IN 46615, U.S.A. email
– sequence: 2
  givenname: Christopher M.
  surname: Wedrychowcz
  fullname: Wedrychowcz, Christopher M.
  organization: Department of Mathematics and Computer Science, Saint Mary's College, Notre Dame, IN, 46556, U.S.A. email
BookMark eNp1kM1OAjEURhujiYA-g03caHSwPzPTsiQoaEJ0gbptOuVWhowttkXh7R3FGDeubnJzzrc4XbTvvAOETijp05wzehVAN9rpBjZm0c95n_UJl2IPdeiAk4wyOthHHUJzkbUPcYi6MS4J4bkgRQfNhvjeJ8De4Sm8Q4NnkCL2Fl_X1kIAl2pdNYDHa2dS7V3E9mxzuT3HH3VatKrLnrWr46J2L3gS9LxujSN0YHUT4fjn9tDT-OZxdJtNHyZ3o-E0M6wUKQOw0hppqkqaOTdWFJUkspSCzWlBq0EuKJWyYLwsKgOCF6ayhIAuhbU5s5z30OludxX82xpiUku_Dm2JqBgrRClJTmRLiR1lgo8xgFWrUL_qsFWUqO-C6m9BlXPF1FfB1rzYmcuYfPjV_qE_ASnDeMc
ContentType Journal Article
Copyright 2018 Real Analysis Exchange
Copyright Michigan State University Press 2018
Copyright_xml – notice: 2018 Real Analysis Exchange
– notice: Copyright Michigan State University Press 2018
DBID AAYXX
CITATION
4T-
JQ2
DOI 10.14321/realanalexch.43.2.0387
DatabaseName CrossRef
Docstoc
ProQuest Computer Science Collection
DatabaseTitle CrossRef
Docstoc
ProQuest Computer Science Collection
DatabaseTitleList Docstoc

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1930-1219
EndPage 392
ExternalDocumentID 10_14321_realanalexch_43_2_0387
10.14321/realanalexch.43.2.0387
GroupedDBID -DZ
-ET
123
29P
70C
8R4
8R5
AAOJF
ABDBF
ABIFP
ACGOD
ACIWK
AEEGL
AESBA
AFFOW
AHIZY
ALMA_UNASSIGNED_HOLDINGS
AMVHM
B0M
E3Z
EAP
EBS
EJD
EMI
EMK
EPL
ESX
HDK
OK1
PUASD
RBF
RPE
SJN
TUS
TWZ
WS9
YNT
ZWISI
~8M
88I
8FE
8FG
8G5
AAYXX
ABJCF
ABUWG
AFFNX
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GUQSH
HCIFZ
K6V
K7-
L6V
M2O
M2P
M7S
P62
PADUT
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
Q2X
4T-
ACUHS
JQ2
ID FETCH-LOGICAL-c267t-eef8fc8cbb8cd3cf75b8086872d151b947118852365bce735cbf00ea67ff42f33
ISSN 0147-1937
IngestDate Fri Jul 25 19:55:00 EDT 2025
Tue Jul 01 01:45:52 EDT 2025
Fri May 30 11:57:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-eef8fc8cbb8cd3cf75b8086872d151b947118852365bce735cbf00ea67ff42f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2257680408
PQPubID 28230
PageCount 6
ParticipantIDs proquest_journals_2257680408
crossref_primary_10_14321_realanalexch_43_2_0387
jstor_primary_realanalexch_43_2_0387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180101
2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 1
  year: 2018
  text: 20180101
  day: 1
PublicationDecade 2010
PublicationPlace East Lansing
PublicationPlace_xml – name: East Lansing
PublicationTitle Real analysis exchange
PublicationYear 2018
Publisher Michigan State University Press
Publisher_xml – name: Michigan State University Press
SSID ssj0034705
Score 2.0276945
Snippet The purpose of this note is to give an alternate proof of a result of M.Elekes. We show that if f : ℝ2 → ℝ is a differentiable function with everywhere...
The purpose of this note is to give an alternate proof of a result of M.Elekes. We show that if f... is a differentiable function with everywhere non-zero...
SourceID proquest
crossref
jstor
SourceType Aggregation Database
Index Database
Publisher
StartPage 387
SubjectTerms Cattle
Differentiable functions
Diffraction
Implicit functions
INROADS
Mathematical functions
Mathematical theorems
Open intervals
Rectangles
Studies
Technology Acceptance Model
Title A Note on Level Sets of Differentiable Functions f(x,y) with Non-Vanishing Gradient
URI https://www.jstor.org/stable/10.14321/realanalexch.43.2.0387
https://www.proquest.com/docview/2257680408
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcAB8RSlBfnQA6hkSW0ndo5byqpCdA_Qot6i2LFPKKm2u6Xtr--M7YSEFkG5RFGUTBJ_43l5ZkzItnOpKQw4Odj0NhHYBFPLqkikyC3X0tXSN54_nOcHx-LzSXbS7WYfq0uWemKubq0r-R9U4RrgilWyd0C2JwoX4BzwhSMgDMd_wni6M29xmb_Z-YK5PzDxQ2bGftz1BGYvFkbNQHeFhDcH9iRqm0sMBvgQ7Lxtku9V00eifAbYKF7_1fp2ArF3ib0wXT1CiMxU5-ftabv60a5-LfLUC5SqP83VMKYwFIDgMckEjDo5lJChkVLkBDYQdzwoyxtiWHCGcnjh0zNB0cGnTQSfsEkanxg3vv5NIfVpguigIKlySKgUvGQlErpP1hk4ByCO16d7-3uzTgNzIbvU1fAvMa8PSX24_ZtGVklITL2hnL3FcfSYPIquAp0G3J-Qe7Z5Sh4e9n12z56Rb1OKHEDbhnoOoMgBtHV0zAG05wDq3l68v3xHEXs6wp522D8nx7NPRx8PkrhNRmJYLpeJtU45o4zWytTcOJlpBY6qkqwGc04XYH7sKpUxnmfaWMkzo12a2iqXzgnmOH9B1pq2sS8JZbJQeVWz2mgYLYFLrJXQbpeZIq3hoQ2SdsNUnoZuKOVfQNog2344-_v_dNtWN9plnGFnJfPeMKgZ9eruL94kD5C1Q7hsi6wtFyv7GgzIpX4T-eUarWR0gg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Note+on+Level+Sets+of+Differentiable+Functions+f%28x%2Cy%29+with+Non-Vanishing+Gradient&rft.jtitle=Real+analysis+exchange&rft.au=Savvopoulou&rft.au=Wedrychowcz&rft.date=2018&rft.issn=0147-1937&rft.volume=43&rft.issue=2&rft.spage=387&rft_id=info:doi/10.14321%2Frealanalexch.43.2.0387&rft.externalDBID=n%2Fa&rft.externalDocID=10_14321_realanalexch_43_2_0387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-1937&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-1937&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-1937&client=summon