A Comprehensive Investigation of the Performances of Different Machine Learning Classifiers with SMOTE-ENN Oversampling Technique and Hyperparameter Optimization for Imbalanced Heart Failure Dataset

Heart failure is a chronic cardiac condition characterized by reduced supply of blood to the body due to impaired contractile properties of the muscles of the heart. Like any other cardiac disorder, heart failure is a serious ailment limiting the activities and curtailing the lifespan of the patient...

Full description

Saved in:
Bibliographic Details
Published inScientific programming Vol. 2022; pp. 1 - 17
Main Authors Muntasir Nishat, Mirza, Faisal, Fahim, Jahan Ratul, Ishrak, Al-Monsur, Abdullah, Ar-Rafi, Abrar Mohammad, Nasrullah, Sarker Mohammad, Reza, Md Taslim, Khan, Md Rezaul Hoque
Format Journal Article
LanguageEnglish
Published New York Hindawi 09.03.2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heart failure is a chronic cardiac condition characterized by reduced supply of blood to the body due to impaired contractile properties of the muscles of the heart. Like any other cardiac disorder, heart failure is a serious ailment limiting the activities and curtailing the lifespan of the patient, most often resulting in death sooner or later. Detection of survival of patients with heart failure is the path to effective intervention and good prognosis in terms of both treatment and quality of life of the patient. Machine learning techniques can be critical in this regard since they can be used to predict the survival of patients with heart failure in advance, allowing patients to receive appropriate treatment. Hence, six supervised machine learning algorithms have been studied and applied to analyze a dataset of 299 individuals from the UCI Machine Learning Repository and predict their survivability from heart failure. Three distinct approaches have been followed using Decision Tree Classifier, Logistic Regression, Gaussian Naïve Bayes, Random Forest Classifier, K-Nearest Neighbors, and Support Vector Machine algorithms. Data scaling has been performed as a preprocessing step utilizing the standard and min–max scaling method. However, grid search cross-validation and random search cross-validation techniques have been employed to optimize the hyperparameters. Additionally, the synthetic minority oversampling technique and edited nearest neighbor (SMOTE-ENN) data resampling technique are utilized, and the performances of all the approaches have been compared extensively. The experimental results clearly indicate that Random Forest Classifier (RFC) surpasses all other approaches with a test accuracy of 90% when used in combination with SMOTE-ENN and standard scaling technique. Therefore, this comprehensive investigation portrays a vivid visualization of the applicability and compatibility of different machine learning algorithms in such an imbalanced dataset and presents the role of the SMOTE-ENN algorithm and hyperparameter optimization for enhancing the performances of the machine learning algorithms.
AbstractList Heart failure is a chronic cardiac condition characterized by reduced supply of blood to the body due to impaired contractile properties of the muscles of the heart. Like any other cardiac disorder, heart failure is a serious ailment limiting the activities and curtailing the lifespan of the patient, most often resulting in death sooner or later. Detection of survival of patients with heart failure is the path to effective intervention and good prognosis in terms of both treatment and quality of life of the patient. Machine learning techniques can be critical in this regard since they can be used to predict the survival of patients with heart failure in advance, allowing patients to receive appropriate treatment. Hence, six supervised machine learning algorithms have been studied and applied to analyze a dataset of 299 individuals from the UCI Machine Learning Repository and predict their survivability from heart failure. Three distinct approaches have been followed using Decision Tree Classifier, Logistic Regression, Gaussian Naïve Bayes, Random Forest Classifier, K-Nearest Neighbors, and Support Vector Machine algorithms. Data scaling has been performed as a preprocessing step utilizing the standard and min–max scaling method. However, grid search cross-validation and random search cross-validation techniques have been employed to optimize the hyperparameters. Additionally, the synthetic minority oversampling technique and edited nearest neighbor (SMOTE-ENN) data resampling technique are utilized, and the performances of all the approaches have been compared extensively. The experimental results clearly indicate that Random Forest Classifier (RFC) surpasses all other approaches with a test accuracy of 90% when used in combination with SMOTE-ENN and standard scaling technique. Therefore, this comprehensive investigation portrays a vivid visualization of the applicability and compatibility of different machine learning algorithms in such an imbalanced dataset and presents the role of the SMOTE-ENN algorithm and hyperparameter optimization for enhancing the performances of the machine learning algorithms.
Author Al-Monsur, Abdullah
Nasrullah, Sarker Mohammad
Jahan Ratul, Ishrak
Ar-Rafi, Abrar Mohammad
Reza, Md Taslim
Muntasir Nishat, Mirza
Khan, Md Rezaul Hoque
Faisal, Fahim
Author_xml – sequence: 1
  givenname: Mirza
  surname: Muntasir Nishat
  fullname: Muntasir Nishat, Mirza
  organization: Islamic University of TechnologyGazipurBangladeshiutoic-dhaka.edu
– sequence: 2
  givenname: Fahim
  orcidid: 0000-0001-9835-6299
  surname: Faisal
  fullname: Faisal, Fahim
  organization: Islamic University of TechnologyGazipurBangladeshiutoic-dhaka.edu
– sequence: 3
  givenname: Ishrak
  surname: Jahan Ratul
  fullname: Jahan Ratul, Ishrak
  organization: Islamic University of TechnologyGazipurBangladeshiutoic-dhaka.edu
– sequence: 4
  givenname: Abdullah
  surname: Al-Monsur
  fullname: Al-Monsur, Abdullah
  organization: Islamic University of TechnologyGazipurBangladeshiutoic-dhaka.edu
– sequence: 5
  givenname: Abrar Mohammad
  surname: Ar-Rafi
  fullname: Ar-Rafi, Abrar Mohammad
  organization: Islamic University of TechnologyGazipurBangladeshiutoic-dhaka.edu
– sequence: 6
  givenname: Sarker Mohammad
  surname: Nasrullah
  fullname: Nasrullah, Sarker Mohammad
  organization: North South UniversityDhakaBangladeshnorthsouth.edu
– sequence: 7
  givenname: Md Taslim
  surname: Reza
  fullname: Reza, Md Taslim
  organization: Islamic University of TechnologyGazipurBangladeshiutoic-dhaka.edu
– sequence: 8
  givenname: Md Rezaul Hoque
  surname: Khan
  fullname: Khan, Md Rezaul Hoque
  organization: Islamic University of TechnologyGazipurBangladeshiutoic-dhaka.edu
BookMark eNp9kcFO3DAQhq2KSgXKjQcYqcc2xXbsxDmiZYGVFrZSF4lb5M2OiVHipLZ3EX3APledLqdK7cmjX9_4n5n_hBy5wSEh54x-ZUzKC045v8gLUQlavCPHTJUyq1j1eJRqKlVWcSE-kJMQnillilF6TH5dwmzoR48tumD3CAu3xxDtk452cDAYiC3CN_Rm8L12DYZJu7LGoEcX4U43rXUIS9TeWfcEs06HYI1FH-DFxha-363W82x-fw-rfRJ1P3YTt8amdfbHDkG7Ldy-juhH7XWPET2sxmh7-_MwQ3KGRb_R3WSf0OQU4VrbbucRrnTUAeNH8t7oLuDZ23tKHq7n69lttlzdLGaXy6zhRRmzLZpciQqrQhupjDCU5xtTMlOwihosjMJGUMZlWQijOCLdVFRILHNhkprnp-TT4d_RD2n2EOvnYeddsqx5IaiSgiuZqC8HqvFDCB5NPXrba_9aM1pPSdVTUvVbUgnnf-GNjX92jz6t-a-mz4emdP6tfrH_t_gN9ymoYA
CitedBy_id crossref_primary_10_1002_sim_10320
crossref_primary_10_1155_2022_6963891
crossref_primary_10_60084_ijma_v1i1_78
crossref_primary_10_1080_23311916_2024_2330266
crossref_primary_10_1080_19475705_2024_2314565
crossref_primary_10_1080_1206212X_2023_2262786
crossref_primary_10_1007_s11517_023_02918_8
crossref_primary_10_1016_j_rtbm_2024_101161
crossref_primary_10_60084_ijds_v1i2_123
crossref_primary_10_3389_frai_2024_1455331
crossref_primary_10_1109_ACCESS_2025_3550015
crossref_primary_10_3389_fcvm_2023_1219586
crossref_primary_10_1109_ACCESS_2023_3339225
crossref_primary_10_1109_ACCESS_2024_3358683
crossref_primary_10_1007_s12205_023_0410_8
crossref_primary_10_1109_ACCESS_2024_3446992
crossref_primary_10_7759_cureus_73876
crossref_primary_10_3389_fneur_2024_1377538
crossref_primary_10_7717_peerj_cs_2682
crossref_primary_10_32604_cmc_2023_034470
crossref_primary_10_1155_2022_9391136
Cites_doi 10.1177/0165551515613226
10.1016/j.eswa.2016.03.045
10.1109/access.2021.3064084
10.11591/ijai.v10.i1.pp101-109
10.1038/nrcardio.2016.25
10.1136/hrt.2003.025254
10.1016/j.ahj.2004.08.005
10.25077/jitce.4.02.90-94.2020
10.1007/s12652-019-01652-0
10.2147/rmhp.s310295
10.1109/bracis.2019.00104
10.1038/s41598-020-62133-5
10.1016/j.ahj.2004.03.004
10.1136/hrt.2003.025270
10.1155/2019/8460934
10.1109/ACCESS.2021.3049734
10.1016/s0167-5273(01)00497-1
10.1016/j.eswa.2015.05.006
10.1016/j.cmpb.2019.05.005
10.1371/journal.pone.0181001
10.1016/j.ipm.2017.02.008
10.1016/j.eswa.2009.07.055
10.1109/icece51571.2020.9393054
10.1007/978-981-13-7279-7_3
10.1016/S0140-6736(05)66621-4
10.1080/17455030.2020.1810364
10.1109/sti50764.2020.9350440
10.1177/0165551516677911
10.1053/euhj.1999.1782
10.1001/jama.289.2.194
10.1186/s12911-020-1023-5
10.1007/978-3-319-33625-1_16
ContentType Journal Article
Copyright Copyright © 2022 Mirza Muntasir Nishat et al.
Copyright © 2022 Mirza Muntasir Nishat et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2022 Mirza Muntasir Nishat et al.
– notice: Copyright © 2022 Mirza Muntasir Nishat et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1155/2022/3649406
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-919X
Editor Zhao, Qianchuan
Editor_xml – sequence: 1
  givenname: Qianchuan
  surname: Zhao
  fullname: Zhao, Qianchuan
EndPage 17
ExternalDocumentID 10_1155_2022_3649406
GroupedDBID .DC
0R~
24P
4.4
5VS
AAFWJ
AAJEY
ABJNI
ACCMX
ACGFS
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BCNDV
DU5
EBS
EST
ESX
H13
HZ~
IOS
KQ8
MIO
MV1
NGNOM
O9-
OK1
RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c267t-def3849e96af58f4f023bf71f6190fe6f8ec40125764f82ee0b9045e734f12533
IEDL.DBID RHX
ISSN 1058-9244
IngestDate Fri Jul 25 09:32:37 EDT 2025
Tue Jul 01 02:50:10 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Wed Apr 16 06:25:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-def3849e96af58f4f023bf71f6190fe6f8ec40125764f82ee0b9045e734f12533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9835-6299
OpenAccessLink https://dx.doi.org/10.1155/2022/3649406
PQID 2640854285
PQPubID 2046410
PageCount 17
ParticipantIDs proquest_journals_2640854285
crossref_primary_10_1155_2022_3649406
crossref_citationtrail_10_1155_2022_3649406
hindawi_primary_10_1155_2022_3649406
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-09
PublicationDateYYYYMMDD 2022-03-09
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-09
  day: 09
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Scientific programming
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 44
45
48
49
S. Rahayu (36) 2020; 16
Nhlbi Nih (2) 2021
P. E. Rubini (34) 2021; 25
J. J. V. McMurray (11) 2005; 365
M. M. Nishat (28) 2021; 21
UCI Machine Learning Repository (38) 2020
10
12
13
14
15
M. A. A. R. Asif (18) 2021; 29
16
17
19
F. Shamsham (7) 2000; 61
3
4
6
9
R. Gürfidan (32) 2021
M. V Sonth (47) 2020; 63
20
21
S. Ambesange (46)
22
24
25
26
27
29
World Health Organization (1) 2021
J. Bergstra (43) 2012; 13
L. Ali (37) 2019; 2019
H. J. P. Weerts (42) 2020
I. Babaoǧlu (23) 2010; 37
J. Grus (39) 2015
30
31
33
35
E. Tanai (8) 2016; 6
American Heart Association (5) 2020
40
41
References_xml – volume-title: Classification of Death Related to Heart Failure by Machine Learning Algorithms
  year: 2021
  ident: 32
– ident: 20
  doi: 10.1177/0165551515613226
– ident: 24
  doi: 10.1016/j.eswa.2016.03.045
– ident: 35
  doi: 10.1109/access.2021.3064084
– volume: 6
  start-page: 187
  issue: 1
  year: 2016
  ident: 8
  article-title: Pathophysiology of heart failure
  publication-title: Comprehensive Physiology
– ident: 33
  doi: 10.11591/ijai.v10.i1.pp101-109
– volume: 29
  start-page: 731
  issue: 2
  year: 2021
  ident: 18
  article-title: Performance evaluation and comparative analysis of different machine learning algorithms in predicting cardiovascular disease
  publication-title: Engineering Letters
– year: 2020
  ident: 38
  article-title: Heart failure clinical records Data Set
– ident: 14
  doi: 10.1038/nrcardio.2016.25
– ident: 12
  doi: 10.1136/hrt.2003.025254
– ident: 3
  doi: 10.1016/j.ahj.2004.08.005
– ident: 31
  doi: 10.25077/jitce.4.02.90-94.2020
– ident: 16
  doi: 10.1007/s12652-019-01652-0
– ident: 49
  doi: 10.2147/rmhp.s310295
– year: 2020
  ident: 5
  article-title: What is heart failure?
– ident: 45
  doi: 10.1109/bracis.2019.00104
– ident: 19
  doi: 10.1038/s41598-020-62133-5
– ident: 4
  doi: 10.1016/j.ahj.2004.03.004
– volume-title: Data Science from Scratch
  year: 2015
  ident: 39
– ident: 6
  doi: 10.1136/hrt.2003.025270
– year: 2020
  ident: 42
  article-title: Importance of Tuning Hyperparameters of Machine Learning Algorithms
– ident: 41
  doi: 10.1155/2019/8460934
– ident: 27
  doi: 10.1109/ACCESS.2021.3049734
– year: 2021
  ident: 1
  article-title: Cardiovascular diseases (CVDs)
– volume: 13
  start-page: 281
  year: 2012
  ident: 43
  article-title: Random search for hyper-parameter optimization
  publication-title: Journal of Machine Learning Research
– ident: 9
  doi: 10.1016/s0167-5273(01)00497-1
– ident: 15
  doi: 10.1016/j.eswa.2015.05.006
– ident: 44
  doi: 10.1016/j.cmpb.2019.05.005
– ident: 29
  doi: 10.1371/journal.pone.0181001
– ident: 26
  doi: 10.1016/j.ipm.2017.02.008
– start-page: 827
  ident: 46
  article-title: Multiple heart diseases prediction using logistic regression with ensemble and hyper parameter tuning techniques
– volume: 37
  start-page: 2182
  issue: 3
  year: 2010
  ident: 23
  article-title: Effects of principle component analysis on assessment of coronary artery diseases using support vector machine
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.07.055
– ident: 25
  doi: 10.1109/icece51571.2020.9393054
– ident: 40
  doi: 10.1007/978-981-13-7279-7_3
– volume: 63
  start-page: 3961
  issue: 5
  year: 2020
  ident: 47
  article-title: Optimization of random forest algorithm with ensemble and hyper parameter tuning techniques for Multiple heart diseases
  publication-title: Solid State Technology
– volume: 365
  start-page: 1877
  issue: 9474
  year: 2005
  ident: 11
  article-title: Heart failure
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)66621-4
– volume: 16
  start-page: 255
  issue: 2
  year: 2020
  ident: 36
  article-title: Prediction of survival of heart failure patients using random forest
  publication-title: Journal of Pilar Nusa Mandiri
– ident: 48
  doi: 10.1080/17455030.2020.1810364
– volume: 2019
  year: 2019
  ident: 37
  article-title: A feature-driven decision support system for heart failure prediction based on statistical model and Gaussian naive bayes
  publication-title: Computational and Mathematical Methods in Medicine
– ident: 21
  doi: 10.1109/sti50764.2020.9350440
– ident: 22
  doi: 10.1177/0165551516677911
– ident: 13
  doi: 10.1053/euhj.1999.1782
– volume: 61
  start-page: 1319
  issue: 5
  year: 2000
  ident: 7
  article-title: Essentials of the diagnosis of heart failure
  publication-title: American Family Physician
– ident: 10
  doi: 10.1001/jama.289.2.194
– year: 2021
  ident: 2
  article-title: Heart failure
– ident: 30
  doi: 10.1186/s12911-020-1023-5
– ident: 17
  doi: 10.1007/978-3-319-33625-1_16
– volume: 21
  start-page: e1
  issue: 29
  year: 2021
  ident: 28
  article-title: A comprehensive analysis on detecting chronic Kidney disease by employing machine learning algorithms
  publication-title: EAI Endorsed Transactions on Pervasive Health and Technology
– volume: 25
  start-page: 904
  issue: 2
  year: 2021
  ident: 34
  article-title: A cardiovascular disease prediction using machine learning algorithms
  publication-title: Annals of the Romanian Society for Cell Biology
SSID ssj0018100
Score 2.4728758
Snippet Heart failure is a chronic cardiac condition characterized by reduced supply of blood to the body due to impaired contractile properties of the muscles of the...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Age
Algorithms
Cardiovascular disease
Classification
Classifiers
Comparative analysis
Creatinine
Data mining
Datasets
Decision trees
Ejection fraction
Family medical history
Heart failure
Machine learning
Medical prognosis
Muscles
Optimization
Oversampling
Patients
Resampling
Risk factors
Scaling
Support vector machines
Survivability
Survival
Title A Comprehensive Investigation of the Performances of Different Machine Learning Classifiers with SMOTE-ENN Oversampling Technique and Hyperparameter Optimization for Imbalanced Heart Failure Dataset
URI https://dx.doi.org/10.1155/2022/3649406
https://www.proquest.com/docview/2640854285
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5WELz4Ft_MQU-yuN1N9nEUbalCW8EWeluSNLEFu5V2xX_o73Jmm_WJ6HHD7OYwk8x8my_fMHbKfau41soTQkmPB0p4qUKHqAiLo0gmQgu6KNzuRK0-vx2IgRNJmv88wsdsR_A8uAgjnnKS1q5hgBEobw3eDwuSur8QHRC4djFdVfz2b-9-yTwrI4K8L-MfW3CZV5obbM0VhHC58OAmWzL5Fluvmi2AW3vb7PUSaHBmRgvKOXxSyJjmMLWApRzcfdwDmNPYtet_UkC7ZE0acIKqD1C2wxxbaoUN9DcW7tvdXsNrdDrQJa6GJK452vUqlVeQ-RBaiFtnpBc-IR4NdHHHmbirnIAzw81EEVlSGzTFmQpoyjEx3-FaFpgwix3WbzZ6Vy3PNWHwdBDFhTc0Nkx4atJIWpFYbjHJKxvXLSIv35rIJkYjRiPcwm0SGOOrFMtEE4fc4mgY7rLlfJqbPQbKT6RNjW_10OfcpDKMdUTHPqH0QxnzfXZeOSjTTqGcGmU8ZiVSESIjd2bOnfvs7N36aaHM8YvdqfP1H2ZHVSBkbhnPM6wWsSRFhCYO_veVQ7ZKjyVJLT1iy8Xs2Rxj1VKoE1YL-N1JGblv1LfoCQ
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Investigation+of+the+Performances+of+Different+Machine+Learning+Classifiers+with+SMOTE-ENN+Oversampling+Technique+and+Hyperparameter+Optimization+for+Imbalanced+Heart+Failure+Dataset&rft.jtitle=Scientific+programming&rft.au=Muntasir+Nishat%2C+Mirza&rft.au=Faisal%2C+Fahim&rft.au=Jahan+Ratul%2C+Ishrak&rft.au=Al-Monsur%2C+Abdullah&rft.date=2022-03-09&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2022&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1155%2F2022%2F3649406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_3649406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon