Crowded Scene Analysis: A Survey

Automated scene analysis has been a topic of great interest in computer vision and cognitive science. Recently, with the growth of crowd phenomena in the real world, crowded scene analysis has attracted much attention. However, the visual occlusions and ambiguities in crowded scenes, as well as the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 25; no. 3; pp. 367 - 386
Main Authors Li, Teng, Chang, Huan, Wang, Meng, Ni, Bingbing, Hong, Richang, Yan, Shuicheng
Format Journal Article
LanguageEnglish
Published IEEE 01.03.2015
Subjects
Online AccessGet full text
ISSN1051-8215
1558-2205
DOI10.1109/TCSVT.2014.2358029

Cover

Loading…
Abstract Automated scene analysis has been a topic of great interest in computer vision and cognitive science. Recently, with the growth of crowd phenomena in the real world, crowded scene analysis has attracted much attention. However, the visual occlusions and ambiguities in crowded scenes, as well as the complex behaviors and scene semantics, make the analysis a challenging task. In the past few years, an increasing number of works on the crowded scene analysis have been reported, which covered different aspects including crowd motion pattern learning, crowd behavior and activity analyses, and anomaly detection in crowds. This paper surveys the state-of-the-art techniques on this topic. We first provide the background knowledge and the available features related to crowded scenes. Then, existing models, popular algorithms, evaluation protocols, and system performance are provided corresponding to different aspects of the crowded scene analysis. We also outline the available datasets for performance evaluation. Finally, some research problems and promising future directions are presented with discussions.
AbstractList Automated scene analysis has been a topic of great interest in computer vision and cognitive science. Recently, with the growth of crowd phenomena in the real world, crowded scene analysis has attracted much attention. However, the visual occlusions and ambiguities in crowded scenes, as well as the complex behaviors and scene semantics, make the analysis a challenging task. In the past few years, an increasing number of works on the crowded scene analysis have been reported, which covered different aspects including crowd motion pattern learning, crowd behavior and activity analyses, and anomaly detection in crowds. This paper surveys the state-of-the-art techniques on this topic. We first provide the background knowledge and the available features related to crowded scenes. Then, existing models, popular algorithms, evaluation protocols, and system performance are provided corresponding to different aspects of the crowded scene analysis. We also outline the available datasets for performance evaluation. Finally, some research problems and promising future directions are presented with discussions.
Author Bingbing Ni
Teng Li
Richang Hong
Meng Wang
Shuicheng Yan
Huan Chang
Author_xml – sequence: 1
  givenname: Teng
  surname: Li
  fullname: Li, Teng
– sequence: 2
  givenname: Huan
  surname: Chang
  fullname: Chang, Huan
– sequence: 3
  givenname: Meng
  surname: Wang
  fullname: Wang, Meng
– sequence: 4
  givenname: Bingbing
  surname: Ni
  fullname: Ni, Bingbing
– sequence: 5
  givenname: Richang
  surname: Hong
  fullname: Hong, Richang
– sequence: 6
  givenname: Shuicheng
  surname: Yan
  fullname: Yan, Shuicheng
BookMark eNp9z81KxDAQwPEgK7i7-gJ66Qu0ZtKkO_FWil-w4KHVa2mTCVRqK0lV-vbuuosHD55mDvMb-K_YYhgHYuwSeALA9XVVlC9VIjjIRKQKudAnbAlKYSwEV4vdzhXEKECdsVUIr3x3iXKzZFHhxy9LNioNDRTlQ9PPoQs3UR6VH_6T5nN26po-0MVxrtnz3W1VPMTbp_vHIt_GRmSbKTYWHSgyvGlJC9KZbh0C6FSTbpW0QhjgEhy11nIEQkDS4KQzlmstKV0zPPw1fgzBk6tNNzVTNw6Tb7q-Bl7vS-uf0npfWh9Ld1T8oe--e2v8_D-6OqCOiH5BhhpRqvQb7MVgew
CODEN ITCTEM
CitedBy_id crossref_primary_10_17671_gazibtd_419205
crossref_primary_10_1049_cvi2_12012
crossref_primary_10_1007_s11760_018_1267_z
crossref_primary_10_1016_j_patcog_2016_02_004
crossref_primary_10_1109_ACCESS_2020_3015375
crossref_primary_10_1109_TIM_2019_2927650
crossref_primary_10_1142_S0218126617501109
crossref_primary_10_1007_s00521_022_07758_5
crossref_primary_10_7210_jrsj_35_610
crossref_primary_10_1109_TVCG_2024_3456183
crossref_primary_10_3390_math10071053
crossref_primary_10_1007_s11042_017_5061_7
crossref_primary_10_1016_j_neucom_2021_02_103
crossref_primary_10_1109_TCSVT_2016_2564818
crossref_primary_10_1007_s10044_024_01279_8
crossref_primary_10_1007_s11042_023_16442_2
crossref_primary_10_1016_j_neucom_2017_02_058
crossref_primary_10_1016_j_jpdc_2019_10_003
crossref_primary_10_1007_s11263_020_01365_4
crossref_primary_10_1007_s12652_016_0432_x
crossref_primary_10_1016_j_eswa_2018_02_013
crossref_primary_10_1109_TITS_2021_3086827
crossref_primary_10_1007_s11042_023_15231_1
crossref_primary_10_1007_s11390_017_1737_8
crossref_primary_10_1145_3481299
crossref_primary_10_1109_TNNLS_2018_2855699
crossref_primary_10_32604_cmc_2021_015085
crossref_primary_10_1177_0894439317726510
crossref_primary_10_3390_s20195550
crossref_primary_10_1109_JDT_2016_2518646
crossref_primary_10_18100_ijamec_269245
crossref_primary_10_48175_IJARSCT_9101
crossref_primary_10_1007_s11042_023_16841_5
crossref_primary_10_1007_s00371_024_03479_z
crossref_primary_10_1527_tjsai_37_2_J_LB1
crossref_primary_10_1587_transinf_2018EDL8005
crossref_primary_10_1109_TGRS_2023_3238185
crossref_primary_10_1007_s11042_021_10763_w
crossref_primary_10_1007_s40313_021_00868_w
crossref_primary_10_3390_math11051075
crossref_primary_10_1109_TCSVT_2018_2857489
crossref_primary_10_1007_s11760_019_01474_9
crossref_primary_10_1016_j_patcog_2016_09_016
crossref_primary_10_1007_s10489_021_02375_6
crossref_primary_10_1007_s11280_018_0582_1
crossref_primary_10_1109_ACCESS_2018_2878733
crossref_primary_10_1111_cgf_142664
crossref_primary_10_1109_JIOT_2023_3263725
crossref_primary_10_1016_j_ijar_2018_11_007
crossref_primary_10_1117_1_JEI_26_3_033013
crossref_primary_10_3390_s18124290
crossref_primary_10_1109_TCSVT_2020_3014869
crossref_primary_10_32604_iasc_2023_029119
crossref_primary_10_4018_IJDLDC_330587
crossref_primary_10_1016_j_cviu_2020_103126
crossref_primary_10_1016_j_neucom_2017_08_018
crossref_primary_10_1109_JSEN_2022_3223297
crossref_primary_10_1109_TCSVT_2016_2596199
crossref_primary_10_1016_j_engappai_2018_08_014
crossref_primary_10_1016_j_neucom_2017_10_015
crossref_primary_10_1007_s11042_020_08885_8
crossref_primary_10_1007_s42979_023_02260_8
crossref_primary_10_1007_s13735_022_00227_8
crossref_primary_10_1109_ACCESS_2020_3041790
crossref_primary_10_1007_s00138_019_01039_3
crossref_primary_10_3233_JIFS_201400
crossref_primary_10_1109_TMM_2018_2818942
crossref_primary_10_3390_bdcc5040050
crossref_primary_10_1049_ipr2_12099
crossref_primary_10_1109_TIP_2020_2994410
crossref_primary_10_1007_s10489_025_06338_z
crossref_primary_10_1155_2015_492051
crossref_primary_10_1002_aaai_12117
crossref_primary_10_1016_j_eastsj_2021_100052
crossref_primary_10_1049_iet_cvi_2016_0178
crossref_primary_10_1109_ACCESS_2024_3503661
crossref_primary_10_1109_TCYB_2024_3359237
crossref_primary_10_1016_j_engappai_2019_07_009
crossref_primary_10_1109_TCSVT_2024_3423402
crossref_primary_10_1109_TCSVT_2016_2615443
crossref_primary_10_1016_j_neucom_2022_09_091
crossref_primary_10_3390_sym13040703
crossref_primary_10_1007_s42979_021_00636_2
crossref_primary_10_1016_j_neucom_2016_09_111
crossref_primary_10_1049_iet_ipr_2017_0367
crossref_primary_10_1109_TIP_2019_2928634
crossref_primary_10_1145_2854000
crossref_primary_10_1007_s00371_021_02356_3
crossref_primary_10_3389_fict_2017_00010
crossref_primary_10_1007_s00530_018_0599_4
crossref_primary_10_1007_s11042_017_4479_2
crossref_primary_10_1109_TMM_2019_2950530
crossref_primary_10_1007_s11042_020_08840_7
crossref_primary_10_1007_s11554_020_00968_x
crossref_primary_10_48175_IJARSCT_9706
crossref_primary_10_1016_j_patcog_2017_01_001
crossref_primary_10_1109_TIP_2021_3055632
crossref_primary_10_1007_s11042_022_12274_8
crossref_primary_10_1007_s10489_022_03187_y
crossref_primary_10_1631_FITEE_1900282
crossref_primary_10_1007_s10489_020_01842_w
crossref_primary_10_1155_2018_3136471
crossref_primary_10_1002_int_23023
crossref_primary_10_1109_ACCESS_2020_3032252
crossref_primary_10_1109_TCSVT_2017_2731866
crossref_primary_10_1080_09540091_2020_1772723
crossref_primary_10_1007_s44336_024_00011_8
crossref_primary_10_1016_j_patrec_2017_07_007
crossref_primary_10_1016_j_jvcir_2021_103319
crossref_primary_10_1007_s11220_018_0201_3
crossref_primary_10_1109_TCSVT_2016_2580401
crossref_primary_10_1016_j_neucom_2019_03_065
crossref_primary_10_1109_TPAMI_2020_3040591
crossref_primary_10_1109_COMST_2019_2902824
crossref_primary_10_1186_s40537_019_0194_3
crossref_primary_10_3390_s23115024
crossref_primary_10_1007_s11042_023_17425_z
crossref_primary_10_1117_1_JEI_28_2_023033
crossref_primary_10_1142_S0219467821500194
crossref_primary_10_1016_j_jpdc_2017_03_002
crossref_primary_10_1109_TCYB_2020_3034316
crossref_primary_10_1016_j_knosys_2020_106485
crossref_primary_10_20965_jaciii_2017_p0235
crossref_primary_10_1109_MCE_2019_2905486
crossref_primary_10_3169_itej_70_63
crossref_primary_10_1109_MCG_2016_113
crossref_primary_10_1109_TMM_2020_2980945
crossref_primary_10_1007_s11042_017_5438_7
crossref_primary_10_1109_ACCESS_2019_2931922
crossref_primary_10_3233_JIFS_179128
crossref_primary_10_1007_s11831_024_10151_1
crossref_primary_10_3390_a13110301
crossref_primary_10_1016_j_jvcir_2017_01_026
crossref_primary_10_1142_S0218001421520030
crossref_primary_10_1016_j_compeleceng_2018_03_031
crossref_primary_10_1016_j_neucom_2015_11_126
crossref_primary_10_3390_s22093328
crossref_primary_10_1145_3459089
crossref_primary_10_1145_2730889
crossref_primary_10_1016_j_engappai_2022_105387
crossref_primary_10_3390_app14093928
crossref_primary_10_3390_jimaging4020036
crossref_primary_10_1016_j_cie_2023_109839
crossref_primary_10_1016_j_cviu_2020_103065
crossref_primary_10_1007_s11042_020_08659_2
crossref_primary_10_1007_s11042_020_08827_4
crossref_primary_10_1007_s11042_020_10002_8
crossref_primary_10_1007_s11265_017_1309_8
crossref_primary_10_32604_iasc_2022_027182
crossref_primary_10_1016_j_eswa_2017_10_021
crossref_primary_10_1109_TIFS_2017_2725820
crossref_primary_10_1145_3492346
crossref_primary_10_1080_0952813X_2022_2084566
crossref_primary_10_1007_s11554_021_01116_9
crossref_primary_10_1007_s00371_019_01647_0
crossref_primary_10_3233_WOR_210011
crossref_primary_10_32604_cmc_2022_027077
crossref_primary_10_1007_s00138_018_0970_7
crossref_primary_10_1109_TITS_2017_2771746
crossref_primary_10_1016_j_neucom_2015_11_021
crossref_primary_10_3390_s20174806
crossref_primary_10_1109_ACCESS_2018_2875495
crossref_primary_10_1016_j_heliyon_2019_e01449
crossref_primary_10_3390_s23062938
crossref_primary_10_1016_j_patrec_2022_11_011
crossref_primary_10_1109_THMS_2019_2912509
crossref_primary_10_20965_jdr_2024_p0293
crossref_primary_10_1016_j_eswa_2023_122069
crossref_primary_10_4018_IJCVIP_2020010102
crossref_primary_10_1109_TCYB_2016_2572609
crossref_primary_10_32604_cmc_2021_017637
crossref_primary_10_1109_ACCESS_2021_3063028
crossref_primary_10_1109_TKDE_2018_2879079
crossref_primary_10_3390_rs13142780
crossref_primary_10_1049_iet_cvi_2019_0085
crossref_primary_10_1016_j_neucom_2020_07_058
crossref_primary_10_1145_3117808
crossref_primary_10_1016_j_engappai_2023_107057
crossref_primary_10_1016_j_patcog_2017_10_005
crossref_primary_10_32628_CSEIT23903104
crossref_primary_10_1007_s11831_022_09772_1
crossref_primary_10_1016_j_engappai_2022_105236
crossref_primary_10_1007_s43995_024_00071_3
crossref_primary_10_1007_s10489_021_02244_2
crossref_primary_10_1016_j_patrec_2020_09_019
crossref_primary_10_1109_TII_2019_2935244
crossref_primary_10_1007_s10462_019_09689_5
crossref_primary_10_1109_JIOT_2023_3294727
crossref_primary_10_1007_s12518_019_00260_z
crossref_primary_10_1016_j_jvcir_2019_05_003
crossref_primary_10_1007_s00521_018_3894_2
crossref_primary_10_1007_s11042_020_09024_z
crossref_primary_10_1109_TCYB_2016_2538765
crossref_primary_10_1017_pan_2020_25
crossref_primary_10_1109_TITS_2021_3075859
crossref_primary_10_1109_TNNLS_2019_2933920
crossref_primary_10_1016_j_cviu_2018_08_004
crossref_primary_10_1016_j_neucom_2021_03_078
crossref_primary_10_3390_rs16224175
crossref_primary_10_1080_03772063_2021_1903345
crossref_primary_10_1145_3449359
crossref_primary_10_1007_s11227_022_04818_4
crossref_primary_10_1631_FITEE_1800313
crossref_primary_10_1142_S1793351X18400196
crossref_primary_10_1631_FITEE_1601804
crossref_primary_10_3390_s17122856
crossref_primary_10_1007_s11263_017_1005_y
crossref_primary_10_1109_ACCESS_2020_3000741
crossref_primary_10_1007_s11554_020_01020_8
crossref_primary_10_1109_TCSVT_2022_3171235
crossref_primary_10_1016_j_asoc_2021_107240
crossref_primary_10_1016_j_ijdrr_2017_02_021
crossref_primary_10_1016_j_mlwa_2021_100023
crossref_primary_10_1016_j_neucom_2017_05_045
crossref_primary_10_26599_TST_2021_9010097
crossref_primary_10_1109_ACCESS_2020_2990355
crossref_primary_10_3390_sym11070866
crossref_primary_10_1109_ACCESS_2018_2812880
crossref_primary_10_1109_TPAMI_2020_3035969
crossref_primary_10_3390_s19092013
crossref_primary_10_1016_j_eswa_2022_117475
crossref_primary_10_1007_s00371_018_1499_5
crossref_primary_10_1016_j_neucom_2018_08_085
crossref_primary_10_1016_j_engappai_2019_04_012
crossref_primary_10_1093_comjnl_bxac071
crossref_primary_10_1109_TCSVT_2016_2589859
crossref_primary_10_1109_TPAMI_2022_3232712
crossref_primary_10_1117_1_OE_57_4_043109
crossref_primary_10_1016_j_neucom_2019_11_064
crossref_primary_10_1016_j_physa_2021_126145
crossref_primary_10_1109_ACCESS_2020_3017135
crossref_primary_10_1007_s11042_017_4568_2
crossref_primary_10_3390_s24061899
crossref_primary_10_1109_TMM_2016_2542585
crossref_primary_10_1109_TGRS_2022_3153946
crossref_primary_10_1007_s11760_017_1153_0
crossref_primary_10_1109_ACCESS_2018_2890664
crossref_primary_10_1109_TCSVT_2016_2629340
crossref_primary_10_1007_s11042_021_11864_2
crossref_primary_10_1007_s11042_023_15621_5
crossref_primary_10_1108_DTA_01_2020_0019
crossref_primary_10_1080_01691864_2018_1554508
crossref_primary_10_1109_TITS_2018_2835308
crossref_primary_10_3390_electronics11010031
crossref_primary_10_1007_s13369_017_2995_z
crossref_primary_10_3390_app12010381
crossref_primary_10_1016_j_eswa_2017_09_029
Cites_doi 10.1109/TPAMI.2011.173
10.1007/978-3-642-38989-4_10
10.1109/TCSVT.2013.2248239
10.1109/CVPR.2007.383072
10.1007/978-3-642-97651-3
10.1007/978-3-642-22170-5_59
10.1109/ICWAPR.2012.6294781
10.1109/ICPR.2008.4761655
10.1109/ICIP.2013.6738584
10.1109/TCSVT.2012.2226526
10.1109/CVPR.2013.328
10.1109/JSEN.2013.2245889
10.1109/ICCV.2009.5459376
10.1109/CVPR.2010.5539872
10.1109/CVPR.2009.5206771
10.1109/ICME.2012.133
10.1109/CVPR.2010.5539882
10.1109/TSMCC.2011.2178594
10.1142/S0219525908001854
10.1007/3-540-32390-2_2
10.1145/322033.322044
10.1016/j.patcog.2012.11.021
10.1109/TCYB.2013.2242059
10.1109/TSMCC.2004.829274
10.1007/s12555-011-0511-x
10.1109/ICCV.2013.22
10.1016/0925-7535(96)81011-3
10.1007/978-3-642-25446-8_15
10.1016/j.physd.2005.10.007
10.1109/CVPR.2010.5539884
10.1109/JSTSP.2008.2001306
10.1109/ICIP.2012.6467182
10.1109/TIFS.2013.2277773
10.1145/1141911.1142008
10.1016/S0191-2615(01)00015-7
10.1145/566570.566646
10.5244/C.26.21
10.1109/FSKD.2012.6234226
10.1145/2072508.2072515
10.1109/TSMCB.2012.2192267
10.1007/s11263-011-0510-7
10.1016/j.cviu.2013.06.007
10.1109/ISCCSP.2012.6217836
10.1007/s00138-011-0341-0
10.1109/ICDE.2002.994784
10.1109/TPAMI.2006.176
10.1109/TPAMI.2013.111
10.1007/s00138-008-0132-4
10.1145/2438653.2438670
10.1109/CVPR.2009.5206641
10.1109/ROBIO.2011.6181342
10.1109/TCSVT.2013.2276151
10.1109/CVPR.2007.382977
10.1109/TPAMI.2013.137
10.1109/CC.2013.6506940
10.1109/ICINFA.2011.5949043
10.1109/TCSVT.2008.927109
10.1109/TPAMI.2006.184
10.1109/TPAMI.2007.70738
10.1016/j.cviu.2011.08.006
10.1109/CVPR.2007.383267
10.1007/978-3-642-41512-8_2
10.1109/TVCG.2012.317
10.1109/TSMCC.2012.2215319
10.1109/TPAMI.2011.81
10.1007/978-3-642-33709-3_23
10.1007/978-3-7091-6874-5_3
10.1007/978-0-85729-670-2
10.1109/CVPR.2010.5540143
10.1109/TIFS.2013.2272243
10.1109/AVSS.2013.6636607
10.1016/j.ijleo.2013.07.166
10.1109/VCIP.2011.6116003
10.1109/ICPR.2008.4761183
10.1155/2011/163682
10.1109/ICCV.2011.6126374
10.1109/ICCVW.2011.6130235
10.1088/1742-5468/2006/10/P10014
10.1109/CVPR.2011.5995459
10.1109/TPAMI.2012.123
10.1103/PhysRevE.51.4282
10.1109/CVPR.2010.5540148
10.1109/ICCV.2009.5459301
10.1007/s00138-013-0491-3
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCSVT.2014.2358029
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 386
ExternalDocumentID 10_1109_TCSVT_2014_2358029
6898845
Genre orig-research
GrantInformation_xml – fundername: Open Project Program, National Laboratory of Pattern Recognition
  grantid: 201306282
– fundername: Human Sixth Sense Programme, Advanced Digital Sciences Center, through the Agency for Science, Technology and Research, Singapore
– fundername: Anhui Provincial Natural Science Foundation of China
  grantid: 1408085QF118
– fundername: National 973 Program of China
  grantid: 2014CB347600
– fundername: National Natural Science Foundation of China
  grantid: 61300056; 61272393; 61322201
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c267t-cd8f15ec0abe92e969bf811939e9b54d22c1041febdd081e818e91f4fcd0994e3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Tue Jul 01 00:41:07 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Tue Aug 26 16:40:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Crowded scene analysis
survey
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-cd8f15ec0abe92e969bf811939e9b54d22c1041febdd081e818e91f4fcd0994e3
PageCount 20
ParticipantIDs ieee_primary_6898845
crossref_citationtrail_10_1109_TCSVT_2014_2358029
crossref_primary_10_1109_TCSVT_2014_2358029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-March
2015-3-00
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-March
PublicationDecade 2010
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref59
ref58
ref53
ali (ref29) 2008
ref55
ref50
ali (ref51) 2008
ref46
ref45
jacques (ref9) 2010; 27
ref48
ref47
ref44
ref43
(ref106) 0
ref7
mehran (ref13) 2010
ref4
ref3
ref6
ref5
ref100
brambilla (ref42) 1977
ref101
ref35
ref37
ref36
ref31
ref30
ref33
ref38
zhou (ref70) 2012
krizhevsky (ref111) 2012
yang (ref88) 2012
ref24
ref23
brox (ref56) 2004
ref26
ref25
ref20
ref22
ref21
zhao (ref34) 2011
zhou (ref8) 2012
ref28
musse (ref39) 1997
(ref103) 0
sjarif (ref32) 2011; 3
tomasi (ref74) 1991
li (ref87) 2014; 36
ref12
andrade (ref40) 2005; 3
ref15
ref14
ref97
ref96
ref99
ref11
ref98
ref10
ref16
ref19
ref18
allain (ref49) 2009
chetverikov (ref90) 2005
ref93
ref92
ref95
ref91
ref89
ref86
ref85
hu (ref54) 2008
(ref105) 0
ref82
ref81
ref84
still (ref41) 2000
wu (ref67) 2012; 42
ref83
ref80
berggren (ref27) 2005
ref79
ref108
ref78
ref109
ref75
ref77
ref102
ref76
ref2
ref1
(ref107) 0
(ref104) 0
alvarez (ref17) 2012
ref112
ref73
ref72
ref110
ref68
ref69
ref64
ref63
ref66
ref65
song (ref71) 2011
leggett (ref52) 2004
ref60
liu (ref94) 2009
ref62
ref61
References_xml – ident: ref59
  doi: 10.1109/TPAMI.2011.173
– ident: ref63
  doi: 10.1007/978-3-642-38989-4_10
– ident: ref102
  doi: 10.1109/TCSVT.2013.2248239
– start-page: 376
  year: 2012
  ident: ref17
  article-title: Road scene segmentation from a single image
  publication-title: Proc 12th Eur Conf Comput Vis
– volume: 3
  start-page: 1
  year: 2011
  ident: ref32
  article-title: Detection of abnormal behaviors in crowd scenes: A review
  publication-title: Int J Adv Soft Comput Appl
– start-page: 1
  year: 2008
  ident: ref51
  article-title: Floor fields for tracking in high density crowd scenes
  publication-title: Proc Eur Conf Comput Vis
– ident: ref79
  doi: 10.1109/CVPR.2007.383072
– ident: ref50
  doi: 10.1007/978-3-642-97651-3
– ident: ref16
  doi: 10.1007/978-3-642-22170-5_59
– year: 0
  ident: ref103
  publication-title: UMN Crowd Dataset
– ident: ref89
  doi: 10.1109/ICWAPR.2012.6294781
– volume: 3
  start-page: 71
  year: 2005
  ident: ref40
  article-title: Simulation of crowd problems for computer vision
  publication-title: Proc 1st Int Workshop Crowd Simulation
– year: 0
  ident: ref106
  publication-title: Pets2009 Dataset
– ident: ref2
  doi: 10.1109/ICPR.2008.4761655
– start-page: 857
  year: 2012
  ident: ref70
  article-title: Coherent filtering: Detecting coherent motions from crowd clutters
  publication-title: Proc 12th Eur Conf Comput Vis
– ident: ref66
  doi: 10.1109/ICIP.2013.6738584
– start-page: 1097
  year: 2012
  ident: ref111
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems 25
– ident: ref108
  doi: 10.1109/TCSVT.2012.2226526
– ident: ref36
  doi: 10.1109/CVPR.2013.328
– ident: ref85
  doi: 10.1109/JSEN.2013.2245889
– ident: ref4
  doi: 10.1109/ICCV.2009.5459376
– ident: ref80
  doi: 10.1109/CVPR.2010.5539872
– ident: ref60
  doi: 10.1109/CVPR.2009.5206771
– start-page: 715
  year: 2011
  ident: ref34
  article-title: Robust unsupervised motion pattern inference from video and applications
  publication-title: Proc IEEE Int Conf Comput Vis
– ident: ref72
  doi: 10.1109/ICME.2012.133
– year: 2008
  ident: ref29
  article-title: Taming crowded visual scenes
– ident: ref11
  doi: 10.1109/CVPR.2010.5539882
– ident: ref100
  doi: 10.1109/TSMCC.2011.2178594
– ident: ref23
  doi: 10.1142/S0219525908001854
– start-page: 25
  year: 2004
  ident: ref56
  article-title: High accuracy optical flow estimation based on a theory for warping
  publication-title: Proc Eur Conf Comput Vis
– start-page: 17
  year: 2005
  ident: ref90
  article-title: A brief survey of dynamic texture description and recognition
  publication-title: Proc Comput Recognit Syst
  doi: 10.1007/3-540-32390-2_2
– ident: ref73
  doi: 10.1145/322033.322044
– ident: ref61
  doi: 10.1016/j.patcog.2012.11.021
– ident: ref83
  doi: 10.1109/TCYB.2013.2242059
– ident: ref6
  doi: 10.1109/TSMCC.2004.829274
– ident: ref93
  doi: 10.1007/s12555-011-0511-x
– ident: ref112
  doi: 10.1109/ICCV.2013.22
– year: 0
  ident: ref105
  publication-title: QMUL Crowd Dataset
– ident: ref25
  doi: 10.1016/0925-7535(96)81011-3
– ident: ref46
  doi: 10.1007/978-3-642-25446-8_15
– ident: ref57
  doi: 10.1016/j.physd.2005.10.007
– ident: ref3
  doi: 10.1109/CVPR.2010.5539884
– start-page: 439
  year: 2010
  ident: ref13
  article-title: A streakline representation of flow in crowded scenes
  publication-title: Proc Eur Conf Comput Vis
– start-page: 2871
  year: 2012
  ident: ref8
  article-title: Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-agents
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref69
  doi: 10.1109/JSTSP.2008.2001306
– ident: ref62
  doi: 10.1109/ICIP.2012.6467182
– start-page: 1
  year: 2012
  ident: ref88
  article-title: Abnormal crowd behavior detection based on local pressure model
  publication-title: Proc Asia-Pacific Signal Inf Process Assoc Annu Summit Conf
– ident: ref20
  doi: 10.1109/TIFS.2013.2277773
– ident: ref44
  doi: 10.1145/1141911.1142008
– year: 2000
  ident: ref41
  article-title: Crowd dynamics
– ident: ref43
  doi: 10.1016/S0191-2615(01)00015-7
– ident: ref58
  doi: 10.1145/566570.566646
– ident: ref35
  doi: 10.5244/C.26.21
– ident: ref68
  doi: 10.1109/FSKD.2012.6234226
– year: 1991
  ident: ref74
  article-title: Detection and tracking of point features
– ident: ref91
  doi: 10.1145/2072508.2072515
– volume: 27
  start-page: 66
  year: 2010
  ident: ref9
  article-title: Crowd analysis using computer vision techniques
  publication-title: IEEE Signal Process Mag
– volume: 42
  start-page: 1443
  year: 2012
  ident: ref67
  article-title: Crowd motion partitioning in a scattered motion field
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2012.2192267
– ident: ref1
  doi: 10.1007/s11263-011-0510-7
– ident: ref82
  doi: 10.1016/j.cviu.2013.06.007
– ident: ref95
  doi: 10.1109/ISCCSP.2012.6217836
– ident: ref81
  doi: 10.1007/s00138-011-0341-0
– ident: ref76
  doi: 10.1109/ICDE.2002.994784
– ident: ref5
  doi: 10.1109/TPAMI.2006.176
– volume: 36
  start-page: 18
  year: 2014
  ident: ref87
  article-title: Anomaly detection and localization in crowded scenes
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.111
– ident: ref15
  doi: 10.1007/s00138-008-0132-4
– ident: ref109
  doi: 10.1145/2438653.2438670
– year: 2009
  ident: ref94
  article-title: Beyond pixels: Exploring new representations and applications for motion analysis
– year: 0
  ident: ref104
  publication-title: UCSD Anomaly Detection Dataset
– ident: ref22
  doi: 10.1109/CVPR.2009.5206641
– ident: ref99
  doi: 10.1109/ROBIO.2011.6181342
– year: 2005
  ident: ref27
  article-title: Simulating crowd behaviour in computer games
– ident: ref86
  doi: 10.1109/TCSVT.2013.2276151
– ident: ref12
  doi: 10.1109/CVPR.2007.382977
– ident: ref101
  doi: 10.1109/TPAMI.2013.137
– ident: ref65
  doi: 10.1109/CC.2013.6506940
– ident: ref98
  doi: 10.1109/ICINFA.2011.5949043
– ident: ref10
  doi: 10.1109/TCSVT.2008.927109
– ident: ref75
  doi: 10.1109/TPAMI.2006.184
– start-page: 1
  year: 2011
  ident: ref71
  article-title: Understanding dynamic scenes by hierarchical motion pattern mining
  publication-title: Proc IEEE Int Conf Multimedia Expo
– ident: ref92
  doi: 10.1109/TPAMI.2007.70738
– ident: ref24
  doi: 10.1016/j.cviu.2011.08.006
– ident: ref96
  doi: 10.1109/CVPR.2007.383267
– start-page: 1
  year: 2008
  ident: ref54
  article-title: Detecting global motion patterns in complex videos
  publication-title: Proc 19th Int Conf Pattern Recognit
– ident: ref33
  doi: 10.1007/978-3-642-41512-8_2
– ident: ref28
  doi: 10.1109/TVCG.2012.317
– ident: ref48
  doi: 10.1109/TSMCC.2012.2215319
– year: 2004
  ident: ref52
  article-title: Real-time crowd simulation: A review
– ident: ref30
  doi: 10.1109/TPAMI.2011.81
– ident: ref77
  doi: 10.1007/978-3-642-33709-3_23
– start-page: 39
  year: 1997
  ident: ref39
  article-title: A model of human crowd behavior: Group inter-relationship and collision detection analysis
  publication-title: Proc Computer Animation and Simulation 96
  doi: 10.1007/978-3-7091-6874-5_3
– ident: ref31
  doi: 10.1007/978-0-85729-670-2
– ident: ref110
  doi: 10.1109/CVPR.2010.5540143
– ident: ref84
  doi: 10.1109/TIFS.2013.2272243
– ident: ref19
  doi: 10.1109/AVSS.2013.6636607
– ident: ref18
  doi: 10.1109/CVPR.2007.383072
– ident: ref55
  doi: 10.1016/j.ijleo.2013.07.166
– ident: ref47
  doi: 10.1109/VCIP.2011.6116003
– start-page: 279
  year: 2009
  ident: ref49
  article-title: Crowd flow characterization with optimal control theory
  publication-title: Proc Asian Conf Comput Vis
– ident: ref53
  doi: 10.1109/ICPR.2008.4761183
– ident: ref21
  doi: 10.1155/2011/163682
– ident: ref78
  doi: 10.1109/ICCV.2011.6126374
– ident: ref97
  doi: 10.1109/ICCVW.2011.6130235
– ident: ref26
  doi: 10.1088/1742-5468/2006/10/P10014
– year: 1977
  ident: ref42
  publication-title: For Pedestrians Only Planning Design and Management of Traffic-Free Zones
– ident: ref7
  doi: 10.1109/CVPR.2011.5995459
– ident: ref14
  doi: 10.1109/TPAMI.2012.123
– ident: ref45
  doi: 10.1103/PhysRevE.51.4282
– ident: ref64
  doi: 10.1109/CVPR.2010.5540148
– year: 0
  ident: ref107
  publication-title: Violence-Flows Dataset
– ident: ref38
  doi: 10.1109/ICCV.2009.5459301
– ident: ref37
  doi: 10.1007/s00138-013-0491-3
SSID ssj0014847
Score 2.617954
SecondaryResourceType review_article
Snippet Automated scene analysis has been a topic of great interest in computer vision and cognitive science. Recently, with the growth of crowd phenomena in the real...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 367
SubjectTerms Analytical models
Dynamics
Feature extraction
Histograms
Image analysis
Tracking
Visualization
Title Crowded Scene Analysis: A Survey
URI https://ieeexplore.ieee.org/document/6898845
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA7bnvTB2xTnjT74pu3SNmkT38ZwDEFftsneSi6nL8omoxX015ukF4eI-FJKSSB8hJzvNN_5DkLXUZJjBonwTXDFPonNQ1ABPiaacZpiScEJZJ-S6YI8LOmyg27bWhgAcOIzCOyru8vXa1XaX2XDhHHGCO2irkncqlqt9saAMNdMzNCF0GcmjjUFMpgP5-PZ89yquEhgC0Oxo5PfQWirq4oLKpN99Ngsp9KSvARlIQP1-cOp8b_rPUB7Nbv0RtV2OEQdWB2h3S3PwT7yxibx1qC9mTLHnNeYktx5I29Wbt7h4xgtJvfz8dSv2yT4KkrSwlea5SEFhYUEHgFPuMxZaIgZBy4p0VGkTM4V5iC1NgQATIgGHuYkV9rQQwLxCeqt1is4RR4WDEsW51jR1DqnSZ4KEVNlTgEtkiQaoLDBLVO1h7htZfGauVwC88xhnVmssxrrAbpp57xVDhp_ju5bHNuRNYRnv38-RztmMq00YReoV2xKuDQkoZBXbnd8AcmVtaU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPKgHf6ERf-7gTQfdaEfrjRAJKnABDLdlbd8uGjBkM9G_3q4bkxhjvCzL0i3Nl6bf99b3vgdw7Qcx4RhEriFX4tKWuUQsQpdQzQVrE8nQJsiOgv6UPs7YrAK3ZS0MItrkM2xkt_YsXy9Umv0qawZccE7ZBmwa3mdeXq1VnhlQbtuJGcHgudww2apEhojmpDt-nmR5XLSRlYYSKyi_aWitr4qlld4eDFcTyrNJXhppIhvq84dX439nvA-7hb50OvmCOIAKzg9hZ811sAZO14TeGrUzVmajc1a2JHdOxxmny3f8OIJp737S7btFowRX-UE7cZXmscdQkUii8FEEQsbcM9JMoJCMat9XJuryYpRaGwmAhqRReDGNlTYCkWLrGKrzxRxPwCERJ5K3YqJYO_NOk6IdRS2mzD6goyDw6-CtcAtV4SKeNbN4DW00QURosQ4zrMMC6zrclO-85R4af46uZTiWIwsIT39_fAVb_clwEA4eRk9nsG0-xPIMsXOoJssUL4xkSOSlXSlfd3m47g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crowded+Scene+Analysis%3A+A+Survey&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Teng+Li&rft.au=Huan+Chang&rft.au=Meng+Wang&rft.au=Bingbing+Ni&rft.date=2015-03-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=25&rft.issue=3&rft.spage=367&rft.epage=386&rft_id=info:doi/10.1109%2FTCSVT.2014.2358029&rft.externalDocID=6898845
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon