Dual Response to Light and Heat of a Metal–Organic Rotaxane Network Featuring Flexible Viologen‐Derived Structs
Metal–organic rotaxane compounds (MORCs) with supramolecular (pseudo)rotaxane motifs as main structures have inherent dynamic character, but their potential as responsive molecular machines is largely hampered by poor responsiveness to external stimuli. In this study, using a multi‐functionalized ps...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 38 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal–organic rotaxane compounds (MORCs) with supramolecular (pseudo)rotaxane motifs as main structures have inherent dynamic character, but their potential as responsive molecular machines is largely hampered by poor responsiveness to external stimuli. In this study, using a multi‐functionalized pseudorotaxane linker that combines two kinds of functionalities, a novel MORC,
U‐bpybc‐CB8
(U refers to uranyl, bpybc refers to 1, 1’‐bis(4‐carboxybenzyl)‐4, 4’‐bipyridinium, and CB8 is cucurbit[8]uril), with multi‐responsive capability that can respond to both light and thermal stimuli, is reported. The characterization, combining spectra measurements and single‐crystal X‐ray diffraction, shows that, due to the involvement of viologen‐functionalized flexible organic dicarboxylate guest molecule in the CB8‐ involved pseudorotaxane ligand, the resultant uranyl‐based MORC exhibits photochromic behavior after UV or visible light irradiation. More interestingly, it is revealed that the exceptional thermal response of
U‐bpybc‐CB8
as temperature increases from 170 to 270 K, i.e., volume expansion followed by contraction after the inflection temperature of ≈230 K, can be stemmed from the lattice flexibility of this metal–organic supramolecular network. The dual responsiveness of MORCs reported here demonstrates the potential of such supramolecular assemblies as smart molecular components like sensors and switches that respond to light irradiation or temperature changes. |
---|---|
AbstractList | Metal–organic rotaxane compounds (MORCs) with supramolecular (pseudo)rotaxane motifs as main structures have inherent dynamic character, but their potential as responsive molecular machines is largely hampered by poor responsiveness to external stimuli. In this study, using a multi‐functionalized pseudorotaxane linker that combines two kinds of functionalities, a novel MORC,
U‐bpybc‐CB8
(U refers to uranyl, bpybc refers to 1, 1’‐bis(4‐carboxybenzyl)‐4, 4’‐bipyridinium, and CB8 is cucurbit[8]uril), with multi‐responsive capability that can respond to both light and thermal stimuli, is reported. The characterization, combining spectra measurements and single‐crystal X‐ray diffraction, shows that, due to the involvement of viologen‐functionalized flexible organic dicarboxylate guest molecule in the CB8‐ involved pseudorotaxane ligand, the resultant uranyl‐based MORC exhibits photochromic behavior after UV or visible light irradiation. More interestingly, it is revealed that the exceptional thermal response of
U‐bpybc‐CB8
as temperature increases from 170 to 270 K, i.e., volume expansion followed by contraction after the inflection temperature of ≈230 K, can be stemmed from the lattice flexibility of this metal–organic supramolecular network. The dual responsiveness of MORCs reported here demonstrates the potential of such supramolecular assemblies as smart molecular components like sensors and switches that respond to light irradiation or temperature changes. Metal–organic rotaxane compounds (MORCs) with supramolecular (pseudo)rotaxane motifs as main structures have inherent dynamic character, but their potential as responsive molecular machines is largely hampered by poor responsiveness to external stimuli. In this study, using a multi‐functionalized pseudorotaxane linker that combines two kinds of functionalities, a novel MORC, U‐bpybc‐CB8 (U refers to uranyl, bpybc refers to 1, 1’‐bis(4‐carboxybenzyl)‐4, 4’‐bipyridinium, and CB8 is cucurbit[8]uril), with multi‐responsive capability that can respond to both light and thermal stimuli, is reported. The characterization, combining spectra measurements and single‐crystal X‐ray diffraction, shows that, due to the involvement of viologen‐functionalized flexible organic dicarboxylate guest molecule in the CB8‐ involved pseudorotaxane ligand, the resultant uranyl‐based MORC exhibits photochromic behavior after UV or visible light irradiation. More interestingly, it is revealed that the exceptional thermal response of U‐bpybc‐CB8 as temperature increases from 170 to 270 K, i.e., volume expansion followed by contraction after the inflection temperature of ≈230 K, can be stemmed from the lattice flexibility of this metal–organic supramolecular network. The dual responsiveness of MORCs reported here demonstrates the potential of such supramolecular assemblies as smart molecular components like sensors and switches that respond to light irradiation or temperature changes. |
Author | Shi, Wei‐qun Hu, Kong‐qiu Mei, Lei Zhang, Zhi‐hui Meng, Liao Liang, Yuan‐yuan Yuan, Li‐yong Jin, Qiu‐yan Chai, Zhi‐fang Jin, Wei |
Author_xml | – sequence: 1 givenname: Qiu‐yan surname: Jin fullname: Jin, Qiu‐yan organization: Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China, University of Chinese Academy of Sciences Beijing 100049 China – sequence: 2 givenname: Liao surname: Meng fullname: Meng, Liao organization: Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China – sequence: 3 givenname: Zhi‐hui surname: Zhang fullname: Zhang, Zhi‐hui organization: Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China – sequence: 4 givenname: Yuan‐yuan surname: Liang fullname: Liang, Yuan‐yuan organization: Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China, University of Chinese Academy of Sciences Beijing 100049 China – sequence: 5 givenname: Wei surname: Jin fullname: Jin, Wei organization: Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China – sequence: 6 givenname: Kong‐qiu surname: Hu fullname: Hu, Kong‐qiu organization: Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China – sequence: 7 givenname: Li‐yong surname: Yuan fullname: Yuan, Li‐yong organization: Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China – sequence: 8 givenname: Zhi‐fang surname: Chai fullname: Chai, Zhi‐fang organization: Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China – sequence: 9 givenname: Lei orcidid: 0000-0002-2926-7265 surname: Mei fullname: Mei, Lei organization: Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China – sequence: 10 givenname: Wei‐qun surname: Shi fullname: Shi, Wei‐qun organization: Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China |
BookMark | eNp1kE1LAzEQQIMo-Hn1HPDcOsnuZtejVGuFquAX3pbZzWyNrklNslpv_QmC_9BfYkXpQfA0c3hvBt4mW7XOEmO7AvoCQO6jbp76EmQCSZbACtsQSqheArJYXe7ibp1thvAAIPI8STdYOOqw5ZcUps4G4tHxsZncR45W8xFh5K7hyM8oYvs5_7jwE7Sm5pcu4gwt8XOKr84_8uEC7byxEz5saWaqlvitca2bkP2cvx-RNy-k-VX0XR3DNltrsA208zu32M3w-How6o0vTk4Hh-NeLVUee1WCOiWVgYK6kah1JXROSqWVBMw1UI5pkVRUFJWkmqBSlGegZZWlKGSWJVts7-fu1LvnjkIsH1zn7eJlKQulpIK8OFhQ6Q9VexeCp6asTcRonI0eTVsKKL_zlt95y2Xehdb_o029eUL_9p_wBV9ogfQ |
CitedBy_id | crossref_primary_10_1021_acs_cgd_4c00068 crossref_primary_10_1002_ange_202414826 crossref_primary_10_1016_j_dyepig_2023_111677 crossref_primary_10_1002_anie_202414826 crossref_primary_10_1021_acs_cgd_3c01497 crossref_primary_10_1002_chem_202500350 |
Cites_doi | 10.1002/anie.201702979 10.1038/ncomms11580 10.1002/anie.200504313 10.1021/acs.chemrev.9b00291 10.1038/nchem.1354 10.1039/C7SC04200K 10.1039/D2CS00167E 10.1021/cr5005869 10.1002/anie.201702992 10.1002/anie.201703216 10.1039/D0QM00605J 10.1021/acs.orglett.9b03597 10.1021/ol025869w 10.1021/ja502238a 10.1073/pnas.1514485112 10.1016/j.chempr.2020.06.016 10.1021/ic100887c 10.1002/asia.201402004 10.1039/C9CC07121K 10.1021/ic1000792 10.1039/b819333a 10.1021/jacs.7b10998 10.1107/S0021889812043026 10.1021/cm504350q 10.1039/c1cc11550b 10.1021/acs.chemrev.5b00146 10.1002/chem.202100614 10.1039/D2CS00785A 10.1038/nchem.2258 10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X 10.1038/s41570-022-00412-7 10.1039/C5CC07216F 10.1021/jacs.9b04930 10.1038/nnano.2006.45 10.1039/B202082C 10.1039/D0CC03197F 10.1002/anie.201707290 10.1002/chem.201702752 10.1021/jacs.5b04674 10.1016/j.chempr.2020.11.009 10.1021/ja304406c 10.1038/s41467-022-29738-y 10.1038/s41467-019-09504-3 10.1039/D0FD00004C 10.1038/nchem.649 10.1002/anie.201914931 10.1002/anie.202003808 10.1038/ncomms13321 10.1021/acs.inorgchem.9b01203 10.1039/D0SC06837C 10.1021/jacs.6b00787 10.1021/acs.accounts.8b00317 10.1021/ja106362w 10.1016/j.cclet.2022.03.092 10.1039/D2DT01283A 10.1039/C4SC03749A |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202303530 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
ExternalDocumentID | 10_1002_adfm_202303530 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c267t-b3ad4e65060cf2addb1d7e664b20a7d0e7a483be88b2ece0b6e750d2b54a12553 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 08:14:38 EDT 2025 Tue Jul 01 00:30:44 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c267t-b3ad4e65060cf2addb1d7e664b20a7d0e7a483be88b2ece0b6e750d2b54a12553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2926-7265 |
PQID | 2866260789 |
PQPubID | 2045204 |
ParticipantIDs | proquest_journals_2866260789 crossref_citationtrail_10_1002_adfm_202303530 crossref_primary_10_1002_adfm_202303530 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_1_5 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_1_7 e_1_2_8_5_3 e_1_2_8_7_1 e_1_2_8_1_6 e_1_2_8_3_4 e_1_2_8_5_2 e_1_2_8_1_9 e_1_2_8_7_3 e_1_2_8_9_1 e_1_2_8_1_8 e_1_2_8_5_4 e_1_2_8_7_2 e_1_2_8_1_10 e_1_2_8_1_1 e_1_2_8_11_3 e_1_2_8_13_1 e_1_2_8_11_4 e_1_2_8_13_2 e_1_2_8_11_5 e_1_2_8_13_3 e_1_2_8_15_1 e_1_2_8_11_6 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_4_4 e_1_2_8_6_2 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_4_6 e_1_2_8_4_5 e_1_2_8_8_1 e_1_2_8_16_2 e_1_2_8_16_3 e_1_2_8_16_4 e_1_2_8_12_2 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_14_3 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_12_1 |
References_xml | – ident: e_1_2_8_1_6 doi: 10.1002/anie.201702979 – ident: e_1_2_8_4_5 doi: 10.1038/ncomms11580 – ident: e_1_2_8_1_3 doi: 10.1002/anie.200504313 – ident: e_1_2_8_1_9 doi: 10.1021/acs.chemrev.9b00291 – ident: e_1_2_8_3_1 doi: 10.1038/nchem.1354 – ident: e_1_2_8_6_2 doi: 10.1039/C7SC04200K – ident: e_1_2_8_2_2 doi: 10.1039/D2CS00167E – ident: e_1_2_8_1_5 doi: 10.1021/cr5005869 – ident: e_1_2_8_1_7 doi: 10.1002/anie.201702992 – ident: e_1_2_8_1_8 doi: 10.1002/anie.201703216 – ident: e_1_2_8_7_1 doi: 10.1039/D0QM00605J – ident: e_1_2_8_4_2 doi: 10.1021/acs.orglett.9b03597 – ident: e_1_2_8_13_2 doi: 10.1021/ol025869w – ident: e_1_2_8_3_4 doi: 10.1021/ja502238a – ident: e_1_2_8_8_1 doi: 10.1073/pnas.1514485112 – ident: e_1_2_8_2_1 doi: 10.1016/j.chempr.2020.06.016 – ident: e_1_2_8_14_2 doi: 10.1021/ic100887c – ident: e_1_2_8_11_6 doi: 10.1002/asia.201402004 – ident: e_1_2_8_7_2 doi: 10.1039/C9CC07121K – ident: e_1_2_8_14_1 doi: 10.1021/ic1000792 – ident: e_1_2_8_6_1 doi: 10.1039/b819333a – ident: e_1_2_8_5_2 doi: 10.1021/jacs.7b10998 – ident: e_1_2_8_15_1 doi: 10.1107/S0021889812043026 – ident: e_1_2_8_11_1 doi: 10.1021/cm504350q – ident: e_1_2_8_12_1 doi: 10.1039/c1cc11550b – ident: e_1_2_8_1_4 doi: 10.1021/acs.chemrev.5b00146 – ident: e_1_2_8_9_1 doi: 10.1002/chem.202100614 – ident: e_1_2_8_1_10 doi: 10.1039/D2CS00785A – ident: e_1_2_8_3_2 doi: 10.1038/nchem.2258 – ident: e_1_2_8_1_1 doi: 10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X – ident: e_1_2_8_5_1 doi: 10.1038/s41570-022-00412-7 – ident: e_1_2_8_4_6 doi: 10.1039/C5CC07216F – ident: e_1_2_8_7_3 doi: 10.1021/jacs.9b04930 – ident: e_1_2_8_1_2 doi: 10.1038/nnano.2006.45 – ident: e_1_2_8_13_1 doi: 10.1039/B202082C – ident: e_1_2_8_11_4 doi: 10.1039/D0CC03197F – ident: e_1_2_8_12_2 doi: 10.1002/anie.201707290 – ident: e_1_2_8_11_2 doi: 10.1021/jacs.9b04930 – ident: e_1_2_8_14_3 doi: 10.1002/chem.201702752 – ident: e_1_2_8_3_3 doi: 10.1021/jacs.5b04674 – ident: e_1_2_8_9_2 doi: 10.1016/j.chempr.2020.11.009 – ident: e_1_2_8_9_3 doi: 10.1021/ja304406c – ident: e_1_2_8_5_4 doi: 10.1038/s41467-022-29738-y – ident: e_1_2_8_4_4 doi: 10.1038/s41467-019-09504-3 – ident: e_1_2_8_10_2 doi: 10.1039/D0FD00004C – ident: e_1_2_8_16_4 doi: 10.1038/nchem.649 – ident: e_1_2_8_16_2 doi: 10.1002/anie.201914931 – ident: e_1_2_8_16_1 doi: 10.1002/anie.202003808 – ident: e_1_2_8_5_3 doi: 10.1038/ncomms13321 – ident: e_1_2_8_4_3 doi: 10.1021/acs.inorgchem.9b01203 – ident: e_1_2_8_10_1 doi: 10.1039/D0SC06837C – ident: e_1_2_8_16_3 doi: 10.1021/jacs.6b00787 – ident: e_1_2_8_11_3 doi: 10.1021/acs.accounts.8b00317 – ident: e_1_2_8_13_3 doi: 10.1021/ja106362w – ident: e_1_2_8_2_3 doi: 10.1016/j.cclet.2022.03.092 – ident: e_1_2_8_4_1 doi: 10.1039/D2DT01283A – ident: e_1_2_8_11_5 doi: 10.1039/C4SC03749A |
SSID | ssj0017734 |
Score | 2.4793952 |
Snippet | Metal–organic rotaxane compounds (MORCs) with supramolecular (pseudo)rotaxane motifs as main structures have inherent dynamic character, but their potential as... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Light irradiation Materials science Molecular machines Rotaxanes Stimuli Switches Thermal response |
Title | Dual Response to Light and Heat of a Metal–Organic Rotaxane Network Featuring Flexible Viologen‐Derived Structs |
URI | https://www.proquest.com/docview/2866260789 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbp7qU9LH3SbbdFh0IPwa0tP3MMzYZQki20ScnNSLJMDUtciL10e9qfUOiP6P_aX9IZPRyHPtj2YoIthK35MpoZzXxDyAteMnDRYuEFnMfgoEjhZbyQXpH4ClxcCXsixiEXZ8lsFb1dx-vB4Ecva6ltxCv59bd1Jf8jVbgHcsUq2X-QbDcp3IDfIF-4goTheiMZTww1vs5y1S0w5uhq6_OAGXr-uvZxocC-djkNoam9lMP3dcO_8A0mOOo88CHagqZkcYocmVhQ9VGXsoBecgkRE_ioC22hIunstm_Yjl0uAW6UNr4IxrBZhS66WrXdXJdYN1XtEoIqXusU210ku-rGfmqroY5sdzqq5bu3umyx9XDlHtsQBgu7HK2bKsqegk4CzNXTbXZg_-rfs0XmVqsbeg2LXkMg88tuYdhneVEiJQH4YmFsz4j2aLnP3uXT1XyeL0_Xy1vkkIE_Agr1cDxZzD90B1ZpahIY3Os5flCfvd6ff9_-2d_-tU2zvEuOrDNCxwZZ98hAbe6TOz2KygdkixijDmO0qanGGAWMUcQYrUvKqcbY9dV3iy7q0EUtumiHLurQRR26rq--WVxRi6uHZDU9Xb6ZebZRhydZkjaeCHkRqQS5KmXJYMcUQZGqJIkE83la-CrlURYKlWWCKal8kSgwVAsm4oiDgR2Hj8jBpt6ox4QKFZUlWJ3FKGaRLAKRYkOCYgSWcsxFHBwTzy1fLi2LPTZTOc8N_zbLcbnzbrmPyctu_GfD3_LHkSdOGrn9j29zliXo8afZ6MnfHz8lt3fIPiEHsF7qGZirjXhuofITIZCYtw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Response+to+Light+and+Heat+of+a+Metal%E2%80%93Organic+Rotaxane+Network+Featuring+Flexible+Viologen%E2%80%90Derived+Structs&rft.jtitle=Advanced+functional+materials&rft.au=Qiu%E2%80%90yan+Jin&rft.au=Liao+Meng&rft.au=Zhi%E2%80%90hui+Zhang&rft.au=Yuan%E2%80%90yuan+Liang&rft.date=2023-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=38&rft_id=info:doi/10.1002%2Fadfm.202303530&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |