An Electrically Tunable Dual‐Mode Laser Based on Self‐Assembled Soft Photonic Liquid Crystals
Soft photonic liquid crystals with electrically responsive properties are among the most promising intelligent materials for optoelectronic applications. This work demonstrates an ultra‐fast electrically tunable dual‐mode laser by introducing dye‐doped chiral liquid crystals. Due to the strong chira...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 17 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202311510 |
Cover
Abstract | Soft photonic liquid crystals with electrically responsive properties are among the most promising intelligent materials for optoelectronic applications. This work demonstrates an ultra‐fast electrically tunable dual‐mode laser by introducing dye‐doped chiral liquid crystals. Due to the strong chirality of the chiral liquid crystal, two self‐assembled structures form depending on the temperatures. One is the chiral nematic phase (N*) with a 1D helical structure; the other is the blue phases (BPs) with 3D cubic structures. By tuning the strength of an electric field, the dye‐doped chiral liquid crystals are operated in two different modes: a band‐edge laser and a random laser. In the band‐edge mode, due to the electrostriction effect of the BPs, the electric‐tuning range of the laser emission is from 537 to 645 nm, and the switching times are less than 20 ms. When the electric field goes beyond a threshold value to force the occurrence of the BPs‐chiral‐nematic transition, the band‐edge laser with elliptical polarization emission is switched to a random laser with an immediate unpolarization emission (0.9 ms). Furthermore, the reversibility of the effects mentioned above points out the potential applications of self‐assembled soft photonic materials, spanning from solid‐state lighting to bio‐imaging. |
---|---|
AbstractList | Soft photonic liquid crystals with electrically responsive properties are among the most promising intelligent materials for optoelectronic applications. This work demonstrates an ultra‐fast electrically tunable dual‐mode laser by introducing dye‐doped chiral liquid crystals. Due to the strong chirality of the chiral liquid crystal, two self‐assembled structures form depending on the temperatures. One is the chiral nematic phase (N*) with a 1D helical structure; the other is the blue phases (BPs) with 3D cubic structures. By tuning the strength of an electric field, the dye‐doped chiral liquid crystals are operated in two different modes: a band‐edge laser and a random laser. In the band‐edge mode, due to the electrostriction effect of the BPs, the electric‐tuning range of the laser emission is from 537 to 645 nm, and the switching times are less than 20 ms. When the electric field goes beyond a threshold value to force the occurrence of the BPs‐chiral‐nematic transition, the band‐edge laser with elliptical polarization emission is switched to a random laser with an immediate unpolarization emission (0.9 ms). Furthermore, the reversibility of the effects mentioned above points out the potential applications of self‐assembled soft photonic materials, spanning from solid‐state lighting to bio‐imaging. Soft photonic liquid crystals with electrically responsive properties are among the most promising intelligent materials for optoelectronic applications. This work demonstrates an ultra‐fast electrically tunable dual‐mode laser by introducing dye‐doped chiral liquid crystals. Due to the strong chirality of the chiral liquid crystal, two self‐assembled structures form depending on the temperatures. One is the chiral nematic phase (N*) with a 1D helical structure; the other is the blue phases (BPs) with 3D cubic structures. By tuning the strength of an electric field, the dye‐doped chiral liquid crystals are operated in two different modes: a band‐edge laser and a random laser. In the band‐edge mode, due to the electrostriction effect of the BPs, the electric‐tuning range of the laser emission is from 537 to 645 nm, and the switching times are less than 20 ms. When the electric field goes beyond a threshold value to force the occurrence of the BPs‐chiral‐nematic transition, the band‐edge laser with elliptical polarization emission is switched to a random laser with an immediate unpolarization emission (0.9 ms). Furthermore, the reversibility of the effects mentioned above points out the potential applications of self‐assembled soft photonic materials, spanning from solid‐state lighting to bio‐imaging. |
Author | Tsao, Yu‐Chuan Chen, Hui‐Yu Chen, Yang‐Fang |
Author_xml | – sequence: 1 givenname: Yu‐Chuan orcidid: 0000-0002-9013-7152 surname: Tsao fullname: Tsao, Yu‐Chuan organization: Department of Physics National Taiwan University Taipei 106 Taiwan – sequence: 2 givenname: Hui‐Yu orcidid: 0000-0002-9662-2976 surname: Chen fullname: Chen, Hui‐Yu organization: Department of Physics National Chung Hsing University Taichung City 402 Taiwan – sequence: 3 givenname: Yang‐Fang surname: Chen fullname: Chen, Yang‐Fang organization: Department of Physics National Taiwan University Taipei 106 Taiwan |
BookMark | eNp1kM9KAzEQxoNUsFavngOeW5NNdjc51lr_wIpCK3hbskkWU9KkTbKH3nwEn9EncUulB8HLfAPz_WaG7xwMnHcagCuMJhih7Eaodj3JUEYwzjE6AUNc4GJMUMYGxx6_n4HzGFcI4bIkdAjE1MG51TIFI4W1O7jsnGishnedsN-fX89eaViJqAO87auC3sGFtm0_msao171VwYVvE3z98Mk7I2Fltp1RcBZ2MQkbL8Bp24u-_NUReLufL2eP4-rl4Wk2rcYyK8o0FpopKQhlhWCowQTxnMlMkJw3XKmW0BzT_v9WMp7RHJWSt5TnhDHFZUObhozA9WHvJvhtp2OqV74Lrj9ZE0QpJxRR0rvowSWDjzHotpYmiWS8S0EYW2NU78Os92HWxzB7bPIH2wSzFmH3H_ADVAV57g |
CitedBy_id | crossref_primary_10_1002_adom_202402581 crossref_primary_10_1016_j_cej_2024_159050 crossref_primary_10_1016_j_optlastec_2024_112124 crossref_primary_10_1016_j_mssp_2024_108922 crossref_primary_10_1002_adma_202416448 crossref_primary_10_1063_5_0221524 crossref_primary_10_1002_adom_202403124 crossref_primary_10_1021_acsanm_4c00504 crossref_primary_10_1364_OE_543168 |
Cites_doi | 10.1515/nanoph-2021-0096 10.1002/adma.202108330 10.1080/02678292.2019.1710868 10.1063/1.2335812 10.1364/OE.21.015765 10.1039/C9TC01350D 10.1021/acsami.9b14202 10.1103/PhysRevLett.82.2278 10.1051/jp2:1996219 10.1002/adma.201204591 10.1039/C4TC00128A 10.1038/s41563-019-0512-3 10.1021/acsami.1c16655 10.1073/pnas.1612212113 10.1002/adom.202001427 10.1364/OSAC.2.003337 10.1039/c2sm25197c 10.1038/s41467-021-21564-y 10.1209/0295-5075/81/66004 10.1002/adom.201800409 10.1080/02678298908026386 10.1038/nmat712 10.1002/admt.201700170 10.1021/nl070541n 10.1039/C9TC04380B 10.1002/adfm.201702261 10.1038/35018184 10.1038/ncomms7012 10.1039/C9RA07460K 10.1038/s41598-018-21228-w 10.1038/nature03932 10.1038/s41467-017-00822-y 10.1039/C5TC90096D 10.1080/02678292.2015.1061148 10.1063/1.5085282 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202311510 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
ExternalDocumentID | 10_1002_adfm_202311510 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c267t-ae8dca3486a80b130958c2a359b9ddf34514301fc8924507c9f495388d9cb4bb3 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 08:46:15 EDT 2025 Tue Jul 01 00:30:54 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c267t-ae8dca3486a80b130958c2a359b9ddf34514301fc8924507c9f495388d9cb4bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9013-7152 0000-0002-9662-2976 |
PQID | 3044934043 |
PQPubID | 2045204 |
ParticipantIDs | proquest_journals_3044934043 crossref_citationtrail_10_1002_adfm_202311510 crossref_primary_10_1002_adfm_202311510 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Liu Y. (e_1_2_8_12_1) 2013; 102 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 Chen H.‐Y. (e_1_2_8_29_1) 2011; 99 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Xiang J. (e_1_2_8_10_1) 2013; 103 e_1_2_8_32_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – ident: e_1_2_8_33_1 doi: 10.1515/nanoph-2021-0096 – ident: e_1_2_8_36_1 doi: 10.1002/adma.202108330 – ident: e_1_2_8_22_1 doi: 10.1080/02678292.2019.1710868 – ident: e_1_2_8_38_1 doi: 10.1063/1.2335812 – ident: e_1_2_8_8_1 doi: 10.1364/OE.21.015765 – ident: e_1_2_8_21_1 doi: 10.1039/C9TC01350D – volume: 102 start-page: 13 year: 2013 ident: e_1_2_8_12_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_8_13_1 doi: 10.1021/acsami.9b14202 – ident: e_1_2_8_23_1 doi: 10.1103/PhysRevLett.82.2278 – ident: e_1_2_8_27_1 doi: 10.1051/jp2:1996219 – ident: e_1_2_8_3_1 doi: 10.1002/adma.201204591 – ident: e_1_2_8_1_1 doi: 10.1039/C4TC00128A – ident: e_1_2_8_5_1 doi: 10.1038/s41563-019-0512-3 – ident: e_1_2_8_7_1 doi: 10.1021/acsami.1c16655 – ident: e_1_2_8_2_1 doi: 10.1073/pnas.1612212113 – ident: e_1_2_8_6_1 doi: 10.1002/adom.202001427 – ident: e_1_2_8_35_1 doi: 10.1364/OSAC.2.003337 – ident: e_1_2_8_20_1 doi: 10.1039/c2sm25197c – ident: e_1_2_8_17_1 doi: 10.1038/s41467-021-21564-y – ident: e_1_2_8_31_1 doi: 10.1209/0295-5075/81/66004 – ident: e_1_2_8_9_1 doi: 10.1002/adom.201800409 – ident: e_1_2_8_30_1 doi: 10.1080/02678298908026386 – ident: e_1_2_8_11_1 doi: 10.1038/nmat712 – ident: e_1_2_8_25_1 doi: 10.1002/admt.201700170 – volume: 99 start-page: 18 year: 2011 ident: e_1_2_8_29_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_8_37_1 doi: 10.1021/nl070541n – ident: e_1_2_8_14_1 doi: 10.1039/C9TC04380B – ident: e_1_2_8_19_1 doi: 10.1002/adfm.201702261 – ident: e_1_2_8_24_1 doi: 10.1038/35018184 – ident: e_1_2_8_15_1 doi: 10.1038/ncomms7012 – ident: e_1_2_8_32_1 doi: 10.1039/C9RA07460K – ident: e_1_2_8_26_1 doi: 10.1038/s41598-018-21228-w – ident: e_1_2_8_4_1 doi: 10.1038/nature03932 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-017-00822-y – ident: e_1_2_8_34_1 doi: 10.1039/C5TC90096D – volume: 103 start-page: 5 year: 2013 ident: e_1_2_8_10_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_8_28_1 doi: 10.1080/02678292.2015.1061148 – ident: e_1_2_8_16_1 doi: 10.1063/1.5085282 |
SSID | ssj0017734 |
Score | 2.5028968 |
Snippet | Soft photonic liquid crystals with electrically responsive properties are among the most promising intelligent materials for optoelectronic applications. This... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Chirality Crystals Dyes Electric field strength Electric fields Electrostriction Elliptical polarization Emission Laser applications Lasers Liquid crystals Optoelectronics Photonic crystals Self-assembly Smart materials Tunable lasers Tuning |
Title | An Electrically Tunable Dual‐Mode Laser Based on Self‐Assembled Soft Photonic Liquid Crystals |
URI | https://www.proquest.com/docview/3044934043 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoFDxVO0FOQDEocosHnaOS5LqxUqCKGt1D1FtpOoK6VZ2E0O5YTEH-A38kuYsR03Wy1S4WJFfiS7ni8z48k8CHlVBkqiH66fFRHzYyaBDwpe4RUfxzGrAm0a-PgpnZ3FH86T89Ho58BrqWvlG_V9Z1zJ_1AV-oCuGCX7D5R1N4UOuAb6QgsUhvZWNJ403rEuY4M7XV95885EQr3vRO28GLDamXcKwmrtvYO28DSHqCs3Ab_7XsIydOGsWu_zxarVZXFOl9-6ZeFN11egQdaboRo76T0HUCxaayKovuY_O2PARmg77KJzj5pedNdonNrAkFm3dBMW3c3RBRq0--ETYQWttVOEQ_cWw1rTAL3sdIEckDzDPhsebvmxNW5a3LGdfN7kjRVFhckEQswYZJ1jtxJq3xB0zv3QpGoOc1yfu_V3yN2QMfOt_4vLQRYwZlwT-p_fZ_4ch2-3n7-t2WwLdq2tzB-QfXvMoBODmYdkVDaPyP1B8snHREwaOkQPteihiJ7fP34hbqjGDdW4oauGIm5gyCGGImJojxhqEEN7xDwhZyfH8-nMtwU3fBWmrPVFyQslopingo8laDdZwlUooiSTWVFUUYza9TioFIdTOxwkVFahezLnRaZkLGX0lOw1q6Z8RqiK4LXHKGUBJ_Yk5UKpWMSKpzJNRMnkAfH7zcqVzUaPRVHqfDdxDshrN_-rycPy15lH_d7n9l3d5BHwnSzCTFKHt77Rc3LvGsdHZK9dd-UL0EBb-VIj5A87IIBr |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Electrically+Tunable+Dual%E2%80%90Mode+Laser+Based+on+Self%E2%80%90Assembled+Soft+Photonic+Liquid+Crystals&rft.jtitle=Advanced+functional+materials&rft.au=Tsao%2C+Yu%E2%80%90Chuan&rft.au=Chen%2C+Hui%E2%80%90Yu&rft.au=Chen%2C+Yang%E2%80%90Fang&rft.date=2024-04-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=17&rft_id=info:doi/10.1002%2Fadfm.202311510&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202311510 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |