An Electrically Tunable Dual‐Mode Laser Based on Self‐Assembled Soft Photonic Liquid Crystals

Soft photonic liquid crystals with electrically responsive properties are among the most promising intelligent materials for optoelectronic applications. This work demonstrates an ultra‐fast electrically tunable dual‐mode laser by introducing dye‐doped chiral liquid crystals. Due to the strong chira...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 17
Main Authors Tsao, Yu‐Chuan, Chen, Hui‐Yu, Chen, Yang‐Fang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202311510

Cover

Abstract Soft photonic liquid crystals with electrically responsive properties are among the most promising intelligent materials for optoelectronic applications. This work demonstrates an ultra‐fast electrically tunable dual‐mode laser by introducing dye‐doped chiral liquid crystals. Due to the strong chirality of the chiral liquid crystal, two self‐assembled structures form depending on the temperatures. One is the chiral nematic phase (N*) with a 1D helical structure; the other is the blue phases (BPs) with 3D cubic structures. By tuning the strength of an electric field, the dye‐doped chiral liquid crystals are operated in two different modes: a band‐edge laser and a random laser. In the band‐edge mode, due to the electrostriction effect of the BPs, the electric‐tuning range of the laser emission is from 537 to 645 nm, and the switching times are less than 20 ms. When the electric field goes beyond a threshold value to force the occurrence of the BPs‐chiral‐nematic transition, the band‐edge laser with elliptical polarization emission is switched to a random laser with an immediate unpolarization emission (0.9 ms). Furthermore, the reversibility of the effects mentioned above points out the potential applications of self‐assembled soft photonic materials, spanning from solid‐state lighting to bio‐imaging.
AbstractList Soft photonic liquid crystals with electrically responsive properties are among the most promising intelligent materials for optoelectronic applications. This work demonstrates an ultra‐fast electrically tunable dual‐mode laser by introducing dye‐doped chiral liquid crystals. Due to the strong chirality of the chiral liquid crystal, two self‐assembled structures form depending on the temperatures. One is the chiral nematic phase (N*) with a 1D helical structure; the other is the blue phases (BPs) with 3D cubic structures. By tuning the strength of an electric field, the dye‐doped chiral liquid crystals are operated in two different modes: a band‐edge laser and a random laser. In the band‐edge mode, due to the electrostriction effect of the BPs, the electric‐tuning range of the laser emission is from 537 to 645 nm, and the switching times are less than 20 ms. When the electric field goes beyond a threshold value to force the occurrence of the BPs‐chiral‐nematic transition, the band‐edge laser with elliptical polarization emission is switched to a random laser with an immediate unpolarization emission (0.9 ms). Furthermore, the reversibility of the effects mentioned above points out the potential applications of self‐assembled soft photonic materials, spanning from solid‐state lighting to bio‐imaging.
Soft photonic liquid crystals with electrically responsive properties are among the most promising intelligent materials for optoelectronic applications. This work demonstrates an ultra‐fast electrically tunable dual‐mode laser by introducing dye‐doped chiral liquid crystals. Due to the strong chirality of the chiral liquid crystal, two self‐assembled structures form depending on the temperatures. One is the chiral nematic phase (N*) with a 1D helical structure; the other is the blue phases (BPs) with 3D cubic structures. By tuning the strength of an electric field, the dye‐doped chiral liquid crystals are operated in two different modes: a band‐edge laser and a random laser. In the band‐edge mode, due to the electrostriction effect of the BPs, the electric‐tuning range of the laser emission is from 537 to 645 nm, and the switching times are less than 20 ms. When the electric field goes beyond a threshold value to force the occurrence of the BPs‐chiral‐nematic transition, the band‐edge laser with elliptical polarization emission is switched to a random laser with an immediate unpolarization emission (0.9 ms). Furthermore, the reversibility of the effects mentioned above points out the potential applications of self‐assembled soft photonic materials, spanning from solid‐state lighting to bio‐imaging.
Author Tsao, Yu‐Chuan
Chen, Hui‐Yu
Chen, Yang‐Fang
Author_xml – sequence: 1
  givenname: Yu‐Chuan
  orcidid: 0000-0002-9013-7152
  surname: Tsao
  fullname: Tsao, Yu‐Chuan
  organization: Department of Physics National Taiwan University Taipei 106 Taiwan
– sequence: 2
  givenname: Hui‐Yu
  orcidid: 0000-0002-9662-2976
  surname: Chen
  fullname: Chen, Hui‐Yu
  organization: Department of Physics National Chung Hsing University Taichung City 402 Taiwan
– sequence: 3
  givenname: Yang‐Fang
  surname: Chen
  fullname: Chen, Yang‐Fang
  organization: Department of Physics National Taiwan University Taipei 106 Taiwan
BookMark eNp1kM9KAzEQxoNUsFavngOeW5NNdjc51lr_wIpCK3hbskkWU9KkTbKH3nwEn9EncUulB8HLfAPz_WaG7xwMnHcagCuMJhih7Eaodj3JUEYwzjE6AUNc4GJMUMYGxx6_n4HzGFcI4bIkdAjE1MG51TIFI4W1O7jsnGishnedsN-fX89eaViJqAO87auC3sGFtm0_msao171VwYVvE3z98Mk7I2Fltp1RcBZ2MQkbL8Bp24u-_NUReLufL2eP4-rl4Wk2rcYyK8o0FpopKQhlhWCowQTxnMlMkJw3XKmW0BzT_v9WMp7RHJWSt5TnhDHFZUObhozA9WHvJvhtp2OqV74Lrj9ZE0QpJxRR0rvowSWDjzHotpYmiWS8S0EYW2NU78Os92HWxzB7bPIH2wSzFmH3H_ADVAV57g
CitedBy_id crossref_primary_10_1002_adom_202402581
crossref_primary_10_1016_j_cej_2024_159050
crossref_primary_10_1016_j_optlastec_2024_112124
crossref_primary_10_1016_j_mssp_2024_108922
crossref_primary_10_1002_adma_202416448
crossref_primary_10_1063_5_0221524
crossref_primary_10_1002_adom_202403124
crossref_primary_10_1021_acsanm_4c00504
crossref_primary_10_1364_OE_543168
Cites_doi 10.1515/nanoph-2021-0096
10.1002/adma.202108330
10.1080/02678292.2019.1710868
10.1063/1.2335812
10.1364/OE.21.015765
10.1039/C9TC01350D
10.1021/acsami.9b14202
10.1103/PhysRevLett.82.2278
10.1051/jp2:1996219
10.1002/adma.201204591
10.1039/C4TC00128A
10.1038/s41563-019-0512-3
10.1021/acsami.1c16655
10.1073/pnas.1612212113
10.1002/adom.202001427
10.1364/OSAC.2.003337
10.1039/c2sm25197c
10.1038/s41467-021-21564-y
10.1209/0295-5075/81/66004
10.1002/adom.201800409
10.1080/02678298908026386
10.1038/nmat712
10.1002/admt.201700170
10.1021/nl070541n
10.1039/C9TC04380B
10.1002/adfm.201702261
10.1038/35018184
10.1038/ncomms7012
10.1039/C9RA07460K
10.1038/s41598-018-21228-w
10.1038/nature03932
10.1038/s41467-017-00822-y
10.1039/C5TC90096D
10.1080/02678292.2015.1061148
10.1063/1.5085282
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202311510
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202311510
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c267t-ae8dca3486a80b130958c2a359b9ddf34514301fc8924507c9f495388d9cb4bb3
ISSN 1616-301X
IngestDate Fri Jul 25 08:46:15 EDT 2025
Tue Jul 01 00:30:54 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-ae8dca3486a80b130958c2a359b9ddf34514301fc8924507c9f495388d9cb4bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9013-7152
0000-0002-9662-2976
PQID 3044934043
PQPubID 2045204
ParticipantIDs proquest_journals_3044934043
crossref_citationtrail_10_1002_adfm_202311510
crossref_primary_10_1002_adfm_202311510
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Liu Y. (e_1_2_8_12_1) 2013; 102
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
Chen H.‐Y. (e_1_2_8_29_1) 2011; 99
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Xiang J. (e_1_2_8_10_1) 2013; 103
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – ident: e_1_2_8_33_1
  doi: 10.1515/nanoph-2021-0096
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.202108330
– ident: e_1_2_8_22_1
  doi: 10.1080/02678292.2019.1710868
– ident: e_1_2_8_38_1
  doi: 10.1063/1.2335812
– ident: e_1_2_8_8_1
  doi: 10.1364/OE.21.015765
– ident: e_1_2_8_21_1
  doi: 10.1039/C9TC01350D
– volume: 102
  start-page: 13
  year: 2013
  ident: e_1_2_8_12_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_8_13_1
  doi: 10.1021/acsami.9b14202
– ident: e_1_2_8_23_1
  doi: 10.1103/PhysRevLett.82.2278
– ident: e_1_2_8_27_1
  doi: 10.1051/jp2:1996219
– ident: e_1_2_8_3_1
  doi: 10.1002/adma.201204591
– ident: e_1_2_8_1_1
  doi: 10.1039/C4TC00128A
– ident: e_1_2_8_5_1
  doi: 10.1038/s41563-019-0512-3
– ident: e_1_2_8_7_1
  doi: 10.1021/acsami.1c16655
– ident: e_1_2_8_2_1
  doi: 10.1073/pnas.1612212113
– ident: e_1_2_8_6_1
  doi: 10.1002/adom.202001427
– ident: e_1_2_8_35_1
  doi: 10.1364/OSAC.2.003337
– ident: e_1_2_8_20_1
  doi: 10.1039/c2sm25197c
– ident: e_1_2_8_17_1
  doi: 10.1038/s41467-021-21564-y
– ident: e_1_2_8_31_1
  doi: 10.1209/0295-5075/81/66004
– ident: e_1_2_8_9_1
  doi: 10.1002/adom.201800409
– ident: e_1_2_8_30_1
  doi: 10.1080/02678298908026386
– ident: e_1_2_8_11_1
  doi: 10.1038/nmat712
– ident: e_1_2_8_25_1
  doi: 10.1002/admt.201700170
– volume: 99
  start-page: 18
  year: 2011
  ident: e_1_2_8_29_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_8_37_1
  doi: 10.1021/nl070541n
– ident: e_1_2_8_14_1
  doi: 10.1039/C9TC04380B
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.201702261
– ident: e_1_2_8_24_1
  doi: 10.1038/35018184
– ident: e_1_2_8_15_1
  doi: 10.1038/ncomms7012
– ident: e_1_2_8_32_1
  doi: 10.1039/C9RA07460K
– ident: e_1_2_8_26_1
  doi: 10.1038/s41598-018-21228-w
– ident: e_1_2_8_4_1
  doi: 10.1038/nature03932
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-017-00822-y
– ident: e_1_2_8_34_1
  doi: 10.1039/C5TC90096D
– volume: 103
  start-page: 5
  year: 2013
  ident: e_1_2_8_10_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_8_28_1
  doi: 10.1080/02678292.2015.1061148
– ident: e_1_2_8_16_1
  doi: 10.1063/1.5085282
SSID ssj0017734
Score 2.5028968
Snippet Soft photonic liquid crystals with electrically responsive properties are among the most promising intelligent materials for optoelectronic applications. This...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Chirality
Crystals
Dyes
Electric field strength
Electric fields
Electrostriction
Elliptical polarization
Emission
Laser applications
Lasers
Liquid crystals
Optoelectronics
Photonic crystals
Self-assembly
Smart materials
Tunable lasers
Tuning
Title An Electrically Tunable Dual‐Mode Laser Based on Self‐Assembled Soft Photonic Liquid Crystals
URI https://www.proquest.com/docview/3044934043
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoFDxVO0FOQDEocosHnaOS5LqxUqCKGt1D1FtpOoK6VZ2E0O5YTEH-A38kuYsR03Wy1S4WJFfiS7ni8z48k8CHlVBkqiH66fFRHzYyaBDwpe4RUfxzGrAm0a-PgpnZ3FH86T89Ho58BrqWvlG_V9Z1zJ_1AV-oCuGCX7D5R1N4UOuAb6QgsUhvZWNJ403rEuY4M7XV95885EQr3vRO28GLDamXcKwmrtvYO28DSHqCs3Ab_7XsIydOGsWu_zxarVZXFOl9-6ZeFN11egQdaboRo76T0HUCxaayKovuY_O2PARmg77KJzj5pedNdonNrAkFm3dBMW3c3RBRq0--ETYQWttVOEQ_cWw1rTAL3sdIEckDzDPhsebvmxNW5a3LGdfN7kjRVFhckEQswYZJ1jtxJq3xB0zv3QpGoOc1yfu_V3yN2QMfOt_4vLQRYwZlwT-p_fZ_4ch2-3n7-t2WwLdq2tzB-QfXvMoBODmYdkVDaPyP1B8snHREwaOkQPteihiJ7fP34hbqjGDdW4oauGIm5gyCGGImJojxhqEEN7xDwhZyfH8-nMtwU3fBWmrPVFyQslopingo8laDdZwlUooiSTWVFUUYza9TioFIdTOxwkVFahezLnRaZkLGX0lOw1q6Z8RqiK4LXHKGUBJ_Yk5UKpWMSKpzJNRMnkAfH7zcqVzUaPRVHqfDdxDshrN_-rycPy15lH_d7n9l3d5BHwnSzCTFKHt77Rc3LvGsdHZK9dd-UL0EBb-VIj5A87IIBr
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Electrically+Tunable+Dual%E2%80%90Mode+Laser+Based+on+Self%E2%80%90Assembled+Soft+Photonic+Liquid+Crystals&rft.jtitle=Advanced+functional+materials&rft.au=Tsao%2C+Yu%E2%80%90Chuan&rft.au=Chen%2C+Hui%E2%80%90Yu&rft.au=Chen%2C+Yang%E2%80%90Fang&rft.date=2024-04-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=17&rft_id=info:doi/10.1002%2Fadfm.202311510&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202311510
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon