Organic Diamine‐Regulated Vanadium Oxides as Cathode Materials for High‐Performance Sodium Ion Batteries

Pre‐intercalating ions between VO layers is considered to be an effective strategy to modulate the interlayer spacing of 2D vanadium oxides. However, the rigid pre‐intercalated ions hardly keep stable during repeated charging/discharging process and their sizes limit the extent of interlayer spacin...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 43
Main Authors Han, Xu, Qiu, Tianyu, Li, Meiwei, Du, Jing, Tang, Wensi, Cheng, Sihang, Yao, Ruiqi, Li, Yingqi, Tan, Huaqiao, Wang, Yonghui, Li, Yangguang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 18.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pre‐intercalating ions between VO layers is considered to be an effective strategy to modulate the interlayer spacing of 2D vanadium oxides. However, the rigid pre‐intercalated ions hardly keep stable during repeated charging/discharging process and their sizes limit the extent of interlayer spacing expansion, which inevitably lead to poor rate capability and cycle stability. In this work, aliphatic diamines are adopted as pre‐intercalated guests to elastically modulate the interlayer spacing of VO layers by tuning the chain length of the organic diamine molecules. Benefiting from the strong interaction between the terminal doubly protonated amine and the polar negative oxygen bridge of the VO layers, the aliphatic diamine molecules can act as a structural stabilizer between the layers and boost fast Na ion diffusion (10 −8 to 10 −10  cm 2  s −1 ). The sodium ion battery based on the first synthesized 1,6‐hexanediamine pre‐intercalated vanadium oxide supported on nickel foam hybrid cathode achieves a large specific capacity of 597 mAh g −1 at 0.09 A g −1 , as well as superior rate performance and cycling stability. This work provides a strategy to elastically modulate 2D layered materials with tunable interlayer spacing for batteries based on large‐size‐ions.
AbstractList Pre‐intercalating ions between VO layers is considered to be an effective strategy to modulate the interlayer spacing of 2D vanadium oxides. However, the rigid pre‐intercalated ions hardly keep stable during repeated charging/discharging process and their sizes limit the extent of interlayer spacing expansion, which inevitably lead to poor rate capability and cycle stability. In this work, aliphatic diamines are adopted as pre‐intercalated guests to elastically modulate the interlayer spacing of VO layers by tuning the chain length of the organic diamine molecules. Benefiting from the strong interaction between the terminal doubly protonated amine and the polar negative oxygen bridge of the VO layers, the aliphatic diamine molecules can act as a structural stabilizer between the layers and boost fast Na ion diffusion (10−8 to 10−10 cm2 s−1). The sodium ion battery based on the first synthesized 1,6‐hexanediamine pre‐intercalated vanadium oxide supported on nickel foam hybrid cathode achieves a large specific capacity of 597 mAh g−1 at 0.09 A g−1, as well as superior rate performance and cycling stability. This work provides a strategy to elastically modulate 2D layered materials with tunable interlayer spacing for batteries based on large‐size‐ions.
Pre‐intercalating ions between VO layers is considered to be an effective strategy to modulate the interlayer spacing of 2D vanadium oxides. However, the rigid pre‐intercalated ions hardly keep stable during repeated charging/discharging process and their sizes limit the extent of interlayer spacing expansion, which inevitably lead to poor rate capability and cycle stability. In this work, aliphatic diamines are adopted as pre‐intercalated guests to elastically modulate the interlayer spacing of VO layers by tuning the chain length of the organic diamine molecules. Benefiting from the strong interaction between the terminal doubly protonated amine and the polar negative oxygen bridge of the VO layers, the aliphatic diamine molecules can act as a structural stabilizer between the layers and boost fast Na ion diffusion (10 −8 to 10 −10  cm 2  s −1 ). The sodium ion battery based on the first synthesized 1,6‐hexanediamine pre‐intercalated vanadium oxide supported on nickel foam hybrid cathode achieves a large specific capacity of 597 mAh g −1 at 0.09 A g −1 , as well as superior rate performance and cycling stability. This work provides a strategy to elastically modulate 2D layered materials with tunable interlayer spacing for batteries based on large‐size‐ions.
Author Yao, Ruiqi
Li, Yangguang
Qiu, Tianyu
Wang, Yonghui
Li, Yingqi
Cheng, Sihang
Du, Jing
Tan, Huaqiao
Tang, Wensi
Li, Meiwei
Han, Xu
Author_xml – sequence: 1
  givenname: Xu
  surname: Han
  fullname: Han, Xu
  organization: Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry Northeast Normal University Changchun Jilin 130024 China
– sequence: 2
  givenname: Tianyu
  surname: Qiu
  fullname: Qiu, Tianyu
  organization: Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry Northeast Normal University Changchun Jilin 130024 China
– sequence: 3
  givenname: Meiwei
  surname: Li
  fullname: Li, Meiwei
  organization: Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry Northeast Normal University Changchun Jilin 130024 China
– sequence: 4
  givenname: Jing
  surname: Du
  fullname: Du, Jing
  organization: Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry Northeast Normal University Changchun Jilin 130024 China, Hebei Key Laboratory of Organic Functional Molecules National Demonstration Center for Experimental Chemistry Education College of Chemistry and Materials Science Testing and Analysis Center Hebei Normal University Shijiazhuang 050000 China
– sequence: 5
  givenname: Wensi
  surname: Tang
  fullname: Tang, Wensi
  organization: Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry Northeast Normal University Changchun Jilin 130024 China
– sequence: 6
  givenname: Sihang
  surname: Cheng
  fullname: Cheng, Sihang
  organization: Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry Northeast Normal University Changchun Jilin 130024 China
– sequence: 7
  givenname: Ruiqi
  surname: Yao
  fullname: Yao, Ruiqi
  organization: Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry Northeast Normal University Changchun Jilin 130024 China
– sequence: 8
  givenname: Yingqi
  surname: Li
  fullname: Li, Yingqi
  organization: Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry Northeast Normal University Changchun Jilin 130024 China
– sequence: 9
  givenname: Huaqiao
  surname: Tan
  fullname: Tan, Huaqiao
  organization: Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry Northeast Normal University Changchun Jilin 130024 China
– sequence: 10
  givenname: Yonghui
  surname: Wang
  fullname: Wang, Yonghui
  organization: Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry Northeast Normal University Changchun Jilin 130024 China
– sequence: 11
  givenname: Yangguang
  orcidid: 0000-0002-9696-8192
  surname: Li
  fullname: Li, Yangguang
  organization: Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry Northeast Normal University Changchun Jilin 130024 China
BookMark eNp1kMtKAzEUhoNUsFa3rgOuW08unaRLrZcWKhVvuBtOZzJtSiepyQzozkfwGX0Sp1a6EFyd_8D3nQP_IWk57wwhJwx6DICfYV6UPQ5cgGDA90ibJSzpCuC6tcvs5YAcxrgEYEoJ2SaraZijsxm9tFhaZ74-Pu_NvF5hZXL6jA5zW5d0-mZzEylGOsRq4XNDbxsgWFxFWvhAR3a-aMw7E5qtRJcZ-uB_zLF39AKrDWziEdkvGsUc_84Oebq-ehyOupPpzXh4PulmPFFVFxUTudRmBjBI-kqANMUMEpADUEyLbJBJ1dc5DDCXiUY1k1pzVEqC6LO-mYkOOd3eXQf_WptYpUtfB9e8TLlWmnPQXDWU3FJZ8DEGU6SZrbCy3lUB7SplkG56TTe9prteG633R1sHW2J4_0_4BouvfZU
CitedBy_id crossref_primary_10_1002_anie_202412735
crossref_primary_10_1039_D3CS00929G
crossref_primary_10_1021_acsami_4c19917
crossref_primary_10_1016_j_est_2024_112145
crossref_primary_10_1016_j_jelechem_2025_119027
crossref_primary_10_1002_cey2_681
crossref_primary_10_1016_j_pnsc_2024_04_008
crossref_primary_10_1002_ange_202412735
crossref_primary_10_1016_j_est_2024_112593
crossref_primary_10_1016_j_est_2024_113162
crossref_primary_10_1002_adma_202408923
crossref_primary_10_1016_j_clay_2024_107296
crossref_primary_10_1016_j_jpowsour_2025_236218
Cites_doi 10.1038/s41467-019-12274-7
10.1016/j.ensm.2023.102792
10.1038/nmat3309
10.1021/nl034326s
10.1002/adma.201801984
10.1002/anie.201703772
10.1016/j.chempr.2020.02.001
10.1002/anie.201410376
10.1038/s41467-022-31768-5
10.1016/j.ensm.2022.11.018
10.1016/j.jpowsour.2006.04.138
10.1002/adfm.202009756
10.3389/fchem.2020.00353
10.1016/j.jpowsour.2021.230515
10.1021/ja406016j
10.1002/adma.202103736
10.1002/adma.201100904
10.1002/adma.202201779
10.1002/aenm.201900603
10.1002/aenm.201700797
10.1002/aenm.202100757
10.1063/1.1329672
10.1002/adma.201800561
10.1016/j.elecom.2003.09.016
10.1016/0584-8539(83)80040-3
10.1002/smll.202107102
10.1039/D1SC05715D
10.1002/adfm.201400561
10.1002/anie.201411917
10.1002/aenm.201903712
10.1021/acsnano.8b01914
10.1002/adma.202108682
10.1039/D1EE01158H
10.1016/j.ensm.2018.01.009
10.1021/cm9503846
10.1021/jacs.0c07992
10.1002/adfm.201909530
10.1038/s41467-022-28238-3
10.1002/adma.201707122
10.1093/nsr/nwab197
10.1002/sstr.202100132
10.1002/aenm.201801418
10.1038/451652a
10.1016/j.electacta.2009.11.096
10.1002/anie.202216089
10.1038/nmat2920
10.1038/ncomms2878
10.1002/adma.201905361
10.1002/adma.201703725
10.1007/s10904-007-9171-y
10.1002/adma.202105452
10.1016/j.nanoen.2017.10.022
10.1016/0167-2738(89)90374-3
10.1039/D0TA00555J
10.1039/C4EE03192J
10.1016/j.ensm.2022.02.042
10.1021/acsnano.7b02062
10.1103/PhysRevB.59.1758
10.1002/aenm.201200026
10.1002/adma.202102701
10.1016/j.ensm.2022.02.044
10.1016/S0022-4596(02)99633-7
10.1002/advs.202206907
10.1021/acsami.6b04151
10.1016/j.materresbull.2013.02.003
10.1002/adfm.201200691
10.1002/aenm.201800058
10.1038/ncomms15888
10.1103/PhysRevB.50.17953
10.1002/anie.201206854
10.1002/adfm.202211271
10.1038/ncomms3365
10.1103/PhysRevLett.77.3865
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202303102
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202303102
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c267t-a713d48eb009657304efb0604907183c9c4758d09ad468a7b4882a77403515eb3
ISSN 1616-301X
IngestDate Sun Jul 13 04:17:10 EDT 2025
Tue Jul 01 00:30:46 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-a713d48eb009657304efb0604907183c9c4758d09ad468a7b4882a77403515eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9696-8192
PQID 2878220827
PQPubID 2045204
ParticipantIDs proquest_journals_2878220827
crossref_citationtrail_10_1002_adfm_202303102
crossref_primary_10_1002_adfm_202303102
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-18
PublicationDateYYYYMMDD 2023-10-18
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-18
  day: 18
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – ident: e_1_2_8_12_1
  doi: 10.1038/s41467-019-12274-7
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ensm.2023.102792
– ident: e_1_2_8_22_1
  doi: 10.1038/nmat3309
– ident: e_1_2_8_40_1
  doi: 10.1021/nl034326s
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.201801984
– ident: e_1_2_8_8_1
  doi: 10.1002/anie.201703772
– ident: e_1_2_8_35_1
  doi: 10.1016/j.chempr.2020.02.001
– ident: e_1_2_8_20_1
  doi: 10.1002/anie.201410376
– ident: e_1_2_8_51_1
  doi: 10.1038/s41467-022-31768-5
– ident: e_1_2_8_11_1
  doi: 10.1016/j.ensm.2022.11.018
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jpowsour.2006.04.138
– ident: e_1_2_8_56_1
  doi: 10.1002/adfm.202009756
– ident: e_1_2_8_7_1
  doi: 10.3389/fchem.2020.00353
– ident: e_1_2_8_45_1
  doi: 10.1016/j.jpowsour.2021.230515
– ident: e_1_2_8_29_1
  doi: 10.1021/ja406016j
– ident: e_1_2_8_54_1
  doi: 10.1002/adma.202103736
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.201100904
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.202201779
– ident: e_1_2_8_47_1
  doi: 10.1002/aenm.201900603
– ident: e_1_2_8_46_1
  doi: 10.1002/aenm.201700797
– ident: e_1_2_8_48_1
  doi: 10.1002/aenm.202100757
– ident: e_1_2_8_73_1
  doi: 10.1063/1.1329672
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201800561
– ident: e_1_2_8_41_1
  doi: 10.1016/j.elecom.2003.09.016
– ident: e_1_2_8_43_1
  doi: 10.1016/0584-8539(83)80040-3
– ident: e_1_2_8_66_1
  doi: 10.1002/smll.202107102
– ident: e_1_2_8_10_1
  doi: 10.1039/D1SC05715D
– ident: e_1_2_8_31_1
  doi: 10.1002/adfm.201400561
– ident: e_1_2_8_30_1
  doi: 10.1002/anie.201411917
– ident: e_1_2_8_55_1
  doi: 10.1002/aenm.201903712
– ident: e_1_2_8_64_1
  doi: 10.1021/acsnano.8b01914
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.202108682
– ident: e_1_2_8_39_1
  doi: 10.1039/D1EE01158H
– ident: e_1_2_8_49_1
  doi: 10.1016/j.ensm.2018.01.009
– ident: e_1_2_8_69_1
  doi: 10.1021/cm9503846
– ident: e_1_2_8_65_1
  doi: 10.1021/jacs.0c07992
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.201909530
– ident: e_1_2_8_16_1
  doi: 10.1038/s41467-022-28238-3
– ident: e_1_2_8_53_1
  doi: 10.1002/adma.201707122
– ident: e_1_2_8_60_1
  doi: 10.1093/nsr/nwab197
– ident: e_1_2_8_9_1
  doi: 10.1002/sstr.202100132
– ident: e_1_2_8_52_1
  doi: 10.1002/aenm.201801418
– ident: e_1_2_8_1_1
  doi: 10.1038/451652a
– ident: e_1_2_8_62_1
  doi: 10.1016/j.electacta.2009.11.096
– ident: e_1_2_8_14_1
  doi: 10.1002/anie.202216089
– ident: e_1_2_8_25_1
  doi: 10.1038/nmat2920
– ident: e_1_2_8_21_1
  doi: 10.1038/ncomms2878
– ident: e_1_2_8_3_1
  doi: 10.1002/adma.201905361
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.201703725
– ident: e_1_2_8_38_1
  doi: 10.1007/s10904-007-9171-y
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.202105452
– ident: e_1_2_8_19_1
  doi: 10.1016/j.nanoen.2017.10.022
– ident: e_1_2_8_44_1
  doi: 10.1016/0167-2738(89)90374-3
– ident: e_1_2_8_61_1
  doi: 10.1039/D0TA00555J
– ident: e_1_2_8_6_1
  doi: 10.1039/C4EE03192J
– ident: e_1_2_8_50_1
  doi: 10.1016/j.ensm.2022.02.042
– ident: e_1_2_8_59_1
  doi: 10.1021/acsnano.7b02062
– ident: e_1_2_8_72_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_8_5_1
  doi: 10.1002/aenm.201200026
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.202102701
– ident: e_1_2_8_63_1
  doi: 10.1016/j.ensm.2022.02.044
– ident: e_1_2_8_68_1
  doi: 10.1016/S0022-4596(02)99633-7
– ident: e_1_2_8_32_1
  doi: 10.1002/advs.202206907
– ident: e_1_2_8_26_1
  doi: 10.1021/acsami.6b04151
– ident: e_1_2_8_67_1
  doi: 10.1016/j.materresbull.2013.02.003
– ident: e_1_2_8_4_1
  doi: 10.1002/adfm.201200691
– ident: e_1_2_8_58_1
  doi: 10.1002/aenm.201800058
– ident: e_1_2_8_57_1
  doi: 10.1038/ncomms15888
– ident: e_1_2_8_71_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_8_27_1
  doi: 10.1002/anie.201206854
– ident: e_1_2_8_17_1
  doi: 10.1002/adfm.202211271
– ident: e_1_2_8_23_1
  doi: 10.1038/ncomms3365
– ident: e_1_2_8_70_1
  doi: 10.1103/PhysRevLett.77.3865
SSID ssj0017734
Score 2.5384362
Snippet Pre‐intercalating ions between VO layers is considered to be an effective strategy to modulate the interlayer spacing of 2D vanadium oxides. However, the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Aliphatic compounds
Batteries
Cathodes
Diamines
Diffusion layers
Diffusion rate
Electrode materials
Interlayers
Ion diffusion
Layered materials
Materials science
Metal foams
Sodium
Sodium diffusion
Sodium-ion batteries
Stability
Vanadium oxides
Title Organic Diamine‐Regulated Vanadium Oxides as Cathode Materials for High‐Performance Sodium Ion Batteries
URI https://www.proquest.com/docview/2878220827
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELVCeoFDVQqIloJ8qMQBLex6vV_HqoAKagDRFuW2sr2OFKlJENmIqr30J_Q39pcw469saCsVLqvIWq82mZeZsf3mDSG7XGtADiuiOJWjiGciiQQEzkjLDIKLQgFzLHAefMkPTvjnYTbs9S661SWtfKvOb60r-R-rwhjYFatk_8Gy4aEwAJ_BvnAFC8P1Xja2hZQK_JaYoGCoJy58tw3mIZf8YThdi8mbr2fjRs-xqwzW_M0abDnU2nc0TEPke4T53zrVBEczM_8ToMRqcXrWoZeu9SQCjJBuY3HiH730b8a5DRdhn3W8sEgBXxQGDw2zYKDHv_V4mWAbnPkA6_YnmGG6rbjUPEF2nWmMAxGnO-bKwp0ftoIYDm9Wu-mGf7d6saIZoYgArJ4gOWXLSOZP7_8KcIF2aCWaWY3z6zD_AVljsMZgfbK2935weBQOoYrCkhL8F_CanzF7t_oGqznNakg3ecrxBll3Cwy6Z9HymPT0dJM86shOPiGnDjfU4eb68ioghnrEUIsYKubUIYYGxFBAB0XEwMwOVqjFCgWs0ICVp-Tk44fj_YPIdd2IFMuLNhJFkja8xJ5SVZ5BAOB6JFFiqYJstExVpTisMZu4Eg3PS1FICAFMwCoCz6QzLdNnpD-dTfVzQmPNqkYlUqOGUqVjmZZcpbLiolJJLMotEvnfrVZOkh47o5zWt1tqi7wO9_-0Yix33rnjzVC7P-y8ZiWmw5DzFtv3ftAL8nAJ6h3Sb38t9EtIQ1v5ysHlDxU-hik
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+Diamine%E2%80%90Regulated+Vanadium+Oxides+as+Cathode+Materials+for+High%E2%80%90Performance+Sodium+Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Han%2C+Xu&rft.au=Qiu%2C+Tianyu&rft.au=Li%2C+Meiwei&rft.au=Du%2C+Jing&rft.date=2023-10-18&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=43&rft_id=info:doi/10.1002%2Fadfm.202303102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202303102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon