Performance evaluation of a novel disk-type motor using ultrasonic levitation: Modeling and experimental validation
Experimental measurements and theoretical analyses of a novel non-contact ultrasonic motor driven by near-field acoustic levitation are presented, in which the proposed motor is comprised of a Langevin transducer, stator disk and rotor disk. In exciting of Langevin transducer, the air layer between...
Saved in:
Published in | Precision engineering Vol. 91; pp. 174 - 184 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Experimental measurements and theoretical analyses of a novel non-contact ultrasonic motor driven by near-field acoustic levitation are presented, in which the proposed motor is comprised of a Langevin transducer, stator disk and rotor disk. In exciting of Langevin transducer, the air layer between the stator disk and rotor disk is squeezed by high frequency vibration, forming acoustic levitation force and acoustic radiation torque which is caused by the introduction of artificial asymmetry. The experimental results show that the rotational speed increases with driving voltage and is sensitive to exciting frequency. To predict the running performance of the motor, a theoretical model with the consideration of motion of rotor disk is introduced, which is based on Navier-Stokes equations. The comparison of theoretical and experimental results shows that the developed theoretical mode is effective and the proposed motor are hopeful to be used in precision machinery.
[Display omitted]
•A novel disk-type motor using ultrasonic levitation is proposed.•A theoretical model based on Navier-Stokes equations is built to reveal the operating mechanism of the NCUM.•The harmonic analysis and streaming analysis are conducted by using the finite element analysis software.•Experimental investigations are conducted using a specially designed experimental device. |
---|---|
AbstractList | Experimental measurements and theoretical analyses of a novel non-contact ultrasonic motor driven by near-field acoustic levitation are presented, in which the proposed motor is comprised of a Langevin transducer, stator disk and rotor disk. In exciting of Langevin transducer, the air layer between the stator disk and rotor disk is squeezed by high frequency vibration, forming acoustic levitation force and acoustic radiation torque which is caused by the introduction of artificial asymmetry. The experimental results show that the rotational speed increases with driving voltage and is sensitive to exciting frequency. To predict the running performance of the motor, a theoretical model with the consideration of motion of rotor disk is introduced, which is based on Navier-Stokes equations. The comparison of theoretical and experimental results shows that the developed theoretical mode is effective and the proposed motor are hopeful to be used in precision machinery.
[Display omitted]
•A novel disk-type motor using ultrasonic levitation is proposed.•A theoretical model based on Navier-Stokes equations is built to reveal the operating mechanism of the NCUM.•The harmonic analysis and streaming analysis are conducted by using the finite element analysis software.•Experimental investigations are conducted using a specially designed experimental device. |
Author | Gao, Ming Shi, Minghui Zhang, Shaolin Miao, Xinming Chen, Shujie |
Author_xml | – sequence: 1 givenname: Minghui orcidid: 0000-0002-3057-2371 surname: Shi fullname: Shi, Minghui email: shimh@zzu.edu.cn – sequence: 2 givenname: Ming surname: Gao fullname: Gao, Ming – sequence: 3 givenname: Shujie surname: Chen fullname: Chen, Shujie – sequence: 4 givenname: Shaolin surname: Zhang fullname: Zhang, Shaolin – sequence: 5 givenname: Xinming surname: Miao fullname: Miao, Xinming |
BookMark | eNqNkM1OwzAQhH0oEm3hHSzuCXaSJnFvqPxKRXCAs7WxN5VLakd2GtG3x205cOSyK-3OjEbfjEyss0jIDWcpZ7y83aa9R2WCiWe7STOWFSkTKePFhEzj5EmZL8QlmYWwZYxVNSumJLyjb53fgVVIcYRuD0MMoK6lQK0bsaPahK9kOPRId25wnu6DsRu67wYPwVmjaIejGU62JX11GrvjH6ym-N2jNzu0A3Q0Zht9Ul2Rixa6gNe_e04-Hx8-Vs_J-u3pZXW3TlRWVkMCLBdNXZXIcuBNVjcZy5UQdS0qvViIVpcFw1q1JZRCt6KJag0ckIPiWYGQz8nynKu8C8FjK_vYBvxBciaPyORW_kUmj8gkEzLCiub7sxljw9Ggl0EZjJS0iZZBamf-E_MDufqEBg |
Cites_doi | 10.1016/j.precisioneng.2021.03.011 10.1109/58.971713 10.1063/5.0051372 10.1016/j.compstruc.2019.03.001 10.1016/j.ymssp.2022.109618 10.1016/j.ijmecsci.2017.09.051 10.1016/j.ijmecsci.2022.107358 10.1109/58.920696 10.1016/j.ymssp.2021.107897 10.1016/j.ijmecsci.2021.106442 10.1016/j.ijmecsci.2013.10.005 10.1016/S0041-624X(97)00025-5 10.1088/1361-665X/ab4d5d 10.1016/j.precisioneng.2005.03.003 10.1016/j.triboint.2020.106624 10.1016/j.sna.2010.10.017 10.1016/j.jsv.2015.05.020 10.1088/2631-7990/ab3e54 10.1016/j.ultras.2006.01.001 10.1007/s13538-017-0552-6 10.1016/j.triboint.2023.108217 10.1016/j.triboint.2020.106580 10.1016/j.triboint.2017.10.034 10.1143/JJAP.44.412 10.1002/admt.201900716 10.1016/j.precisioneng.2016.11.018 10.1016/j.precisioneng.2007.02.002 10.1016/j.ymssp.2012.05.006 10.1016/j.sna.2020.111971 10.1016/j.ultras.2021.106471 10.1016/j.ijmecsci.2019.01.041 10.1016/j.triboint.2021.107000 10.1016/j.triboint.2020.106489 10.1016/j.ultras.2015.09.014 10.1109/ACCESS.2017.2647972 10.1016/j.ijmecsci.2022.107984 10.1143/JJAP.48.09KD10 10.1016/j.ymssp.2019.106475 10.1016/j.ymssp.2022.109870 10.1016/S0041-624X(99)00052-9 10.1016/j.ijmecsci.2015.06.006 10.1016/j.sna.2016.12.016 10.1088/1361-665X/ab627a 10.1109/TUFFC.2017.2673244 10.1016/j.precisioneng.2020.04.009 10.1134/S1063771017010079 10.1016/j.triboint.2018.05.030 10.1016/j.ultras.2008.10.015 10.1121/1.417915 10.1016/j.ymssp.2016.08.011 10.1016/j.ultras.2012.02.004 10.1109/TUFFC.2006.1665083 10.1109/TIE.2020.2965481 10.1109/TUFFC.2022.3147603 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.precisioneng.2024.09.014 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 184 |
ExternalDocumentID | 10_1016_j_precisioneng_2024_09_014 S0141635924002149 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSH SSM SST SSZ T5K TN5 UHS WH7 WUQ XPP ZMT ~G- AAYWO AAYXX AFXIZ AGCQF AGQPQ AGRNS AIIUN APXCP CITATION |
ID | FETCH-LOGICAL-c267t-a039b876e03a1b28b203c998897d559fd640e8cf6a69df9b39bda1ae1ac124ea3 |
IEDL.DBID | .~1 |
ISSN | 0141-6359 |
IngestDate | Tue Jul 01 02:13:06 EDT 2025 Sun Apr 06 06:53:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-contact motor Acoustic levitation Thrust bearing Gas lubrication |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c267t-a039b876e03a1b28b203c998897d559fd640e8cf6a69df9b39bda1ae1ac124ea3 |
ORCID | 0000-0002-3057-2371 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_precisioneng_2024_09_014 elsevier_sciencedirect_doi_10_1016_j_precisioneng_2024_09_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | Precision engineering |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Shou, Yoshimoto, Stolarski (bib44) 2013; 77 Schwarz, Hahn, Petit-Pierre, Dual (bib60) 2015; 18 Hu, Li, Chan, Choy (bib54) 2001; 48 Iula, Pappalardo (bib21) 2006; 53 Andrade, Pérez, Adamowski (bib35) 2018; 48 Li, Liu, Zhang (bib37) 2017; 63 Shi, Chen, Huang, Qin, Liu (bib45) 2023 Liu, Zhao, Qiu (bib27) 2021; 160 Yang, Liu, Chen, Cai (bib55) 2006; 44 Stepanenko, Minchenya (bib59) 2012; 52 Liu, Sun, Sepahvand, Marburg (bib43) 2021; 200 Dabbagh, Sarhan, Akbari, Mardi (bib9) 2017; 48 Ryndzionek, Sienkiewicz (bib8) 2021; 116 Wang (bib19) 2012; 23 Hirose, Yamayoshi, Ono (bib52) 1993 Hashimoto, Koike, Ueha (bib31) 1996; 100 Aono, Aoyagi (bib34) 2022; 69 Li, Yang, Wang, Zhang, Wang (bib29) 2020; 152 Wang, Wang, Lin, Lu, Zhao (bib26) 2021; 160 Zhou, Li, Chen, Qing, Cui (bib2) 2021; 71 Shi, Feng, Hu, Zhu, Cui (bib33) 2019; 1 Qu, Zhou, Tian, Jin, Xu (bib14) 2009; 49 Satonobu, Friend, Nakamura, Ueha (bib20) 2001; 48 Pan, Huang, Zhao, Chen, Huang, Li (bib30) 2023; 183 Morrison (bib61) 2013 Thomas, Andrade, Adamowski, Silva (bib36) 2017; 64 Li, Yao, Li, Wu (bib23) 2020; 29 Isobe, Kyusojin (bib46) 2007; 31 Ueha, Hashimoto, Koike (bib32) 2000; 38 Shi, An, Feng, Guo, Liu (bib40) 2018; 126 Li, Wang, Li, Sun, Shen, Zeng (bib47) 2022; 225 Li, Yao, Mi, Lin, Liang, Wu (bib6) 2020; 64 Yamayoshi, Shiina, Tamura, Hirose (bib56) 2009; 48 Zhang, Fu, Hua, Quan, Qu (bib28) 2021; 153 Ilssar, Bucher, Flashner (bib50) 2017; 85 Tian, Liu, Deng, Wang, Chen (bib7) 2020; 306 Li, Li, Sang, Liu, Chen, Zhao (bib48) 2022; 120 Ilssar, Bucher (bib49) 2015; 354 Wu, Mizuno, Nakamura (bib17) 2019; 28 Wang, Guan, Liu, Deng, Liu (bib4) 2020; 68 Sashida (bib10) 1985 Li, Kan, Cheng, Chen, Ren (bib12) 2020; 141 Vandaele, Lambert, Delchambre (bib51) 2005; 29 Zhao (bib3) 2011 Park, Kim, Kim, Lee, Hong (bib13) 2005; 44 Ren, Yang, Ma, Li, Zhang (bib16) 2019; 216 Zhou, Zhang (bib22) 2016; 4 Gao, Yang, Wu, Xin, Li, Yuan, Shen, Dong (bib5) 2020; 5 Feng, Shi, Gong, Liu, Zhu (bib42) 2017; 134 Gabai, Ilssar, Shaham, Cohen, Bucher (bib57) 2017; 255 He, Yao, Dai, Zhang (bib1) 2019; 153 Wei, Shaham, Bucher (bib38) 2018; 119 Jin, Wan, Yang, Li, Zha (bib15) 2011; 165 Wang, Guo (bib39) 2021; 118 Zhao, Mojrzisch, Wallaschek (bib41) 2013; 36 Li, Yao, Wu (bib11) 2015; 100 Yang, Liu, Chen, Liu (bib18) 2016; 65 Shi, Liu, Feng, Zhang (bib58) 2021; 153 Li, Guo, Ding, Chen, Wang, Lv (bib25) 2023; 186 Jin, Zhang, Fu, Ji, Hua, Fu (bib24) 2023; 241 Hu, Nakamura, Ueha (bib53) 1997; 35 Park (10.1016/j.precisioneng.2024.09.014_bib13) 2005; 44 Stepanenko (10.1016/j.precisioneng.2024.09.014_bib59) 2012; 52 Ilssar (10.1016/j.precisioneng.2024.09.014_bib50) 2017; 85 Zhang (10.1016/j.precisioneng.2024.09.014_bib28) 2021; 153 Li (10.1016/j.precisioneng.2024.09.014_bib47) 2022; 225 Shi (10.1016/j.precisioneng.2024.09.014_bib33) 2019; 1 Zhou (10.1016/j.precisioneng.2024.09.014_bib2) 2021; 71 Ren (10.1016/j.precisioneng.2024.09.014_bib16) 2019; 216 Aono (10.1016/j.precisioneng.2024.09.014_bib34) 2022; 69 Shou (10.1016/j.precisioneng.2024.09.014_bib44) 2013; 77 Hirose (10.1016/j.precisioneng.2024.09.014_bib52) 1993 Zhou (10.1016/j.precisioneng.2024.09.014_bib22) 2016; 4 Feng (10.1016/j.precisioneng.2024.09.014_bib42) 2017; 134 Hu (10.1016/j.precisioneng.2024.09.014_bib54) 2001; 48 Dabbagh (10.1016/j.precisioneng.2024.09.014_bib9) 2017; 48 Wang (10.1016/j.precisioneng.2024.09.014_bib39) 2021; 118 Isobe (10.1016/j.precisioneng.2024.09.014_bib46) 2007; 31 Tian (10.1016/j.precisioneng.2024.09.014_bib7) 2020; 306 Li (10.1016/j.precisioneng.2024.09.014_bib29) 2020; 152 Schwarz (10.1016/j.precisioneng.2024.09.014_bib60) 2015; 18 Li (10.1016/j.precisioneng.2024.09.014_bib6) 2020; 64 Sashida (10.1016/j.precisioneng.2024.09.014_bib10) 1985 Shi (10.1016/j.precisioneng.2024.09.014_bib58) 2021; 153 Vandaele (10.1016/j.precisioneng.2024.09.014_bib51) 2005; 29 Wu (10.1016/j.precisioneng.2024.09.014_bib17) 2019; 28 Iula (10.1016/j.precisioneng.2024.09.014_bib21) 2006; 53 Gabai (10.1016/j.precisioneng.2024.09.014_bib57) 2017; 255 Thomas (10.1016/j.precisioneng.2024.09.014_bib36) 2017; 64 He (10.1016/j.precisioneng.2024.09.014_bib1) 2019; 153 Li (10.1016/j.precisioneng.2024.09.014_bib23) 2020; 29 Hashimoto (10.1016/j.precisioneng.2024.09.014_bib31) 1996; 100 Li (10.1016/j.precisioneng.2024.09.014_bib25) 2023; 186 Andrade (10.1016/j.precisioneng.2024.09.014_bib35) 2018; 48 Liu (10.1016/j.precisioneng.2024.09.014_bib43) 2021; 200 Yang (10.1016/j.precisioneng.2024.09.014_bib18) 2016; 65 Ueha (10.1016/j.precisioneng.2024.09.014_bib32) 2000; 38 Jin (10.1016/j.precisioneng.2024.09.014_bib24) 2023; 241 Jin (10.1016/j.precisioneng.2024.09.014_bib15) 2011; 165 Li (10.1016/j.precisioneng.2024.09.014_bib12) 2020; 141 Wang (10.1016/j.precisioneng.2024.09.014_bib4) 2020; 68 Zhao (10.1016/j.precisioneng.2024.09.014_bib3) 2011 Hu (10.1016/j.precisioneng.2024.09.014_bib53) 1997; 35 Morrison (10.1016/j.precisioneng.2024.09.014_bib61) 2013 Satonobu (10.1016/j.precisioneng.2024.09.014_bib20) 2001; 48 Wei (10.1016/j.precisioneng.2024.09.014_bib38) 2018; 119 Shi (10.1016/j.precisioneng.2024.09.014_bib45) 2023 Li (10.1016/j.precisioneng.2024.09.014_bib48) 2022; 120 Gao (10.1016/j.precisioneng.2024.09.014_bib5) 2020; 5 Qu (10.1016/j.precisioneng.2024.09.014_bib14) 2009; 49 Zhao (10.1016/j.precisioneng.2024.09.014_bib41) 2013; 36 Liu (10.1016/j.precisioneng.2024.09.014_bib27) 2021; 160 Li (10.1016/j.precisioneng.2024.09.014_bib11) 2015; 100 Shi (10.1016/j.precisioneng.2024.09.014_bib40) 2018; 126 Yamayoshi (10.1016/j.precisioneng.2024.09.014_bib56) 2009; 48 Pan (10.1016/j.precisioneng.2024.09.014_bib30) 2023; 183 Ilssar (10.1016/j.precisioneng.2024.09.014_bib49) 2015; 354 Yang (10.1016/j.precisioneng.2024.09.014_bib55) 2006; 44 Wang (10.1016/j.precisioneng.2024.09.014_bib26) 2021; 160 Li (10.1016/j.precisioneng.2024.09.014_bib37) 2017; 63 Ryndzionek (10.1016/j.precisioneng.2024.09.014_bib8) 2021; 116 Wang (10.1016/j.precisioneng.2024.09.014_bib19) 2012; 23 |
References_xml | – volume: 68 start-page: 734 year: 2020 end-page: 743 ident: bib4 article-title: A compact cantilever type ultrasonic motor with nanometer resolution: design and performance evaluation publication-title: IEEE Trans Ind Electron – volume: 100 start-page: 23 year: 2015 end-page: 31 ident: bib11 article-title: Modeling and sticking motion analysis of a vibro-impact system in linear ultrasonic motors publication-title: Int J Mech Sci – volume: 153 year: 2021 ident: bib58 article-title: Experimental and numerical investigation of a self-adapting non-contact ultrasonic motor publication-title: Tribol Int – volume: 126 start-page: 307 year: 2018 end-page: 316 ident: bib40 article-title: Numerical and experimental study on the influence of material characteristics on the levitation performance of squeeze-film air bearing publication-title: Tribol Int – volume: 29 start-page: 491 year: 2005 end-page: 505 ident: bib51 article-title: Non-contact handling in microassembly: acoustical levitation publication-title: Precis Eng – volume: 64 start-page: 177 year: 2020 end-page: 187 ident: bib6 article-title: Modeling, analysis and suppression of current harmonics of Langevin-type ultrasonic motors under high voltage publication-title: Precis Eng – volume: 64 start-page: 839 year: 2017 end-page: 846 ident: bib36 article-title: Development of an acoustic levitation linear transportation system based on a ring-type structure publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control – volume: 48 start-page: 699 year: 2001 end-page: 708 ident: bib54 article-title: A standing wave-type noncontact linear ultrasonic motor publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control – year: 1985 ident: bib10 article-title: Motor device utilizing ultrasonic oscillation – volume: 134 start-page: 41 year: 2017 end-page: 50 ident: bib42 article-title: A novel squeeze-film air bearing with flexure pivot-tilting pads: numerical analysis and measurement publication-title: Int J Mech Sci – volume: 44 start-page: 238 year: 2006 end-page: 243 ident: bib55 article-title: Theoretical and experimental research on a disk-type non-contact ultrasonic motor publication-title: Ultrasonics – volume: 216 start-page: 15 year: 2019 end-page: 25 ident: bib16 article-title: Output performance simulation and contact analysis of traveling wave rotary ultrasonic motor based on ADINA publication-title: Comput Struct – start-page: 453 year: 1993 end-page: 456 ident: bib52 article-title: A small noncontact ultrasonic motor publication-title: 1993 proceedings IEEE ultrasonics symposium – volume: 354 start-page: 154 year: 2015 end-page: 166 ident: bib49 article-title: On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies publication-title: J Sound Vib – volume: 53 start-page: 1344 year: 2006 end-page: 1351 ident: bib21 article-title: A high-power traveling wave ultrasonic motor publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control – volume: 1 year: 2019 ident: bib33 article-title: Near-field acoustic levitation and applications to bearings: a critical review publication-title: Int J Extrem Manuf – volume: 160 year: 2021 ident: bib26 article-title: Transfer matrix model and experimental validation for a radial-torsional ultrasonic motor publication-title: Mech Syst Signal Process – volume: 77 start-page: 184 year: 2013 end-page: 193 ident: bib44 article-title: Running performance of an aerodynamic journal bearing with squeeze film effect publication-title: Int J Mech Sci – volume: 100 start-page: 2057 year: 1996 end-page: 2061 ident: bib31 article-title: Near‐field acoustic levitation of planar specimens using flexural vibration publication-title: J Acoust Soc Am – volume: 35 start-page: 459 year: 1997 end-page: 467 ident: bib53 article-title: An analysis of a noncontact ultrasonic motor with an ultrasonically levitated rotor publication-title: Ultrasonics – volume: 255 start-page: 34 year: 2017 end-page: 45 ident: bib57 article-title: A rotational traveling wave based levitation device–Modelling, design, and control publication-title: Sensor Actuator Phys – volume: 4 start-page: 10158 year: 2016 end-page: 10165 ident: bib22 article-title: A new linear ultrasonic motor using hybrid longitudinal vibration mode publication-title: IEEE Access – volume: 48 year: 2009 ident: bib56 article-title: Noncontact ultrasonic motor with two flexural standing wave vibration disks publication-title: Jpn J Appl Phys – volume: 141 year: 2020 ident: bib12 article-title: Performance evaluation of a bimodal standing-wave ultrasonic motor considering nonlinear electroelasticity: modeling and experimental validation publication-title: Mech Syst Signal Process – volume: 23 start-page: 1036 year: 2012 ident: bib19 article-title: A high torque ultrasonic motor structured by double-stators and double-rotors publication-title: China Mech Eng – volume: 160 year: 2021 ident: bib27 article-title: Improving the performance of ultrasonic motors in low-pressure, variable-temperature environments publication-title: Tribol Int – year: 2013 ident: bib61 article-title: An introduction to fluid mechanics – volume: 5 year: 2020 ident: bib5 article-title: Piezoelectric actuators and motors: materials, designs, and applications publication-title: Adv Mater Technol – volume: 65 start-page: 277 year: 2016 end-page: 281 ident: bib18 article-title: A cylindrical traveling wave ultrasonic motor using bonded-type composite beam publication-title: Ultrasonics – volume: 48 start-page: 190 year: 2018 end-page: 213 ident: bib35 article-title: Review of progress in acoustic levitation publication-title: Braz J Phys – volume: 120 year: 2022 ident: bib48 article-title: Study on near-field acoustic levitation characteristics in a pressurized environment publication-title: Appl Phys Lett – volume: 71 start-page: 200 year: 2021 end-page: 208 ident: bib2 article-title: A flexible shaft based travelling wave ultrasonic motor with high-precision positioning characteristics publication-title: Precis Eng – volume: 225 year: 2022 ident: bib47 article-title: The levitation and driving performance of a contact-free manipulation device actuated by ultrasonic energy publication-title: Int J Mech Sci – volume: 49 start-page: 338 year: 2009 end-page: 343 ident: bib14 article-title: Characteristics of ring type traveling wave ultrasonic motor in vacuum publication-title: Ultrasonics – volume: 48 start-page: 1625 year: 2001 end-page: 1631 ident: bib20 article-title: Numerical analysis of the symmetric hybrid transducer ultrasonic motor publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control – volume: 31 start-page: 351 year: 2007 end-page: 357 ident: bib46 article-title: Frequency characteristics of non-contact ultrasonic motor with motion error correction publication-title: Precis Eng – volume: 48 start-page: 172 year: 2017 end-page: 180 ident: bib9 article-title: Design and experimental evaluation of a precise and compact tubular ultrasonic motor driven by a single-phase source publication-title: Precis Eng – volume: 44 start-page: 412 year: 2005 ident: bib13 article-title: Ultrasonic linear motor using L1–B4 mode and its analysis publication-title: Jpn J Appl Phys – volume: 28 year: 2019 ident: bib17 article-title: A traveling-wave ultrasonic motor utilizing a ring-shaped alumina/PZT vibrator publication-title: Smart Mater Struct – volume: 118 year: 2021 ident: bib39 article-title: Stiffness modeling for near field acoustic levitation bearings publication-title: Appl Phys Lett – volume: 165 start-page: 410 year: 2011 end-page: 414 ident: bib15 article-title: A linear ultrasonic motor using (K0. 5Na0. 5) NbO3 based lead-free piezoelectric ceramics publication-title: Sensor Actuator Phys – volume: 153 start-page: 219 year: 2019 end-page: 229 ident: bib1 article-title: Hybrid simulation for dynamic responses and performance estimation of linear ultrasonic motors publication-title: Int J Mech Sci – volume: 119 start-page: 539 year: 2018 end-page: 548 ident: bib38 article-title: Theoretical investigation and prototype design for non-parallel squeeze film movement platform driven by standing waves publication-title: Tribol Int – volume: 38 start-page: 26 year: 2000 end-page: 32 ident: bib32 article-title: Non-contact transportation using near-field acoustic levitation publication-title: Ultrasonics – volume: 63 start-page: 125 year: 2017 end-page: 131 ident: bib37 article-title: Pressure potential and stability analysis in an acoustical noncontact transportation publication-title: Acoust Phys – year: 2023 ident: bib45 article-title: Self-floating and self-rotating non-contact ultrasonic motor with single active vibrator publication-title: Tribol Int – start-page: 1 year: 2011 end-page: 60 ident: bib3 article-title: Ultrasonic motors: technologies and applications – volume: 18 start-page: 65 year: 2015 end-page: 79 ident: bib60 article-title: Nanofluidics, Rotation of fibers and other non-spherical particles by the acoustic radiation torque – volume: 186 year: 2023 ident: bib25 article-title: A generalized electromechanical coupled model of standing-wave linear ultrasonic motors and its nonlinear version publication-title: Mech Syst Signal Process – volume: 29 year: 2020 ident: bib23 article-title: Dynamics modeling and control of a V-shaped ultrasonic motor with two Langevin-type transducers publication-title: Smart Mater Struct – volume: 306 year: 2020 ident: bib7 article-title: A review on piezoelectric ultrasonic motors for the past decade: classification, operating principle, performance, and future work perspectives publication-title: Sensor Actuator Phys – volume: 85 start-page: 367 year: 2017 end-page: 381 ident: bib50 article-title: Modeling and closed loop control of near-field acoustically levitated objects publication-title: Mech Syst Signal Process – volume: 183 year: 2023 ident: bib30 article-title: Development of a dual-stator piezoelectric motor operated in resonance and quasi-static states publication-title: Mech Syst Signal Process – volume: 116 year: 2021 ident: bib8 article-title: A review of recent advances in the single-and multi-degree-of-freedom ultrasonic piezoelectric motors publication-title: Ultrasonics – volume: 69 start-page: 1508 year: 2022 end-page: 1514 ident: bib34 article-title: Measurement of holding force and transportation force acting on tabular object in near-field acoustic levitation publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control – volume: 36 start-page: 168 year: 2013 end-page: 181 ident: bib41 article-title: An ultrasonic levitation journal bearing able to control spindle center position publication-title: Mech Syst Signal Process – volume: 152 year: 2020 ident: bib29 article-title: Surface textured polyimide composites for improving conversion efficiency of ultrasonic motor publication-title: Tribol Int – volume: 200 year: 2021 ident: bib43 article-title: Theoretical analysis on the static and dynamic performances of a squeeze film air journal bearing with three separate pads structure publication-title: Int J Mech Sci – volume: 52 start-page: 866 year: 2012 end-page: 872 ident: bib59 article-title: Development and study of novel non-contact ultrasonic motor based on principle of structural asymmetry publication-title: Ultrasonics – volume: 241 year: 2023 ident: bib24 article-title: Low-voltage driving linear piezoelectric motors having textured sliders of surface multi-connected vesicle-like microarray publication-title: Int J Mech Sci – volume: 153 year: 2021 ident: bib28 article-title: Characteristics and attenuation mechanism of linear standing-wave piezoelectric motors with ceramics-mated friction couples publication-title: Tribol Int – volume: 71 start-page: 200 year: 2021 ident: 10.1016/j.precisioneng.2024.09.014_bib2 article-title: A flexible shaft based travelling wave ultrasonic motor with high-precision positioning characteristics publication-title: Precis Eng doi: 10.1016/j.precisioneng.2021.03.011 – volume: 48 start-page: 1625 year: 2001 ident: 10.1016/j.precisioneng.2024.09.014_bib20 article-title: Numerical analysis of the symmetric hybrid transducer ultrasonic motor publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control doi: 10.1109/58.971713 – volume: 118 year: 2021 ident: 10.1016/j.precisioneng.2024.09.014_bib39 article-title: Stiffness modeling for near field acoustic levitation bearings publication-title: Appl Phys Lett doi: 10.1063/5.0051372 – volume: 216 start-page: 15 year: 2019 ident: 10.1016/j.precisioneng.2024.09.014_bib16 article-title: Output performance simulation and contact analysis of traveling wave rotary ultrasonic motor based on ADINA publication-title: Comput Struct doi: 10.1016/j.compstruc.2019.03.001 – year: 1985 ident: 10.1016/j.precisioneng.2024.09.014_bib10 – volume: 183 year: 2023 ident: 10.1016/j.precisioneng.2024.09.014_bib30 article-title: Development of a dual-stator piezoelectric motor operated in resonance and quasi-static states publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2022.109618 – volume: 134 start-page: 41 year: 2017 ident: 10.1016/j.precisioneng.2024.09.014_bib42 article-title: A novel squeeze-film air bearing with flexure pivot-tilting pads: numerical analysis and measurement publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2017.09.051 – volume: 225 year: 2022 ident: 10.1016/j.precisioneng.2024.09.014_bib47 article-title: The levitation and driving performance of a contact-free manipulation device actuated by ultrasonic energy publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2022.107358 – volume: 48 start-page: 699 year: 2001 ident: 10.1016/j.precisioneng.2024.09.014_bib54 article-title: A standing wave-type noncontact linear ultrasonic motor publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control doi: 10.1109/58.920696 – volume: 160 year: 2021 ident: 10.1016/j.precisioneng.2024.09.014_bib26 article-title: Transfer matrix model and experimental validation for a radial-torsional ultrasonic motor publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2021.107897 – volume: 200 year: 2021 ident: 10.1016/j.precisioneng.2024.09.014_bib43 article-title: Theoretical analysis on the static and dynamic performances of a squeeze film air journal bearing with three separate pads structure publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2021.106442 – volume: 77 start-page: 184 year: 2013 ident: 10.1016/j.precisioneng.2024.09.014_bib44 article-title: Running performance of an aerodynamic journal bearing with squeeze film effect publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2013.10.005 – volume: 35 start-page: 459 year: 1997 ident: 10.1016/j.precisioneng.2024.09.014_bib53 article-title: An analysis of a noncontact ultrasonic motor with an ultrasonically levitated rotor publication-title: Ultrasonics doi: 10.1016/S0041-624X(97)00025-5 – volume: 28 year: 2019 ident: 10.1016/j.precisioneng.2024.09.014_bib17 article-title: A traveling-wave ultrasonic motor utilizing a ring-shaped alumina/PZT vibrator publication-title: Smart Mater Struct doi: 10.1088/1361-665X/ab4d5d – volume: 23 start-page: 1036 year: 2012 ident: 10.1016/j.precisioneng.2024.09.014_bib19 article-title: A high torque ultrasonic motor structured by double-stators and double-rotors publication-title: China Mech Eng – volume: 29 start-page: 491 year: 2005 ident: 10.1016/j.precisioneng.2024.09.014_bib51 article-title: Non-contact handling in microassembly: acoustical levitation publication-title: Precis Eng doi: 10.1016/j.precisioneng.2005.03.003 – volume: 153 year: 2021 ident: 10.1016/j.precisioneng.2024.09.014_bib58 article-title: Experimental and numerical investigation of a self-adapting non-contact ultrasonic motor publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106624 – volume: 165 start-page: 410 year: 2011 ident: 10.1016/j.precisioneng.2024.09.014_bib15 article-title: A linear ultrasonic motor using (K0. 5Na0. 5) NbO3 based lead-free piezoelectric ceramics publication-title: Sensor Actuator Phys doi: 10.1016/j.sna.2010.10.017 – volume: 354 start-page: 154 year: 2015 ident: 10.1016/j.precisioneng.2024.09.014_bib49 article-title: On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies publication-title: J Sound Vib doi: 10.1016/j.jsv.2015.05.020 – volume: 1 year: 2019 ident: 10.1016/j.precisioneng.2024.09.014_bib33 article-title: Near-field acoustic levitation and applications to bearings: a critical review publication-title: Int J Extrem Manuf doi: 10.1088/2631-7990/ab3e54 – volume: 44 start-page: 238 year: 2006 ident: 10.1016/j.precisioneng.2024.09.014_bib55 article-title: Theoretical and experimental research on a disk-type non-contact ultrasonic motor publication-title: Ultrasonics doi: 10.1016/j.ultras.2006.01.001 – volume: 120 year: 2022 ident: 10.1016/j.precisioneng.2024.09.014_bib48 article-title: Study on near-field acoustic levitation characteristics in a pressurized environment publication-title: Appl Phys Lett – volume: 48 start-page: 190 year: 2018 ident: 10.1016/j.precisioneng.2024.09.014_bib35 article-title: Review of progress in acoustic levitation publication-title: Braz J Phys doi: 10.1007/s13538-017-0552-6 – year: 2023 ident: 10.1016/j.precisioneng.2024.09.014_bib45 article-title: Self-floating and self-rotating non-contact ultrasonic motor with single active vibrator publication-title: Tribol Int doi: 10.1016/j.triboint.2023.108217 – volume: 153 year: 2021 ident: 10.1016/j.precisioneng.2024.09.014_bib28 article-title: Characteristics and attenuation mechanism of linear standing-wave piezoelectric motors with ceramics-mated friction couples publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106580 – volume: 18 start-page: 65 year: 2015 ident: 10.1016/j.precisioneng.2024.09.014_bib60 article-title: Nanofluidics, Rotation of fibers and other non-spherical particles by the acoustic radiation torque – year: 2013 ident: 10.1016/j.precisioneng.2024.09.014_bib61 – volume: 119 start-page: 539 year: 2018 ident: 10.1016/j.precisioneng.2024.09.014_bib38 article-title: Theoretical investigation and prototype design for non-parallel squeeze film movement platform driven by standing waves publication-title: Tribol Int doi: 10.1016/j.triboint.2017.10.034 – volume: 44 start-page: 412 year: 2005 ident: 10.1016/j.precisioneng.2024.09.014_bib13 article-title: Ultrasonic linear motor using L1–B4 mode and its analysis publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.44.412 – volume: 5 year: 2020 ident: 10.1016/j.precisioneng.2024.09.014_bib5 article-title: Piezoelectric actuators and motors: materials, designs, and applications publication-title: Adv Mater Technol doi: 10.1002/admt.201900716 – volume: 48 start-page: 172 year: 2017 ident: 10.1016/j.precisioneng.2024.09.014_bib9 article-title: Design and experimental evaluation of a precise and compact tubular ultrasonic motor driven by a single-phase source publication-title: Precis Eng doi: 10.1016/j.precisioneng.2016.11.018 – volume: 31 start-page: 351 year: 2007 ident: 10.1016/j.precisioneng.2024.09.014_bib46 article-title: Frequency characteristics of non-contact ultrasonic motor with motion error correction publication-title: Precis Eng doi: 10.1016/j.precisioneng.2007.02.002 – volume: 36 start-page: 168 year: 2013 ident: 10.1016/j.precisioneng.2024.09.014_bib41 article-title: An ultrasonic levitation journal bearing able to control spindle center position publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2012.05.006 – volume: 306 year: 2020 ident: 10.1016/j.precisioneng.2024.09.014_bib7 article-title: A review on piezoelectric ultrasonic motors for the past decade: classification, operating principle, performance, and future work perspectives publication-title: Sensor Actuator Phys doi: 10.1016/j.sna.2020.111971 – volume: 116 year: 2021 ident: 10.1016/j.precisioneng.2024.09.014_bib8 article-title: A review of recent advances in the single-and multi-degree-of-freedom ultrasonic piezoelectric motors publication-title: Ultrasonics doi: 10.1016/j.ultras.2021.106471 – volume: 153 start-page: 219 year: 2019 ident: 10.1016/j.precisioneng.2024.09.014_bib1 article-title: Hybrid simulation for dynamic responses and performance estimation of linear ultrasonic motors publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.01.041 – volume: 160 year: 2021 ident: 10.1016/j.precisioneng.2024.09.014_bib27 article-title: Improving the performance of ultrasonic motors in low-pressure, variable-temperature environments publication-title: Tribol Int doi: 10.1016/j.triboint.2021.107000 – volume: 152 year: 2020 ident: 10.1016/j.precisioneng.2024.09.014_bib29 article-title: Surface textured polyimide composites for improving conversion efficiency of ultrasonic motor publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106489 – volume: 65 start-page: 277 year: 2016 ident: 10.1016/j.precisioneng.2024.09.014_bib18 article-title: A cylindrical traveling wave ultrasonic motor using bonded-type composite beam publication-title: Ultrasonics doi: 10.1016/j.ultras.2015.09.014 – volume: 4 start-page: 10158 year: 2016 ident: 10.1016/j.precisioneng.2024.09.014_bib22 article-title: A new linear ultrasonic motor using hybrid longitudinal vibration mode publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2647972 – start-page: 453 year: 1993 ident: 10.1016/j.precisioneng.2024.09.014_bib52 article-title: A small noncontact ultrasonic motor – volume: 241 year: 2023 ident: 10.1016/j.precisioneng.2024.09.014_bib24 article-title: Low-voltage driving linear piezoelectric motors having textured sliders of surface multi-connected vesicle-like microarray publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2022.107984 – volume: 48 year: 2009 ident: 10.1016/j.precisioneng.2024.09.014_bib56 article-title: Noncontact ultrasonic motor with two flexural standing wave vibration disks publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.48.09KD10 – volume: 141 year: 2020 ident: 10.1016/j.precisioneng.2024.09.014_bib12 article-title: Performance evaluation of a bimodal standing-wave ultrasonic motor considering nonlinear electroelasticity: modeling and experimental validation publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2019.106475 – start-page: 1 year: 2011 ident: 10.1016/j.precisioneng.2024.09.014_bib3 – volume: 186 year: 2023 ident: 10.1016/j.precisioneng.2024.09.014_bib25 article-title: A generalized electromechanical coupled model of standing-wave linear ultrasonic motors and its nonlinear version publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2022.109870 – volume: 38 start-page: 26 year: 2000 ident: 10.1016/j.precisioneng.2024.09.014_bib32 article-title: Non-contact transportation using near-field acoustic levitation publication-title: Ultrasonics doi: 10.1016/S0041-624X(99)00052-9 – volume: 100 start-page: 23 year: 2015 ident: 10.1016/j.precisioneng.2024.09.014_bib11 article-title: Modeling and sticking motion analysis of a vibro-impact system in linear ultrasonic motors publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2015.06.006 – volume: 255 start-page: 34 year: 2017 ident: 10.1016/j.precisioneng.2024.09.014_bib57 article-title: A rotational traveling wave based levitation device–Modelling, design, and control publication-title: Sensor Actuator Phys doi: 10.1016/j.sna.2016.12.016 – volume: 29 year: 2020 ident: 10.1016/j.precisioneng.2024.09.014_bib23 article-title: Dynamics modeling and control of a V-shaped ultrasonic motor with two Langevin-type transducers publication-title: Smart Mater Struct doi: 10.1088/1361-665X/ab627a – volume: 64 start-page: 839 year: 2017 ident: 10.1016/j.precisioneng.2024.09.014_bib36 article-title: Development of an acoustic levitation linear transportation system based on a ring-type structure publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control doi: 10.1109/TUFFC.2017.2673244 – volume: 64 start-page: 177 year: 2020 ident: 10.1016/j.precisioneng.2024.09.014_bib6 article-title: Modeling, analysis and suppression of current harmonics of Langevin-type ultrasonic motors under high voltage publication-title: Precis Eng doi: 10.1016/j.precisioneng.2020.04.009 – volume: 63 start-page: 125 year: 2017 ident: 10.1016/j.precisioneng.2024.09.014_bib37 article-title: Pressure potential and stability analysis in an acoustical noncontact transportation publication-title: Acoust Phys doi: 10.1134/S1063771017010079 – volume: 126 start-page: 307 year: 2018 ident: 10.1016/j.precisioneng.2024.09.014_bib40 article-title: Numerical and experimental study on the influence of material characteristics on the levitation performance of squeeze-film air bearing publication-title: Tribol Int doi: 10.1016/j.triboint.2018.05.030 – volume: 49 start-page: 338 year: 2009 ident: 10.1016/j.precisioneng.2024.09.014_bib14 article-title: Characteristics of ring type traveling wave ultrasonic motor in vacuum publication-title: Ultrasonics doi: 10.1016/j.ultras.2008.10.015 – volume: 100 start-page: 2057 year: 1996 ident: 10.1016/j.precisioneng.2024.09.014_bib31 article-title: Near‐field acoustic levitation of planar specimens using flexural vibration publication-title: J Acoust Soc Am doi: 10.1121/1.417915 – volume: 85 start-page: 367 year: 2017 ident: 10.1016/j.precisioneng.2024.09.014_bib50 article-title: Modeling and closed loop control of near-field acoustically levitated objects publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.08.011 – volume: 52 start-page: 866 year: 2012 ident: 10.1016/j.precisioneng.2024.09.014_bib59 article-title: Development and study of novel non-contact ultrasonic motor based on principle of structural asymmetry publication-title: Ultrasonics doi: 10.1016/j.ultras.2012.02.004 – volume: 53 start-page: 1344 year: 2006 ident: 10.1016/j.precisioneng.2024.09.014_bib21 article-title: A high-power traveling wave ultrasonic motor publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control doi: 10.1109/TUFFC.2006.1665083 – volume: 68 start-page: 734 year: 2020 ident: 10.1016/j.precisioneng.2024.09.014_bib4 article-title: A compact cantilever type ultrasonic motor with nanometer resolution: design and performance evaluation publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2020.2965481 – volume: 69 start-page: 1508 year: 2022 ident: 10.1016/j.precisioneng.2024.09.014_bib34 article-title: Measurement of holding force and transportation force acting on tabular object in near-field acoustic levitation publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control doi: 10.1109/TUFFC.2022.3147603 |
SSID | ssj0007804 |
Score | 2.4263651 |
Snippet | Experimental measurements and theoretical analyses of a novel non-contact ultrasonic motor driven by near-field acoustic levitation are presented, in which the... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 174 |
SubjectTerms | Acoustic levitation Gas lubrication Non-contact motor Thrust bearing |
Title | Performance evaluation of a novel disk-type motor using ultrasonic levitation: Modeling and experimental validation |
URI | https://dx.doi.org/10.1016/j.precisioneng.2024.09.014 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfOKz7MFrbDbZPFbwUIqlKhYPFnoLm32UaklLmnr0tzvTJDSCB8Fjwm4I3yyzM7vffEPIje9LvF_jjrUedziHdCcOoxAMopQwXDGp8ED_ZRQOx_xpEkxapF_XwiCtsvL9pU_feOvqTbdCs7uczbpIS4JgIhDIgvQg0McKdh7hKr_92tI8UGCnpDEyB0fXwqMbjtcyrxvZZFPIFb1S85Tx3zepxsYzOCD7VcRIe-VPHZKWyY7IXkNH8JisXrf0f7rV76YLSyXNFp9mTvVs9eHgeSsF2yxyinz3KV3Pi1yuUB2XYpl5eS1_R7FBGpapU5lp2uwBQOHbs7IL0wkZDx7e-kOn6qbgKC-MCke6vkjB9xnXlyz14tRzfQXJViwiDWmF1SF3TaxsKEOhrUhhtJZMGrAWxABG-qeknQFSZ4RqvJx0deS6KuDaWGElZ8YLPMFkzAJ7TvwavmRZimYkNZvsPWmCniDoiSsSAP2c3NdIJz-WQALe_Q_zL_45_5Ls4lPJVbki7SJfm2uIOIq0s1lSHbLTe3wejr4Brl7aZQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RTl6YE1NA8njZEYUEVVoK0YWqmb5cR2FajSKm0Z-e3cNYkaJAYk1sSOou_s8539-TtCbj1P4vkas4xxmcUYpDth0ArAIHHMNYsdGeOGfn8QdEfsZeyPa6Rd3oVBWmXh-3OfvvbWxZNmgWZzniRNpCVBMOFzZEG6EOhvkW0G0xfLGNx9bXgeqLCT8xgdC5uXyqNrktc8KyvZpBNIFt1c9NRhv69SlZWnc0D2i5CRPuZ_dUhqOj0iexUhwWOyeNvw_-lGwJvODJU0nX3qKVXJ4sPCDVcKxpllFAnvE7qaLjO5QHlcivfM83P5e4oV0vCeOpWpotUiABS-neRlmE7IqPM0bHetopyCFbtBa2lJ2-MROD9te9KJ3DBybS-GbCvkLQV5hVEBs3UYm0AGXBkeQWslHanBXBAEaOmdknoKSJ0RqvB00lYt2459prThRjJHu77LHRk6vmkQr4RPzHPVDFHSyd5FFXSBoAubCwC9QR5KpMWPMSDAvf-h__k_-9-Qne6w3xO958HrBdnFNzlx5ZLUl9lKX0H4sYyu18PrG8kD2_M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+a+novel+disk-type+motor+using+ultrasonic+levitation%3A+Modeling+and+experimental+validation&rft.jtitle=Precision+engineering&rft.au=Shi%2C+Minghui&rft.au=Gao%2C+Ming&rft.au=Chen%2C+Shujie&rft.au=Zhang%2C+Shaolin&rft.date=2024-12-01&rft.issn=0141-6359&rft.volume=91&rft.spage=174&rft.epage=184&rft_id=info:doi/10.1016%2Fj.precisioneng.2024.09.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_precisioneng_2024_09_014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon |