Performance evaluation of a novel disk-type motor using ultrasonic levitation: Modeling and experimental validation

Experimental measurements and theoretical analyses of a novel non-contact ultrasonic motor driven by near-field acoustic levitation are presented, in which the proposed motor is comprised of a Langevin transducer, stator disk and rotor disk. In exciting of Langevin transducer, the air layer between...

Full description

Saved in:
Bibliographic Details
Published inPrecision engineering Vol. 91; pp. 174 - 184
Main Authors Shi, Minghui, Gao, Ming, Chen, Shujie, Zhang, Shaolin, Miao, Xinming
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Experimental measurements and theoretical analyses of a novel non-contact ultrasonic motor driven by near-field acoustic levitation are presented, in which the proposed motor is comprised of a Langevin transducer, stator disk and rotor disk. In exciting of Langevin transducer, the air layer between the stator disk and rotor disk is squeezed by high frequency vibration, forming acoustic levitation force and acoustic radiation torque which is caused by the introduction of artificial asymmetry. The experimental results show that the rotational speed increases with driving voltage and is sensitive to exciting frequency. To predict the running performance of the motor, a theoretical model with the consideration of motion of rotor disk is introduced, which is based on Navier-Stokes equations. The comparison of theoretical and experimental results shows that the developed theoretical mode is effective and the proposed motor are hopeful to be used in precision machinery. [Display omitted] •A novel disk-type motor using ultrasonic levitation is proposed.•A theoretical model based on Navier-Stokes equations is built to reveal the operating mechanism of the NCUM.•The harmonic analysis and streaming analysis are conducted by using the finite element analysis software.•Experimental investigations are conducted using a specially designed experimental device.
AbstractList Experimental measurements and theoretical analyses of a novel non-contact ultrasonic motor driven by near-field acoustic levitation are presented, in which the proposed motor is comprised of a Langevin transducer, stator disk and rotor disk. In exciting of Langevin transducer, the air layer between the stator disk and rotor disk is squeezed by high frequency vibration, forming acoustic levitation force and acoustic radiation torque which is caused by the introduction of artificial asymmetry. The experimental results show that the rotational speed increases with driving voltage and is sensitive to exciting frequency. To predict the running performance of the motor, a theoretical model with the consideration of motion of rotor disk is introduced, which is based on Navier-Stokes equations. The comparison of theoretical and experimental results shows that the developed theoretical mode is effective and the proposed motor are hopeful to be used in precision machinery. [Display omitted] •A novel disk-type motor using ultrasonic levitation is proposed.•A theoretical model based on Navier-Stokes equations is built to reveal the operating mechanism of the NCUM.•The harmonic analysis and streaming analysis are conducted by using the finite element analysis software.•Experimental investigations are conducted using a specially designed experimental device.
Author Gao, Ming
Shi, Minghui
Zhang, Shaolin
Miao, Xinming
Chen, Shujie
Author_xml – sequence: 1
  givenname: Minghui
  orcidid: 0000-0002-3057-2371
  surname: Shi
  fullname: Shi, Minghui
  email: shimh@zzu.edu.cn
– sequence: 2
  givenname: Ming
  surname: Gao
  fullname: Gao, Ming
– sequence: 3
  givenname: Shujie
  surname: Chen
  fullname: Chen, Shujie
– sequence: 4
  givenname: Shaolin
  surname: Zhang
  fullname: Zhang, Shaolin
– sequence: 5
  givenname: Xinming
  surname: Miao
  fullname: Miao, Xinming
BookMark eNqNkM1OwzAQhH0oEm3hHSzuCXaSJnFvqPxKRXCAs7WxN5VLakd2GtG3x205cOSyK-3OjEbfjEyss0jIDWcpZ7y83aa9R2WCiWe7STOWFSkTKePFhEzj5EmZL8QlmYWwZYxVNSumJLyjb53fgVVIcYRuD0MMoK6lQK0bsaPahK9kOPRId25wnu6DsRu67wYPwVmjaIejGU62JX11GrvjH6ym-N2jNzu0A3Q0Zht9Ul2Rixa6gNe_e04-Hx8-Vs_J-u3pZXW3TlRWVkMCLBdNXZXIcuBNVjcZy5UQdS0qvViIVpcFw1q1JZRCt6KJag0ckIPiWYGQz8nynKu8C8FjK_vYBvxBciaPyORW_kUmj8gkEzLCiub7sxljw9Ggl0EZjJS0iZZBamf-E_MDufqEBg
Cites_doi 10.1016/j.precisioneng.2021.03.011
10.1109/58.971713
10.1063/5.0051372
10.1016/j.compstruc.2019.03.001
10.1016/j.ymssp.2022.109618
10.1016/j.ijmecsci.2017.09.051
10.1016/j.ijmecsci.2022.107358
10.1109/58.920696
10.1016/j.ymssp.2021.107897
10.1016/j.ijmecsci.2021.106442
10.1016/j.ijmecsci.2013.10.005
10.1016/S0041-624X(97)00025-5
10.1088/1361-665X/ab4d5d
10.1016/j.precisioneng.2005.03.003
10.1016/j.triboint.2020.106624
10.1016/j.sna.2010.10.017
10.1016/j.jsv.2015.05.020
10.1088/2631-7990/ab3e54
10.1016/j.ultras.2006.01.001
10.1007/s13538-017-0552-6
10.1016/j.triboint.2023.108217
10.1016/j.triboint.2020.106580
10.1016/j.triboint.2017.10.034
10.1143/JJAP.44.412
10.1002/admt.201900716
10.1016/j.precisioneng.2016.11.018
10.1016/j.precisioneng.2007.02.002
10.1016/j.ymssp.2012.05.006
10.1016/j.sna.2020.111971
10.1016/j.ultras.2021.106471
10.1016/j.ijmecsci.2019.01.041
10.1016/j.triboint.2021.107000
10.1016/j.triboint.2020.106489
10.1016/j.ultras.2015.09.014
10.1109/ACCESS.2017.2647972
10.1016/j.ijmecsci.2022.107984
10.1143/JJAP.48.09KD10
10.1016/j.ymssp.2019.106475
10.1016/j.ymssp.2022.109870
10.1016/S0041-624X(99)00052-9
10.1016/j.ijmecsci.2015.06.006
10.1016/j.sna.2016.12.016
10.1088/1361-665X/ab627a
10.1109/TUFFC.2017.2673244
10.1016/j.precisioneng.2020.04.009
10.1134/S1063771017010079
10.1016/j.triboint.2018.05.030
10.1016/j.ultras.2008.10.015
10.1121/1.417915
10.1016/j.ymssp.2016.08.011
10.1016/j.ultras.2012.02.004
10.1109/TUFFC.2006.1665083
10.1109/TIE.2020.2965481
10.1109/TUFFC.2022.3147603
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.precisioneng.2024.09.014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 184
ExternalDocumentID 10_1016_j_precisioneng_2024_09_014
S0141635924002149
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SSM
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XPP
ZMT
~G-
AAYWO
AAYXX
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
APXCP
CITATION
ID FETCH-LOGICAL-c267t-a039b876e03a1b28b203c998897d559fd640e8cf6a69df9b39bda1ae1ac124ea3
IEDL.DBID .~1
ISSN 0141-6359
IngestDate Tue Jul 01 02:13:06 EDT 2025
Sun Apr 06 06:53:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Non-contact motor
Acoustic levitation
Thrust bearing
Gas lubrication
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-a039b876e03a1b28b203c998897d559fd640e8cf6a69df9b39bda1ae1ac124ea3
ORCID 0000-0002-3057-2371
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_precisioneng_2024_09_014
elsevier_sciencedirect_doi_10_1016_j_precisioneng_2024_09_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Precision engineering
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Shou, Yoshimoto, Stolarski (bib44) 2013; 77
Schwarz, Hahn, Petit-Pierre, Dual (bib60) 2015; 18
Hu, Li, Chan, Choy (bib54) 2001; 48
Iula, Pappalardo (bib21) 2006; 53
Andrade, Pérez, Adamowski (bib35) 2018; 48
Li, Liu, Zhang (bib37) 2017; 63
Shi, Chen, Huang, Qin, Liu (bib45) 2023
Liu, Zhao, Qiu (bib27) 2021; 160
Yang, Liu, Chen, Cai (bib55) 2006; 44
Stepanenko, Minchenya (bib59) 2012; 52
Liu, Sun, Sepahvand, Marburg (bib43) 2021; 200
Dabbagh, Sarhan, Akbari, Mardi (bib9) 2017; 48
Ryndzionek, Sienkiewicz (bib8) 2021; 116
Wang (bib19) 2012; 23
Hirose, Yamayoshi, Ono (bib52) 1993
Hashimoto, Koike, Ueha (bib31) 1996; 100
Aono, Aoyagi (bib34) 2022; 69
Li, Yang, Wang, Zhang, Wang (bib29) 2020; 152
Wang, Wang, Lin, Lu, Zhao (bib26) 2021; 160
Zhou, Li, Chen, Qing, Cui (bib2) 2021; 71
Shi, Feng, Hu, Zhu, Cui (bib33) 2019; 1
Qu, Zhou, Tian, Jin, Xu (bib14) 2009; 49
Satonobu, Friend, Nakamura, Ueha (bib20) 2001; 48
Pan, Huang, Zhao, Chen, Huang, Li (bib30) 2023; 183
Morrison (bib61) 2013
Thomas, Andrade, Adamowski, Silva (bib36) 2017; 64
Li, Yao, Li, Wu (bib23) 2020; 29
Isobe, Kyusojin (bib46) 2007; 31
Ueha, Hashimoto, Koike (bib32) 2000; 38
Shi, An, Feng, Guo, Liu (bib40) 2018; 126
Li, Wang, Li, Sun, Shen, Zeng (bib47) 2022; 225
Li, Yao, Mi, Lin, Liang, Wu (bib6) 2020; 64
Yamayoshi, Shiina, Tamura, Hirose (bib56) 2009; 48
Zhang, Fu, Hua, Quan, Qu (bib28) 2021; 153
Ilssar, Bucher, Flashner (bib50) 2017; 85
Tian, Liu, Deng, Wang, Chen (bib7) 2020; 306
Li, Li, Sang, Liu, Chen, Zhao (bib48) 2022; 120
Ilssar, Bucher (bib49) 2015; 354
Wu, Mizuno, Nakamura (bib17) 2019; 28
Wang, Guan, Liu, Deng, Liu (bib4) 2020; 68
Sashida (bib10) 1985
Li, Kan, Cheng, Chen, Ren (bib12) 2020; 141
Vandaele, Lambert, Delchambre (bib51) 2005; 29
Zhao (bib3) 2011
Park, Kim, Kim, Lee, Hong (bib13) 2005; 44
Ren, Yang, Ma, Li, Zhang (bib16) 2019; 216
Zhou, Zhang (bib22) 2016; 4
Gao, Yang, Wu, Xin, Li, Yuan, Shen, Dong (bib5) 2020; 5
Feng, Shi, Gong, Liu, Zhu (bib42) 2017; 134
Gabai, Ilssar, Shaham, Cohen, Bucher (bib57) 2017; 255
He, Yao, Dai, Zhang (bib1) 2019; 153
Wei, Shaham, Bucher (bib38) 2018; 119
Jin, Wan, Yang, Li, Zha (bib15) 2011; 165
Wang, Guo (bib39) 2021; 118
Zhao, Mojrzisch, Wallaschek (bib41) 2013; 36
Li, Yao, Wu (bib11) 2015; 100
Yang, Liu, Chen, Liu (bib18) 2016; 65
Shi, Liu, Feng, Zhang (bib58) 2021; 153
Li, Guo, Ding, Chen, Wang, Lv (bib25) 2023; 186
Jin, Zhang, Fu, Ji, Hua, Fu (bib24) 2023; 241
Hu, Nakamura, Ueha (bib53) 1997; 35
Park (10.1016/j.precisioneng.2024.09.014_bib13) 2005; 44
Stepanenko (10.1016/j.precisioneng.2024.09.014_bib59) 2012; 52
Ilssar (10.1016/j.precisioneng.2024.09.014_bib50) 2017; 85
Zhang (10.1016/j.precisioneng.2024.09.014_bib28) 2021; 153
Li (10.1016/j.precisioneng.2024.09.014_bib47) 2022; 225
Shi (10.1016/j.precisioneng.2024.09.014_bib33) 2019; 1
Zhou (10.1016/j.precisioneng.2024.09.014_bib2) 2021; 71
Ren (10.1016/j.precisioneng.2024.09.014_bib16) 2019; 216
Aono (10.1016/j.precisioneng.2024.09.014_bib34) 2022; 69
Shou (10.1016/j.precisioneng.2024.09.014_bib44) 2013; 77
Hirose (10.1016/j.precisioneng.2024.09.014_bib52) 1993
Zhou (10.1016/j.precisioneng.2024.09.014_bib22) 2016; 4
Feng (10.1016/j.precisioneng.2024.09.014_bib42) 2017; 134
Hu (10.1016/j.precisioneng.2024.09.014_bib54) 2001; 48
Dabbagh (10.1016/j.precisioneng.2024.09.014_bib9) 2017; 48
Wang (10.1016/j.precisioneng.2024.09.014_bib39) 2021; 118
Isobe (10.1016/j.precisioneng.2024.09.014_bib46) 2007; 31
Tian (10.1016/j.precisioneng.2024.09.014_bib7) 2020; 306
Li (10.1016/j.precisioneng.2024.09.014_bib29) 2020; 152
Schwarz (10.1016/j.precisioneng.2024.09.014_bib60) 2015; 18
Li (10.1016/j.precisioneng.2024.09.014_bib6) 2020; 64
Sashida (10.1016/j.precisioneng.2024.09.014_bib10) 1985
Shi (10.1016/j.precisioneng.2024.09.014_bib58) 2021; 153
Vandaele (10.1016/j.precisioneng.2024.09.014_bib51) 2005; 29
Wu (10.1016/j.precisioneng.2024.09.014_bib17) 2019; 28
Iula (10.1016/j.precisioneng.2024.09.014_bib21) 2006; 53
Gabai (10.1016/j.precisioneng.2024.09.014_bib57) 2017; 255
Thomas (10.1016/j.precisioneng.2024.09.014_bib36) 2017; 64
He (10.1016/j.precisioneng.2024.09.014_bib1) 2019; 153
Li (10.1016/j.precisioneng.2024.09.014_bib23) 2020; 29
Hashimoto (10.1016/j.precisioneng.2024.09.014_bib31) 1996; 100
Li (10.1016/j.precisioneng.2024.09.014_bib25) 2023; 186
Andrade (10.1016/j.precisioneng.2024.09.014_bib35) 2018; 48
Liu (10.1016/j.precisioneng.2024.09.014_bib43) 2021; 200
Yang (10.1016/j.precisioneng.2024.09.014_bib18) 2016; 65
Ueha (10.1016/j.precisioneng.2024.09.014_bib32) 2000; 38
Jin (10.1016/j.precisioneng.2024.09.014_bib24) 2023; 241
Jin (10.1016/j.precisioneng.2024.09.014_bib15) 2011; 165
Li (10.1016/j.precisioneng.2024.09.014_bib12) 2020; 141
Wang (10.1016/j.precisioneng.2024.09.014_bib4) 2020; 68
Zhao (10.1016/j.precisioneng.2024.09.014_bib3) 2011
Hu (10.1016/j.precisioneng.2024.09.014_bib53) 1997; 35
Morrison (10.1016/j.precisioneng.2024.09.014_bib61) 2013
Satonobu (10.1016/j.precisioneng.2024.09.014_bib20) 2001; 48
Wei (10.1016/j.precisioneng.2024.09.014_bib38) 2018; 119
Shi (10.1016/j.precisioneng.2024.09.014_bib45) 2023
Li (10.1016/j.precisioneng.2024.09.014_bib48) 2022; 120
Gao (10.1016/j.precisioneng.2024.09.014_bib5) 2020; 5
Qu (10.1016/j.precisioneng.2024.09.014_bib14) 2009; 49
Zhao (10.1016/j.precisioneng.2024.09.014_bib41) 2013; 36
Liu (10.1016/j.precisioneng.2024.09.014_bib27) 2021; 160
Li (10.1016/j.precisioneng.2024.09.014_bib11) 2015; 100
Shi (10.1016/j.precisioneng.2024.09.014_bib40) 2018; 126
Yamayoshi (10.1016/j.precisioneng.2024.09.014_bib56) 2009; 48
Pan (10.1016/j.precisioneng.2024.09.014_bib30) 2023; 183
Ilssar (10.1016/j.precisioneng.2024.09.014_bib49) 2015; 354
Yang (10.1016/j.precisioneng.2024.09.014_bib55) 2006; 44
Wang (10.1016/j.precisioneng.2024.09.014_bib26) 2021; 160
Li (10.1016/j.precisioneng.2024.09.014_bib37) 2017; 63
Ryndzionek (10.1016/j.precisioneng.2024.09.014_bib8) 2021; 116
Wang (10.1016/j.precisioneng.2024.09.014_bib19) 2012; 23
References_xml – volume: 68
  start-page: 734
  year: 2020
  end-page: 743
  ident: bib4
  article-title: A compact cantilever type ultrasonic motor with nanometer resolution: design and performance evaluation
  publication-title: IEEE Trans Ind Electron
– volume: 100
  start-page: 23
  year: 2015
  end-page: 31
  ident: bib11
  article-title: Modeling and sticking motion analysis of a vibro-impact system in linear ultrasonic motors
  publication-title: Int J Mech Sci
– volume: 153
  year: 2021
  ident: bib58
  article-title: Experimental and numerical investigation of a self-adapting non-contact ultrasonic motor
  publication-title: Tribol Int
– volume: 126
  start-page: 307
  year: 2018
  end-page: 316
  ident: bib40
  article-title: Numerical and experimental study on the influence of material characteristics on the levitation performance of squeeze-film air bearing
  publication-title: Tribol Int
– volume: 29
  start-page: 491
  year: 2005
  end-page: 505
  ident: bib51
  article-title: Non-contact handling in microassembly: acoustical levitation
  publication-title: Precis Eng
– volume: 64
  start-page: 177
  year: 2020
  end-page: 187
  ident: bib6
  article-title: Modeling, analysis and suppression of current harmonics of Langevin-type ultrasonic motors under high voltage
  publication-title: Precis Eng
– volume: 64
  start-page: 839
  year: 2017
  end-page: 846
  ident: bib36
  article-title: Development of an acoustic levitation linear transportation system based on a ring-type structure
  publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control
– volume: 48
  start-page: 699
  year: 2001
  end-page: 708
  ident: bib54
  article-title: A standing wave-type noncontact linear ultrasonic motor
  publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control
– year: 1985
  ident: bib10
  article-title: Motor device utilizing ultrasonic oscillation
– volume: 134
  start-page: 41
  year: 2017
  end-page: 50
  ident: bib42
  article-title: A novel squeeze-film air bearing with flexure pivot-tilting pads: numerical analysis and measurement
  publication-title: Int J Mech Sci
– volume: 44
  start-page: 238
  year: 2006
  end-page: 243
  ident: bib55
  article-title: Theoretical and experimental research on a disk-type non-contact ultrasonic motor
  publication-title: Ultrasonics
– volume: 216
  start-page: 15
  year: 2019
  end-page: 25
  ident: bib16
  article-title: Output performance simulation and contact analysis of traveling wave rotary ultrasonic motor based on ADINA
  publication-title: Comput Struct
– start-page: 453
  year: 1993
  end-page: 456
  ident: bib52
  article-title: A small noncontact ultrasonic motor
  publication-title: 1993 proceedings IEEE ultrasonics symposium
– volume: 354
  start-page: 154
  year: 2015
  end-page: 166
  ident: bib49
  article-title: On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies
  publication-title: J Sound Vib
– volume: 53
  start-page: 1344
  year: 2006
  end-page: 1351
  ident: bib21
  article-title: A high-power traveling wave ultrasonic motor
  publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control
– volume: 1
  year: 2019
  ident: bib33
  article-title: Near-field acoustic levitation and applications to bearings: a critical review
  publication-title: Int J Extrem Manuf
– volume: 160
  year: 2021
  ident: bib26
  article-title: Transfer matrix model and experimental validation for a radial-torsional ultrasonic motor
  publication-title: Mech Syst Signal Process
– volume: 77
  start-page: 184
  year: 2013
  end-page: 193
  ident: bib44
  article-title: Running performance of an aerodynamic journal bearing with squeeze film effect
  publication-title: Int J Mech Sci
– volume: 100
  start-page: 2057
  year: 1996
  end-page: 2061
  ident: bib31
  article-title: Near‐field acoustic levitation of planar specimens using flexural vibration
  publication-title: J Acoust Soc Am
– volume: 35
  start-page: 459
  year: 1997
  end-page: 467
  ident: bib53
  article-title: An analysis of a noncontact ultrasonic motor with an ultrasonically levitated rotor
  publication-title: Ultrasonics
– volume: 255
  start-page: 34
  year: 2017
  end-page: 45
  ident: bib57
  article-title: A rotational traveling wave based levitation device–Modelling, design, and control
  publication-title: Sensor Actuator Phys
– volume: 4
  start-page: 10158
  year: 2016
  end-page: 10165
  ident: bib22
  article-title: A new linear ultrasonic motor using hybrid longitudinal vibration mode
  publication-title: IEEE Access
– volume: 48
  year: 2009
  ident: bib56
  article-title: Noncontact ultrasonic motor with two flexural standing wave vibration disks
  publication-title: Jpn J Appl Phys
– volume: 141
  year: 2020
  ident: bib12
  article-title: Performance evaluation of a bimodal standing-wave ultrasonic motor considering nonlinear electroelasticity: modeling and experimental validation
  publication-title: Mech Syst Signal Process
– volume: 23
  start-page: 1036
  year: 2012
  ident: bib19
  article-title: A high torque ultrasonic motor structured by double-stators and double-rotors
  publication-title: China Mech Eng
– volume: 160
  year: 2021
  ident: bib27
  article-title: Improving the performance of ultrasonic motors in low-pressure, variable-temperature environments
  publication-title: Tribol Int
– year: 2013
  ident: bib61
  article-title: An introduction to fluid mechanics
– volume: 5
  year: 2020
  ident: bib5
  article-title: Piezoelectric actuators and motors: materials, designs, and applications
  publication-title: Adv Mater Technol
– volume: 65
  start-page: 277
  year: 2016
  end-page: 281
  ident: bib18
  article-title: A cylindrical traveling wave ultrasonic motor using bonded-type composite beam
  publication-title: Ultrasonics
– volume: 48
  start-page: 190
  year: 2018
  end-page: 213
  ident: bib35
  article-title: Review of progress in acoustic levitation
  publication-title: Braz J Phys
– volume: 120
  year: 2022
  ident: bib48
  article-title: Study on near-field acoustic levitation characteristics in a pressurized environment
  publication-title: Appl Phys Lett
– volume: 71
  start-page: 200
  year: 2021
  end-page: 208
  ident: bib2
  article-title: A flexible shaft based travelling wave ultrasonic motor with high-precision positioning characteristics
  publication-title: Precis Eng
– volume: 225
  year: 2022
  ident: bib47
  article-title: The levitation and driving performance of a contact-free manipulation device actuated by ultrasonic energy
  publication-title: Int J Mech Sci
– volume: 49
  start-page: 338
  year: 2009
  end-page: 343
  ident: bib14
  article-title: Characteristics of ring type traveling wave ultrasonic motor in vacuum
  publication-title: Ultrasonics
– volume: 48
  start-page: 1625
  year: 2001
  end-page: 1631
  ident: bib20
  article-title: Numerical analysis of the symmetric hybrid transducer ultrasonic motor
  publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control
– volume: 31
  start-page: 351
  year: 2007
  end-page: 357
  ident: bib46
  article-title: Frequency characteristics of non-contact ultrasonic motor with motion error correction
  publication-title: Precis Eng
– volume: 48
  start-page: 172
  year: 2017
  end-page: 180
  ident: bib9
  article-title: Design and experimental evaluation of a precise and compact tubular ultrasonic motor driven by a single-phase source
  publication-title: Precis Eng
– volume: 44
  start-page: 412
  year: 2005
  ident: bib13
  article-title: Ultrasonic linear motor using L1–B4 mode and its analysis
  publication-title: Jpn J Appl Phys
– volume: 28
  year: 2019
  ident: bib17
  article-title: A traveling-wave ultrasonic motor utilizing a ring-shaped alumina/PZT vibrator
  publication-title: Smart Mater Struct
– volume: 118
  year: 2021
  ident: bib39
  article-title: Stiffness modeling for near field acoustic levitation bearings
  publication-title: Appl Phys Lett
– volume: 165
  start-page: 410
  year: 2011
  end-page: 414
  ident: bib15
  article-title: A linear ultrasonic motor using (K0. 5Na0. 5) NbO3 based lead-free piezoelectric ceramics
  publication-title: Sensor Actuator Phys
– volume: 153
  start-page: 219
  year: 2019
  end-page: 229
  ident: bib1
  article-title: Hybrid simulation for dynamic responses and performance estimation of linear ultrasonic motors
  publication-title: Int J Mech Sci
– volume: 119
  start-page: 539
  year: 2018
  end-page: 548
  ident: bib38
  article-title: Theoretical investigation and prototype design for non-parallel squeeze film movement platform driven by standing waves
  publication-title: Tribol Int
– volume: 38
  start-page: 26
  year: 2000
  end-page: 32
  ident: bib32
  article-title: Non-contact transportation using near-field acoustic levitation
  publication-title: Ultrasonics
– volume: 63
  start-page: 125
  year: 2017
  end-page: 131
  ident: bib37
  article-title: Pressure potential and stability analysis in an acoustical noncontact transportation
  publication-title: Acoust Phys
– year: 2023
  ident: bib45
  article-title: Self-floating and self-rotating non-contact ultrasonic motor with single active vibrator
  publication-title: Tribol Int
– start-page: 1
  year: 2011
  end-page: 60
  ident: bib3
  article-title: Ultrasonic motors: technologies and applications
– volume: 18
  start-page: 65
  year: 2015
  end-page: 79
  ident: bib60
  article-title: Nanofluidics, Rotation of fibers and other non-spherical particles by the acoustic radiation torque
– volume: 186
  year: 2023
  ident: bib25
  article-title: A generalized electromechanical coupled model of standing-wave linear ultrasonic motors and its nonlinear version
  publication-title: Mech Syst Signal Process
– volume: 29
  year: 2020
  ident: bib23
  article-title: Dynamics modeling and control of a V-shaped ultrasonic motor with two Langevin-type transducers
  publication-title: Smart Mater Struct
– volume: 306
  year: 2020
  ident: bib7
  article-title: A review on piezoelectric ultrasonic motors for the past decade: classification, operating principle, performance, and future work perspectives
  publication-title: Sensor Actuator Phys
– volume: 85
  start-page: 367
  year: 2017
  end-page: 381
  ident: bib50
  article-title: Modeling and closed loop control of near-field acoustically levitated objects
  publication-title: Mech Syst Signal Process
– volume: 183
  year: 2023
  ident: bib30
  article-title: Development of a dual-stator piezoelectric motor operated in resonance and quasi-static states
  publication-title: Mech Syst Signal Process
– volume: 116
  year: 2021
  ident: bib8
  article-title: A review of recent advances in the single-and multi-degree-of-freedom ultrasonic piezoelectric motors
  publication-title: Ultrasonics
– volume: 69
  start-page: 1508
  year: 2022
  end-page: 1514
  ident: bib34
  article-title: Measurement of holding force and transportation force acting on tabular object in near-field acoustic levitation
  publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control
– volume: 36
  start-page: 168
  year: 2013
  end-page: 181
  ident: bib41
  article-title: An ultrasonic levitation journal bearing able to control spindle center position
  publication-title: Mech Syst Signal Process
– volume: 152
  year: 2020
  ident: bib29
  article-title: Surface textured polyimide composites for improving conversion efficiency of ultrasonic motor
  publication-title: Tribol Int
– volume: 200
  year: 2021
  ident: bib43
  article-title: Theoretical analysis on the static and dynamic performances of a squeeze film air journal bearing with three separate pads structure
  publication-title: Int J Mech Sci
– volume: 52
  start-page: 866
  year: 2012
  end-page: 872
  ident: bib59
  article-title: Development and study of novel non-contact ultrasonic motor based on principle of structural asymmetry
  publication-title: Ultrasonics
– volume: 241
  year: 2023
  ident: bib24
  article-title: Low-voltage driving linear piezoelectric motors having textured sliders of surface multi-connected vesicle-like microarray
  publication-title: Int J Mech Sci
– volume: 153
  year: 2021
  ident: bib28
  article-title: Characteristics and attenuation mechanism of linear standing-wave piezoelectric motors with ceramics-mated friction couples
  publication-title: Tribol Int
– volume: 71
  start-page: 200
  year: 2021
  ident: 10.1016/j.precisioneng.2024.09.014_bib2
  article-title: A flexible shaft based travelling wave ultrasonic motor with high-precision positioning characteristics
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2021.03.011
– volume: 48
  start-page: 1625
  year: 2001
  ident: 10.1016/j.precisioneng.2024.09.014_bib20
  article-title: Numerical analysis of the symmetric hybrid transducer ultrasonic motor
  publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control
  doi: 10.1109/58.971713
– volume: 118
  year: 2021
  ident: 10.1016/j.precisioneng.2024.09.014_bib39
  article-title: Stiffness modeling for near field acoustic levitation bearings
  publication-title: Appl Phys Lett
  doi: 10.1063/5.0051372
– volume: 216
  start-page: 15
  year: 2019
  ident: 10.1016/j.precisioneng.2024.09.014_bib16
  article-title: Output performance simulation and contact analysis of traveling wave rotary ultrasonic motor based on ADINA
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2019.03.001
– year: 1985
  ident: 10.1016/j.precisioneng.2024.09.014_bib10
– volume: 183
  year: 2023
  ident: 10.1016/j.precisioneng.2024.09.014_bib30
  article-title: Development of a dual-stator piezoelectric motor operated in resonance and quasi-static states
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.109618
– volume: 134
  start-page: 41
  year: 2017
  ident: 10.1016/j.precisioneng.2024.09.014_bib42
  article-title: A novel squeeze-film air bearing with flexure pivot-tilting pads: numerical analysis and measurement
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2017.09.051
– volume: 225
  year: 2022
  ident: 10.1016/j.precisioneng.2024.09.014_bib47
  article-title: The levitation and driving performance of a contact-free manipulation device actuated by ultrasonic energy
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2022.107358
– volume: 48
  start-page: 699
  year: 2001
  ident: 10.1016/j.precisioneng.2024.09.014_bib54
  article-title: A standing wave-type noncontact linear ultrasonic motor
  publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control
  doi: 10.1109/58.920696
– volume: 160
  year: 2021
  ident: 10.1016/j.precisioneng.2024.09.014_bib26
  article-title: Transfer matrix model and experimental validation for a radial-torsional ultrasonic motor
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.107897
– volume: 200
  year: 2021
  ident: 10.1016/j.precisioneng.2024.09.014_bib43
  article-title: Theoretical analysis on the static and dynamic performances of a squeeze film air journal bearing with three separate pads structure
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2021.106442
– volume: 77
  start-page: 184
  year: 2013
  ident: 10.1016/j.precisioneng.2024.09.014_bib44
  article-title: Running performance of an aerodynamic journal bearing with squeeze film effect
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2013.10.005
– volume: 35
  start-page: 459
  year: 1997
  ident: 10.1016/j.precisioneng.2024.09.014_bib53
  article-title: An analysis of a noncontact ultrasonic motor with an ultrasonically levitated rotor
  publication-title: Ultrasonics
  doi: 10.1016/S0041-624X(97)00025-5
– volume: 28
  year: 2019
  ident: 10.1016/j.precisioneng.2024.09.014_bib17
  article-title: A traveling-wave ultrasonic motor utilizing a ring-shaped alumina/PZT vibrator
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/ab4d5d
– volume: 23
  start-page: 1036
  year: 2012
  ident: 10.1016/j.precisioneng.2024.09.014_bib19
  article-title: A high torque ultrasonic motor structured by double-stators and double-rotors
  publication-title: China Mech Eng
– volume: 29
  start-page: 491
  year: 2005
  ident: 10.1016/j.precisioneng.2024.09.014_bib51
  article-title: Non-contact handling in microassembly: acoustical levitation
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2005.03.003
– volume: 153
  year: 2021
  ident: 10.1016/j.precisioneng.2024.09.014_bib58
  article-title: Experimental and numerical investigation of a self-adapting non-contact ultrasonic motor
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2020.106624
– volume: 165
  start-page: 410
  year: 2011
  ident: 10.1016/j.precisioneng.2024.09.014_bib15
  article-title: A linear ultrasonic motor using (K0. 5Na0. 5) NbO3 based lead-free piezoelectric ceramics
  publication-title: Sensor Actuator Phys
  doi: 10.1016/j.sna.2010.10.017
– volume: 354
  start-page: 154
  year: 2015
  ident: 10.1016/j.precisioneng.2024.09.014_bib49
  article-title: On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2015.05.020
– volume: 1
  year: 2019
  ident: 10.1016/j.precisioneng.2024.09.014_bib33
  article-title: Near-field acoustic levitation and applications to bearings: a critical review
  publication-title: Int J Extrem Manuf
  doi: 10.1088/2631-7990/ab3e54
– volume: 44
  start-page: 238
  year: 2006
  ident: 10.1016/j.precisioneng.2024.09.014_bib55
  article-title: Theoretical and experimental research on a disk-type non-contact ultrasonic motor
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2006.01.001
– volume: 120
  year: 2022
  ident: 10.1016/j.precisioneng.2024.09.014_bib48
  article-title: Study on near-field acoustic levitation characteristics in a pressurized environment
  publication-title: Appl Phys Lett
– volume: 48
  start-page: 190
  year: 2018
  ident: 10.1016/j.precisioneng.2024.09.014_bib35
  article-title: Review of progress in acoustic levitation
  publication-title: Braz J Phys
  doi: 10.1007/s13538-017-0552-6
– year: 2023
  ident: 10.1016/j.precisioneng.2024.09.014_bib45
  article-title: Self-floating and self-rotating non-contact ultrasonic motor with single active vibrator
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2023.108217
– volume: 153
  year: 2021
  ident: 10.1016/j.precisioneng.2024.09.014_bib28
  article-title: Characteristics and attenuation mechanism of linear standing-wave piezoelectric motors with ceramics-mated friction couples
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2020.106580
– volume: 18
  start-page: 65
  year: 2015
  ident: 10.1016/j.precisioneng.2024.09.014_bib60
  article-title: Nanofluidics, Rotation of fibers and other non-spherical particles by the acoustic radiation torque
– year: 2013
  ident: 10.1016/j.precisioneng.2024.09.014_bib61
– volume: 119
  start-page: 539
  year: 2018
  ident: 10.1016/j.precisioneng.2024.09.014_bib38
  article-title: Theoretical investigation and prototype design for non-parallel squeeze film movement platform driven by standing waves
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2017.10.034
– volume: 44
  start-page: 412
  year: 2005
  ident: 10.1016/j.precisioneng.2024.09.014_bib13
  article-title: Ultrasonic linear motor using L1–B4 mode and its analysis
  publication-title: Jpn J Appl Phys
  doi: 10.1143/JJAP.44.412
– volume: 5
  year: 2020
  ident: 10.1016/j.precisioneng.2024.09.014_bib5
  article-title: Piezoelectric actuators and motors: materials, designs, and applications
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.201900716
– volume: 48
  start-page: 172
  year: 2017
  ident: 10.1016/j.precisioneng.2024.09.014_bib9
  article-title: Design and experimental evaluation of a precise and compact tubular ultrasonic motor driven by a single-phase source
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2016.11.018
– volume: 31
  start-page: 351
  year: 2007
  ident: 10.1016/j.precisioneng.2024.09.014_bib46
  article-title: Frequency characteristics of non-contact ultrasonic motor with motion error correction
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2007.02.002
– volume: 36
  start-page: 168
  year: 2013
  ident: 10.1016/j.precisioneng.2024.09.014_bib41
  article-title: An ultrasonic levitation journal bearing able to control spindle center position
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2012.05.006
– volume: 306
  year: 2020
  ident: 10.1016/j.precisioneng.2024.09.014_bib7
  article-title: A review on piezoelectric ultrasonic motors for the past decade: classification, operating principle, performance, and future work perspectives
  publication-title: Sensor Actuator Phys
  doi: 10.1016/j.sna.2020.111971
– volume: 116
  year: 2021
  ident: 10.1016/j.precisioneng.2024.09.014_bib8
  article-title: A review of recent advances in the single-and multi-degree-of-freedom ultrasonic piezoelectric motors
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2021.106471
– volume: 153
  start-page: 219
  year: 2019
  ident: 10.1016/j.precisioneng.2024.09.014_bib1
  article-title: Hybrid simulation for dynamic responses and performance estimation of linear ultrasonic motors
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2019.01.041
– volume: 160
  year: 2021
  ident: 10.1016/j.precisioneng.2024.09.014_bib27
  article-title: Improving the performance of ultrasonic motors in low-pressure, variable-temperature environments
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2021.107000
– volume: 152
  year: 2020
  ident: 10.1016/j.precisioneng.2024.09.014_bib29
  article-title: Surface textured polyimide composites for improving conversion efficiency of ultrasonic motor
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2020.106489
– volume: 65
  start-page: 277
  year: 2016
  ident: 10.1016/j.precisioneng.2024.09.014_bib18
  article-title: A cylindrical traveling wave ultrasonic motor using bonded-type composite beam
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2015.09.014
– volume: 4
  start-page: 10158
  year: 2016
  ident: 10.1016/j.precisioneng.2024.09.014_bib22
  article-title: A new linear ultrasonic motor using hybrid longitudinal vibration mode
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2647972
– start-page: 453
  year: 1993
  ident: 10.1016/j.precisioneng.2024.09.014_bib52
  article-title: A small noncontact ultrasonic motor
– volume: 241
  year: 2023
  ident: 10.1016/j.precisioneng.2024.09.014_bib24
  article-title: Low-voltage driving linear piezoelectric motors having textured sliders of surface multi-connected vesicle-like microarray
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2022.107984
– volume: 48
  year: 2009
  ident: 10.1016/j.precisioneng.2024.09.014_bib56
  article-title: Noncontact ultrasonic motor with two flexural standing wave vibration disks
  publication-title: Jpn J Appl Phys
  doi: 10.1143/JJAP.48.09KD10
– volume: 141
  year: 2020
  ident: 10.1016/j.precisioneng.2024.09.014_bib12
  article-title: Performance evaluation of a bimodal standing-wave ultrasonic motor considering nonlinear electroelasticity: modeling and experimental validation
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.106475
– start-page: 1
  year: 2011
  ident: 10.1016/j.precisioneng.2024.09.014_bib3
– volume: 186
  year: 2023
  ident: 10.1016/j.precisioneng.2024.09.014_bib25
  article-title: A generalized electromechanical coupled model of standing-wave linear ultrasonic motors and its nonlinear version
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.109870
– volume: 38
  start-page: 26
  year: 2000
  ident: 10.1016/j.precisioneng.2024.09.014_bib32
  article-title: Non-contact transportation using near-field acoustic levitation
  publication-title: Ultrasonics
  doi: 10.1016/S0041-624X(99)00052-9
– volume: 100
  start-page: 23
  year: 2015
  ident: 10.1016/j.precisioneng.2024.09.014_bib11
  article-title: Modeling and sticking motion analysis of a vibro-impact system in linear ultrasonic motors
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2015.06.006
– volume: 255
  start-page: 34
  year: 2017
  ident: 10.1016/j.precisioneng.2024.09.014_bib57
  article-title: A rotational traveling wave based levitation device–Modelling, design, and control
  publication-title: Sensor Actuator Phys
  doi: 10.1016/j.sna.2016.12.016
– volume: 29
  year: 2020
  ident: 10.1016/j.precisioneng.2024.09.014_bib23
  article-title: Dynamics modeling and control of a V-shaped ultrasonic motor with two Langevin-type transducers
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/ab627a
– volume: 64
  start-page: 839
  year: 2017
  ident: 10.1016/j.precisioneng.2024.09.014_bib36
  article-title: Development of an acoustic levitation linear transportation system based on a ring-type structure
  publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control
  doi: 10.1109/TUFFC.2017.2673244
– volume: 64
  start-page: 177
  year: 2020
  ident: 10.1016/j.precisioneng.2024.09.014_bib6
  article-title: Modeling, analysis and suppression of current harmonics of Langevin-type ultrasonic motors under high voltage
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2020.04.009
– volume: 63
  start-page: 125
  year: 2017
  ident: 10.1016/j.precisioneng.2024.09.014_bib37
  article-title: Pressure potential and stability analysis in an acoustical noncontact transportation
  publication-title: Acoust Phys
  doi: 10.1134/S1063771017010079
– volume: 126
  start-page: 307
  year: 2018
  ident: 10.1016/j.precisioneng.2024.09.014_bib40
  article-title: Numerical and experimental study on the influence of material characteristics on the levitation performance of squeeze-film air bearing
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2018.05.030
– volume: 49
  start-page: 338
  year: 2009
  ident: 10.1016/j.precisioneng.2024.09.014_bib14
  article-title: Characteristics of ring type traveling wave ultrasonic motor in vacuum
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2008.10.015
– volume: 100
  start-page: 2057
  year: 1996
  ident: 10.1016/j.precisioneng.2024.09.014_bib31
  article-title: Near‐field acoustic levitation of planar specimens using flexural vibration
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.417915
– volume: 85
  start-page: 367
  year: 2017
  ident: 10.1016/j.precisioneng.2024.09.014_bib50
  article-title: Modeling and closed loop control of near-field acoustically levitated objects
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.08.011
– volume: 52
  start-page: 866
  year: 2012
  ident: 10.1016/j.precisioneng.2024.09.014_bib59
  article-title: Development and study of novel non-contact ultrasonic motor based on principle of structural asymmetry
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2012.02.004
– volume: 53
  start-page: 1344
  year: 2006
  ident: 10.1016/j.precisioneng.2024.09.014_bib21
  article-title: A high-power traveling wave ultrasonic motor
  publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control
  doi: 10.1109/TUFFC.2006.1665083
– volume: 68
  start-page: 734
  year: 2020
  ident: 10.1016/j.precisioneng.2024.09.014_bib4
  article-title: A compact cantilever type ultrasonic motor with nanometer resolution: design and performance evaluation
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2020.2965481
– volume: 69
  start-page: 1508
  year: 2022
  ident: 10.1016/j.precisioneng.2024.09.014_bib34
  article-title: Measurement of holding force and transportation force acting on tabular object in near-field acoustic levitation
  publication-title: IEEE Trans Ultrason Ferroelectrics Freq Control
  doi: 10.1109/TUFFC.2022.3147603
SSID ssj0007804
Score 2.4263651
Snippet Experimental measurements and theoretical analyses of a novel non-contact ultrasonic motor driven by near-field acoustic levitation are presented, in which the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 174
SubjectTerms Acoustic levitation
Gas lubrication
Non-contact motor
Thrust bearing
Title Performance evaluation of a novel disk-type motor using ultrasonic levitation: Modeling and experimental validation
URI https://dx.doi.org/10.1016/j.precisioneng.2024.09.014
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfOKz7MFrbDbZPFbwUIqlKhYPFnoLm32UaklLmnr0tzvTJDSCB8Fjwm4I3yyzM7vffEPIje9LvF_jjrUedziHdCcOoxAMopQwXDGp8ED_ZRQOx_xpEkxapF_XwiCtsvL9pU_feOvqTbdCs7uczbpIS4JgIhDIgvQg0McKdh7hKr_92tI8UGCnpDEyB0fXwqMbjtcyrxvZZFPIFb1S85Tx3zepxsYzOCD7VcRIe-VPHZKWyY7IXkNH8JisXrf0f7rV76YLSyXNFp9mTvVs9eHgeSsF2yxyinz3KV3Pi1yuUB2XYpl5eS1_R7FBGpapU5lp2uwBQOHbs7IL0wkZDx7e-kOn6qbgKC-MCke6vkjB9xnXlyz14tRzfQXJViwiDWmF1SF3TaxsKEOhrUhhtJZMGrAWxABG-qeknQFSZ4RqvJx0deS6KuDaWGElZ8YLPMFkzAJ7TvwavmRZimYkNZvsPWmCniDoiSsSAP2c3NdIJz-WQALe_Q_zL_45_5Ls4lPJVbki7SJfm2uIOIq0s1lSHbLTe3wejr4Brl7aZQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RTl6YE1NA8njZEYUEVVoK0YWqmb5cR2FajSKm0Z-e3cNYkaJAYk1sSOou_s8539-TtCbj1P4vkas4xxmcUYpDth0ArAIHHMNYsdGeOGfn8QdEfsZeyPa6Rd3oVBWmXh-3OfvvbWxZNmgWZzniRNpCVBMOFzZEG6EOhvkW0G0xfLGNx9bXgeqLCT8xgdC5uXyqNrktc8KyvZpBNIFt1c9NRhv69SlZWnc0D2i5CRPuZ_dUhqOj0iexUhwWOyeNvw_-lGwJvODJU0nX3qKVXJ4sPCDVcKxpllFAnvE7qaLjO5QHlcivfM83P5e4oV0vCeOpWpotUiABS-neRlmE7IqPM0bHetopyCFbtBa2lJ2-MROD9te9KJ3DBybS-GbCvkLQV5hVEBs3UYm0AGXBkeQWslHanBXBAEaOmdknoKSJ0RqvB00lYt2459prThRjJHu77LHRk6vmkQr4RPzHPVDFHSyd5FFXSBoAubCwC9QR5KpMWPMSDAvf-h__k_-9-Qne6w3xO958HrBdnFNzlx5ZLUl9lKX0H4sYyu18PrG8kD2_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+a+novel+disk-type+motor+using+ultrasonic+levitation%3A+Modeling+and+experimental+validation&rft.jtitle=Precision+engineering&rft.au=Shi%2C+Minghui&rft.au=Gao%2C+Ming&rft.au=Chen%2C+Shujie&rft.au=Zhang%2C+Shaolin&rft.date=2024-12-01&rft.issn=0141-6359&rft.volume=91&rft.spage=174&rft.epage=184&rft_id=info:doi/10.1016%2Fj.precisioneng.2024.09.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_precisioneng_2024_09_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon