Self‐Healable Spider Dragline Silk Materials
Developing materials with structural flexibility that permits self‐repair in response to external disturbances remains challenging. Spider silk, which combines an exceptional blend of strength and pliability in nature, serves as an ideal dynamic model for adaptive performance design. In this work, a...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 44 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
25.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing materials with structural flexibility that permits self‐repair in response to external disturbances remains challenging. Spider silk, which combines an exceptional blend of strength and pliability in nature, serves as an ideal dynamic model for adaptive performance design. In this work, a novel self‐healing material is generated using spider silk. Dragline silk from spider
Nephila pilipes
is demonstrated with extraordinary in situ self‐repair property through a constructed thin film format, surpassing that of two other silks from spider
Cyrtophora moluccensis
and silkworm
Bombyx mori
. Subsequently, R2, a key spidroin associated with self‐healing, is biosynthesized, with validated cohesiveness. R2 is further programmed with tunable healability (permanent and reversible) and conductivity (graphene doping; R2G) for electronics applications. In the first demonstration, film strips from R2 and R2G are woven manually into multidimensional (1D‐3D) conductive fabrics for creating repairable logic gate circuits. In the second example, a reversibly‐healable R2/R2G strip is fabricated as a re‐configurable wearable ring probe to fit fingertips of varying widths while retaining its detecting capabilities. Such a prototype displays a unique conformable wearable technology. Last, the remarkable finding of self‐healing in spider silk can offer a new material paradigm for developing future adaptive biomaterials with tailored performance and environmental sustainability. |
---|---|
AbstractList | Developing materials with structural flexibility that permits self‐repair in response to external disturbances remains challenging. Spider silk, which combines an exceptional blend of strength and pliability in nature, serves as an ideal dynamic model for adaptive performance design. In this work, a novel self‐healing material is generated using spider silk. Dragline silk from spider Nephila pilipes is demonstrated with extraordinary in situ self‐repair property through a constructed thin film format, surpassing that of two other silks from spider Cyrtophora moluccensis and silkworm Bombyx mori. Subsequently, R2, a key spidroin associated with self‐healing, is biosynthesized, with validated cohesiveness. R2 is further programmed with tunable healability (permanent and reversible) and conductivity (graphene doping; R2G) for electronics applications. In the first demonstration, film strips from R2 and R2G are woven manually into multidimensional (1D‐3D) conductive fabrics for creating repairable logic gate circuits. In the second example, a reversibly‐healable R2/R2G strip is fabricated as a re‐configurable wearable ring probe to fit fingertips of varying widths while retaining its detecting capabilities. Such a prototype displays a unique conformable wearable technology. Last, the remarkable finding of self‐healing in spider silk can offer a new material paradigm for developing future adaptive biomaterials with tailored performance and environmental sustainability. Developing materials with structural flexibility that permits self‐repair in response to external disturbances remains challenging. Spider silk, which combines an exceptional blend of strength and pliability in nature, serves as an ideal dynamic model for adaptive performance design. In this work, a novel self‐healing material is generated using spider silk. Dragline silk from spider Nephila pilipes is demonstrated with extraordinary in situ self‐repair property through a constructed thin film format, surpassing that of two other silks from spider Cyrtophora moluccensis and silkworm Bombyx mori . Subsequently, R2, a key spidroin associated with self‐healing, is biosynthesized, with validated cohesiveness. R2 is further programmed with tunable healability (permanent and reversible) and conductivity (graphene doping; R2G) for electronics applications. In the first demonstration, film strips from R2 and R2G are woven manually into multidimensional (1D‐3D) conductive fabrics for creating repairable logic gate circuits. In the second example, a reversibly‐healable R2/R2G strip is fabricated as a re‐configurable wearable ring probe to fit fingertips of varying widths while retaining its detecting capabilities. Such a prototype displays a unique conformable wearable technology. Last, the remarkable finding of self‐healing in spider silk can offer a new material paradigm for developing future adaptive biomaterials with tailored performance and environmental sustainability. |
Author | Kao, Yu‐Han Yu, Sheng‐Kai Wang, Tzi‐Yuan Wang, Ruei‐Ci Yang, Ta‐I Sheu, Hwo‐Shuenn Chang, Po‐Ya Wu, Hsuan‐Chen Chen, Ssu‐Ching Liu, Wei‐Ren Chen, Wen‐Chia Chen, Jheng‐Liang |
Author_xml | – sequence: 1 givenname: Wen‐Chia orcidid: 0009-0009-1470-9938 surname: Chen fullname: Chen, Wen‐Chia organization: Department of Biochemical Science and Technology National Taiwan University Taipei City 10617 Taiwan – sequence: 2 givenname: Ruei‐Ci surname: Wang fullname: Wang, Ruei‐Ci organization: Department of Biochemical Science and Technology National Taiwan University Taipei City 10617 Taiwan – sequence: 3 givenname: Sheng‐Kai surname: Yu fullname: Yu, Sheng‐Kai organization: Department of Biochemical Science and Technology National Taiwan University Taipei City 10617 Taiwan – sequence: 4 givenname: Jheng‐Liang surname: Chen fullname: Chen, Jheng‐Liang organization: Department of Biochemical Science and Technology National Taiwan University Taipei City 10617 Taiwan – sequence: 5 givenname: Yu‐Han orcidid: 0009-0000-0536-2009 surname: Kao fullname: Kao, Yu‐Han organization: Department of Biochemical Science and Technology National Taiwan University Taipei City 10617 Taiwan – sequence: 6 givenname: Tzi‐Yuan orcidid: 0000-0002-1562-0144 surname: Wang fullname: Wang, Tzi‐Yuan organization: Biodiversity Research Center Academia Sinica Taipei City 11529 Taiwan – sequence: 7 givenname: Po‐Ya orcidid: 0000-0002-2447-6834 surname: Chang fullname: Chang, Po‐Ya organization: National Synchrotron Radiation Research Center Hsinchu City 30076 Taiwan – sequence: 8 givenname: Hwo‐Shuenn orcidid: 0000-0003-1334-5895 surname: Sheu fullname: Sheu, Hwo‐Shuenn organization: National Synchrotron Radiation Research Center Hsinchu City 30076 Taiwan – sequence: 9 givenname: Ssu‐Ching orcidid: 0000-0003-3092-1786 surname: Chen fullname: Chen, Ssu‐Ching organization: Department of Chemical Engineering Chung Yuan Christian University Taoyuan City 32023 Taiwan – sequence: 10 givenname: Wei‐Ren orcidid: 0000-0003-0468-895X surname: Liu fullname: Liu, Wei‐Ren organization: Department of Chemical Engineering Chung Yuan Christian University Taoyuan City 32023 Taiwan – sequence: 11 givenname: Ta‐I orcidid: 0000-0002-7719-9447 surname: Yang fullname: Yang, Ta‐I organization: Department of Chemical Engineering Chung Yuan Christian University Taoyuan City 32023 Taiwan – sequence: 12 givenname: Hsuan‐Chen orcidid: 0000-0002-7837-1333 surname: Wu fullname: Wu, Hsuan‐Chen organization: Department of Biochemical Science and Technology National Taiwan University Taipei City 10617 Taiwan |
BookMark | eNp1kD1PwzAQhi1UJNrCyhyJOeHOThxnROWjSEUMBYnNsmMbubhJcdKBjZ_Ab-SXkKqoAxLTeye9z530TMioaRtLyDlChgD0Uhm3zihQBqwo8YiMkSNPGVAxOsz4ckImXbcCwLJk-ZhkSxvc9-fX3KqgdLDJcuONjcl1VK_BN8Puw1vyoHobvQrdKTl2Q9iz35yS59ubp9k8XTze3c-uFmlNedmnVa3zEgzT4CxqYypWOuSKs1xYnTvDC0ROa-QVV0wXAIIyJ2htTa61Acem5GJ_dxPb963terlqt7EZXkoqBIqqQoFDK9-36th2XbRO1r5XvW-bPiofJILcmZE7M_JgZsCyP9gm-rWKH_8BP_fiZ0k |
CitedBy_id | crossref_primary_10_1002_sus2_205 crossref_primary_10_1002_smtd_202301705 crossref_primary_10_1002_adfm_202314907 crossref_primary_10_3390_biomimetics9030169 |
Cites_doi | 10.1016/j.matt.2019.02.003 10.1021/acs.biomac.5b01130 10.1002/bit.26065 10.1007/s10853-022-08062-2 10.1371/journal.pone.0183397 10.1021/acsami.9b18646 10.1002/adma.201800129 10.1016/j.indcrop.2022.114618 10.1021/acs.biomac.8b01715 10.1039/c2sm25373a 10.1016/j.eurpolymj.2023.111844 10.1038/s41578-020-0202-4 10.1002/aenm.201502329 10.1021/jacs.7b08190 10.1038/ncomms15504 10.3390/polym12071454 10.1002/adfm.202204366 10.1002/adfm.201605665 10.1002/adfm.201910547 10.1021/ma3023603 10.1016/S0021-9258(18)41777-2 10.1088/2399-7532/ab4f9d 10.1039/D1MA00347J 10.1038/srep00782 10.1039/D1MA00823D 10.1021/ma4019153 10.1016/j.ijbiomac.2016.01.088 10.1039/C9SM00948E 10.1016/B978-0-12-407679-2.00004-1 10.1016/j.ijbiomac.2004.09.004 10.1016/j.msec.2019.110145 10.1038/srep28106 10.1016/S1359-6454(99)00294-3 10.3390/polym13081194 10.1002/adfm.201401502 10.1007/s42452-019-1486-0 10.1002/admi.201800118 10.1039/C8SM01575A 10.1038/nbt.1883 10.1002/adma.202107791 10.1021/bm200062a 10.1242/jeb.01437 10.3390/s17020407 10.4161/pri.2.4.7490 10.3390/polym13162659 10.1021/bm700877g 10.1038/s41598-018-27922-z 10.1002/adhm.201801043 10.1021/ma2001492 10.1038/nchem.1802 10.1002/admi.201800051 10.1002/adfm.201101574 10.1073/pnas.1407743111 10.1002/aenm.201700890 10.1016/B978-0-12-823472-3.00015-1 10.1126/science.1057561 10.1073/pnas.1003366107 10.1021/bm050421e 10.3389/felec.2020.594003 10.1111/1751-7915.12081 10.1002/adma.201602251 10.1016/j.crgsc.2021.100252 10.1021/acs.biomac.5b00006 10.1021/acsnano.1c01431 10.1038/s41563-020-0736-2 10.1039/C5EE02711J 10.3389/fbioe.2020.523949 10.1016/j.giant.2021.100051 10.1515/epoly-2020-0049 10.1002/adma.201305682 10.1038/srep13482 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202303571 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
ExternalDocumentID | 10_1002_adfm_202303571 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c267t-9cb470d3b0fe1bdd937f16a6348eb4fd651162c1696a3b500823f82ced4bbd0f3 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 06:48:01 EDT 2025 Tue Jul 01 00:30:45 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c267t-9cb470d3b0fe1bdd937f16a6348eb4fd651162c1696a3b500823f82ced4bbd0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0009-1470-9938 0000-0002-2447-6834 0000-0003-3092-1786 0000-0003-1334-5895 0000-0002-7719-9447 0009-0000-0536-2009 0000-0002-1562-0144 0000-0003-0468-895X 0000-0002-7837-1333 |
PQID | 2881899181 |
PQPubID | 2045204 |
ParticipantIDs | proquest_journals_2881899181 crossref_citationtrail_10_1002_adfm_202303571 crossref_primary_10_1002_adfm_202303571 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-25 |
PublicationDateYYYYMMDD | 2023-10-25 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Shang X. (e_1_2_10_62_1) 2020 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Han S. (e_1_2_10_64_1) 2019; 11 e_1_2_10_60_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – ident: e_1_2_10_73_1 doi: 10.1016/j.matt.2019.02.003 – ident: e_1_2_10_34_1 doi: 10.1021/acs.biomac.5b01130 – ident: e_1_2_10_46_1 doi: 10.1002/bit.26065 – ident: e_1_2_10_13_1 doi: 10.1007/s10853-022-08062-2 – ident: e_1_2_10_37_1 doi: 10.1371/journal.pone.0183397 – ident: e_1_2_10_29_1 doi: 10.1021/acsami.9b18646 – ident: e_1_2_10_66_1 doi: 10.1002/adma.201800129 – ident: e_1_2_10_28_1 doi: 10.1016/j.indcrop.2022.114618 – ident: e_1_2_10_70_1 doi: 10.1021/acs.biomac.8b01715 – ident: e_1_2_10_56_1 doi: 10.1039/c2sm25373a – ident: e_1_2_10_14_1 doi: 10.1016/j.eurpolymj.2023.111844 – ident: e_1_2_10_15_1 doi: 10.1038/s41578-020-0202-4 – ident: e_1_2_10_72_1 doi: 10.1002/aenm.201502329 – ident: e_1_2_10_20_1 doi: 10.1021/jacs.7b08190 – start-page: 251 year: 2020 ident: e_1_2_10_62_1 publication-title: Compos. Struct. – ident: e_1_2_10_59_1 doi: 10.1038/ncomms15504 – ident: e_1_2_10_8_1 doi: 10.3390/polym12071454 – ident: e_1_2_10_9_1 doi: 10.1002/adfm.202204366 – ident: e_1_2_10_27_1 doi: 10.1002/adfm.201605665 – ident: e_1_2_10_68_1 doi: 10.1002/adfm.201910547 – ident: e_1_2_10_22_1 doi: 10.1021/ma3023603 – ident: e_1_2_10_41_1 doi: 10.1016/S0021-9258(18)41777-2 – ident: e_1_2_10_10_1 doi: 10.1088/2399-7532/ab4f9d – ident: e_1_2_10_19_1 doi: 10.1039/D1MA00347J – ident: e_1_2_10_39_1 doi: 10.1038/srep00782 – ident: e_1_2_10_63_1 doi: 10.1039/D1MA00823D – ident: e_1_2_10_18_1 doi: 10.1021/ma4019153 – ident: e_1_2_10_45_1 doi: 10.1016/j.ijbiomac.2016.01.088 – ident: e_1_2_10_23_1 doi: 10.1039/C9SM00948E – ident: e_1_2_10_43_1 doi: 10.1016/B978-0-12-407679-2.00004-1 – ident: e_1_2_10_55_1 doi: 10.1016/j.ijbiomac.2004.09.004 – ident: e_1_2_10_53_1 doi: 10.1016/j.msec.2019.110145 – ident: e_1_2_10_60_1 doi: 10.1038/srep28106 – ident: e_1_2_10_1_1 doi: 10.1016/S1359-6454(99)00294-3 – ident: e_1_2_10_26_1 doi: 10.3390/polym13081194 – ident: e_1_2_10_31_1 doi: 10.1002/adfm.201401502 – ident: e_1_2_10_50_1 doi: 10.1007/s42452-019-1486-0 – ident: e_1_2_10_25_1 doi: 10.1002/admi.201800118 – ident: e_1_2_10_33_1 doi: 10.1039/C8SM01575A – ident: e_1_2_10_49_1 doi: 10.1038/nbt.1883 – ident: e_1_2_10_16_1 doi: 10.1002/adma.202107791 – ident: e_1_2_10_52_1 doi: 10.1021/bm200062a – ident: e_1_2_10_48_1 doi: 10.1242/jeb.01437 – ident: e_1_2_10_67_1 doi: 10.3390/s17020407 – ident: e_1_2_10_35_1 doi: 10.4161/pri.2.4.7490 – ident: e_1_2_10_47_1 doi: 10.3390/polym13162659 – ident: e_1_2_10_44_1 doi: 10.1021/bm700877g – ident: e_1_2_10_57_1 doi: 10.1038/s41598-018-27922-z – ident: e_1_2_10_71_1 doi: 10.1002/adhm.201801043 – ident: e_1_2_10_21_1 doi: 10.1021/ma2001492 – ident: e_1_2_10_3_1 doi: 10.1038/nchem.1802 – ident: e_1_2_10_24_1 doi: 10.1002/admi.201800051 – ident: e_1_2_10_17_1 doi: 10.1002/adfm.201101574 – ident: e_1_2_10_69_1 doi: 10.1073/pnas.1407743111 – ident: e_1_2_10_7_1 doi: 10.1002/aenm.201700890 – ident: e_1_2_10_12_1 doi: 10.1016/B978-0-12-823472-3.00015-1 – ident: e_1_2_10_38_1 doi: 10.1126/science.1057561 – ident: e_1_2_10_61_1 doi: 10.1073/pnas.1003366107 – ident: e_1_2_10_42_1 doi: 10.1021/bm050421e – ident: e_1_2_10_2_1 doi: 10.3389/felec.2020.594003 – ident: e_1_2_10_36_1 doi: 10.1111/1751-7915.12081 – ident: e_1_2_10_6_1 doi: 10.1002/adma.201602251 – ident: e_1_2_10_32_1 doi: 10.1016/j.crgsc.2021.100252 – ident: e_1_2_10_54_1 doi: 10.1021/acs.biomac.5b00006 – ident: e_1_2_10_65_1 doi: 10.1021/acsnano.1c01431 – ident: e_1_2_10_30_1 doi: 10.1038/s41563-020-0736-2 – ident: e_1_2_10_4_1 doi: 10.1039/C5EE02711J – ident: e_1_2_10_51_1 doi: 10.3389/fbioe.2020.523949 – ident: e_1_2_10_11_1 doi: 10.1016/j.giant.2021.100051 – ident: e_1_2_10_40_1 doi: 10.1515/epoly-2020-0049 – ident: e_1_2_10_5_1 doi: 10.1002/adma.201305682 – ident: e_1_2_10_58_1 doi: 10.1038/srep13482 – volume: 11 start-page: 3246 year: 2019 ident: e_1_2_10_64_1 publication-title: Am. J. Transl. Res. |
SSID | ssj0017734 |
Score | 2.4694922 |
Snippet | Developing materials with structural flexibility that permits self‐repair in response to external disturbances remains challenging. Spider silk, which combines... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Biomedical materials Dynamic models Gates (circuits) Graphene Healing Logic circuits Materials science Silk Silkworms Spiders Thin films Wearable technology |
Title | Self‐Healable Spider Dragline Silk Materials |
URI | https://www.proquest.com/docview/2881899181 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbKcimHqi_Eq1UOlTigQGJ77eS4glaIshxYULlFdmIvEdst2mYvnPoT-hv7Szp-xLsBKkEv2ZXX8SaZLzNje-YbhD7xLGciwSqmVc5jCgY5lpSoOMeV0kKRnFjeguEZO76kJ1f9q0VYkc0uaeR-efdoXsn_SBXaQK4mS_YZkg2DQgN8B_nCESQMxyfJeKQmOkQrmIQimwc1MkVfZ3tHMzG2PuSontzsDUXjrmjZGx20AQDGuvlFwe-djnbj32mmb_DR_tfhdb1Q537F-Xyu6kWHOqiTuV1ghUHG4devor4_-kmnwymAdry8IIFtaJtLXvY6lKUmnM5WwgETs9zm88C94nUMGB5gjgXygUJ3BLGi0oY1AKZLpO8qtnSZs-9ZtBBn6DiZcWHOL8L5K2gVw6QC99Dq4Gh4Ogq7Tpy7KIT2BlqSzwQfdK-g68R0bbh1TC5eo1d-RhENHDzeoBdq-hatLfFMvkP7Bih_fv1uIRI5iEQtRCIDkShA5D26_PL54vA49oUy4hIz3sR5KSlPKiITrVJZVeBy6pQJRmimJNUVA6-a4TJl8F4S2be7qzrDgC8qZZVoso560x9TtYEiLtNS5-CVljilghDJ-0xgninwW0yx0U0Ut3delJ5F3hQzmRSPP-tNtBv63zr-lH_23GkfZOHfsZ8FzsChhClMlm49eaBt9HIByx3Ua2Zz9QE8x0Z-9AL_C5MXZIY |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Healable+Spider+Dragline+Silk+Materials&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Wen%E2%80%90Chia&rft.au=Wang%2C+Ruei%E2%80%90Ci&rft.au=Yu%2C+Sheng%E2%80%90Kai&rft.au=Chen%2C+Jheng%E2%80%90Liang&rft.date=2023-10-25&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=44&rft_id=info:doi/10.1002%2Fadfm.202303571&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202303571 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |