Self‐Healable Spider Dragline Silk Materials

Developing materials with structural flexibility that permits self‐repair in response to external disturbances remains challenging. Spider silk, which combines an exceptional blend of strength and pliability in nature, serves as an ideal dynamic model for adaptive performance design. In this work, a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 44
Main Authors Chen, Wen‐Chia, Wang, Ruei‐Ci, Yu, Sheng‐Kai, Chen, Jheng‐Liang, Kao, Yu‐Han, Wang, Tzi‐Yuan, Chang, Po‐Ya, Sheu, Hwo‐Shuenn, Chen, Ssu‐Ching, Liu, Wei‐Ren, Yang, Ta‐I, Wu, Hsuan‐Chen
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 25.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing materials with structural flexibility that permits self‐repair in response to external disturbances remains challenging. Spider silk, which combines an exceptional blend of strength and pliability in nature, serves as an ideal dynamic model for adaptive performance design. In this work, a novel self‐healing material is generated using spider silk. Dragline silk from spider Nephila pilipes is demonstrated with extraordinary in situ self‐repair property through a constructed thin film format, surpassing that of two other silks from spider Cyrtophora moluccensis and silkworm Bombyx mori . Subsequently, R2, a key spidroin associated with self‐healing, is biosynthesized, with validated cohesiveness. R2 is further programmed with tunable healability (permanent and reversible) and conductivity (graphene doping; R2G) for electronics applications. In the first demonstration, film strips from R2 and R2G are woven manually into multidimensional (1D‐3D) conductive fabrics for creating repairable logic gate circuits. In the second example, a reversibly‐healable R2/R2G strip is fabricated as a re‐configurable wearable ring probe to fit fingertips of varying widths while retaining its detecting capabilities. Such a prototype displays a unique conformable wearable technology. Last, the remarkable finding of self‐healing in spider silk can offer a new material paradigm for developing future adaptive biomaterials with tailored performance and environmental sustainability.
AbstractList Developing materials with structural flexibility that permits self‐repair in response to external disturbances remains challenging. Spider silk, which combines an exceptional blend of strength and pliability in nature, serves as an ideal dynamic model for adaptive performance design. In this work, a novel self‐healing material is generated using spider silk. Dragline silk from spider Nephila pilipes is demonstrated with extraordinary in situ self‐repair property through a constructed thin film format, surpassing that of two other silks from spider Cyrtophora moluccensis and silkworm Bombyx mori. Subsequently, R2, a key spidroin associated with self‐healing, is biosynthesized, with validated cohesiveness. R2 is further programmed with tunable healability (permanent and reversible) and conductivity (graphene doping; R2G) for electronics applications. In the first demonstration, film strips from R2 and R2G are woven manually into multidimensional (1D‐3D) conductive fabrics for creating repairable logic gate circuits. In the second example, a reversibly‐healable R2/R2G strip is fabricated as a re‐configurable wearable ring probe to fit fingertips of varying widths while retaining its detecting capabilities. Such a prototype displays a unique conformable wearable technology. Last, the remarkable finding of self‐healing in spider silk can offer a new material paradigm for developing future adaptive biomaterials with tailored performance and environmental sustainability.
Developing materials with structural flexibility that permits self‐repair in response to external disturbances remains challenging. Spider silk, which combines an exceptional blend of strength and pliability in nature, serves as an ideal dynamic model for adaptive performance design. In this work, a novel self‐healing material is generated using spider silk. Dragline silk from spider Nephila pilipes is demonstrated with extraordinary in situ self‐repair property through a constructed thin film format, surpassing that of two other silks from spider Cyrtophora moluccensis and silkworm Bombyx mori . Subsequently, R2, a key spidroin associated with self‐healing, is biosynthesized, with validated cohesiveness. R2 is further programmed with tunable healability (permanent and reversible) and conductivity (graphene doping; R2G) for electronics applications. In the first demonstration, film strips from R2 and R2G are woven manually into multidimensional (1D‐3D) conductive fabrics for creating repairable logic gate circuits. In the second example, a reversibly‐healable R2/R2G strip is fabricated as a re‐configurable wearable ring probe to fit fingertips of varying widths while retaining its detecting capabilities. Such a prototype displays a unique conformable wearable technology. Last, the remarkable finding of self‐healing in spider silk can offer a new material paradigm for developing future adaptive biomaterials with tailored performance and environmental sustainability.
Author Kao, Yu‐Han
Yu, Sheng‐Kai
Wang, Tzi‐Yuan
Wang, Ruei‐Ci
Yang, Ta‐I
Sheu, Hwo‐Shuenn
Chang, Po‐Ya
Wu, Hsuan‐Chen
Chen, Ssu‐Ching
Liu, Wei‐Ren
Chen, Wen‐Chia
Chen, Jheng‐Liang
Author_xml – sequence: 1
  givenname: Wen‐Chia
  orcidid: 0009-0009-1470-9938
  surname: Chen
  fullname: Chen, Wen‐Chia
  organization: Department of Biochemical Science and Technology National Taiwan University Taipei City 10617 Taiwan
– sequence: 2
  givenname: Ruei‐Ci
  surname: Wang
  fullname: Wang, Ruei‐Ci
  organization: Department of Biochemical Science and Technology National Taiwan University Taipei City 10617 Taiwan
– sequence: 3
  givenname: Sheng‐Kai
  surname: Yu
  fullname: Yu, Sheng‐Kai
  organization: Department of Biochemical Science and Technology National Taiwan University Taipei City 10617 Taiwan
– sequence: 4
  givenname: Jheng‐Liang
  surname: Chen
  fullname: Chen, Jheng‐Liang
  organization: Department of Biochemical Science and Technology National Taiwan University Taipei City 10617 Taiwan
– sequence: 5
  givenname: Yu‐Han
  orcidid: 0009-0000-0536-2009
  surname: Kao
  fullname: Kao, Yu‐Han
  organization: Department of Biochemical Science and Technology National Taiwan University Taipei City 10617 Taiwan
– sequence: 6
  givenname: Tzi‐Yuan
  orcidid: 0000-0002-1562-0144
  surname: Wang
  fullname: Wang, Tzi‐Yuan
  organization: Biodiversity Research Center Academia Sinica Taipei City 11529 Taiwan
– sequence: 7
  givenname: Po‐Ya
  orcidid: 0000-0002-2447-6834
  surname: Chang
  fullname: Chang, Po‐Ya
  organization: National Synchrotron Radiation Research Center Hsinchu City 30076 Taiwan
– sequence: 8
  givenname: Hwo‐Shuenn
  orcidid: 0000-0003-1334-5895
  surname: Sheu
  fullname: Sheu, Hwo‐Shuenn
  organization: National Synchrotron Radiation Research Center Hsinchu City 30076 Taiwan
– sequence: 9
  givenname: Ssu‐Ching
  orcidid: 0000-0003-3092-1786
  surname: Chen
  fullname: Chen, Ssu‐Ching
  organization: Department of Chemical Engineering Chung Yuan Christian University Taoyuan City 32023 Taiwan
– sequence: 10
  givenname: Wei‐Ren
  orcidid: 0000-0003-0468-895X
  surname: Liu
  fullname: Liu, Wei‐Ren
  organization: Department of Chemical Engineering Chung Yuan Christian University Taoyuan City 32023 Taiwan
– sequence: 11
  givenname: Ta‐I
  orcidid: 0000-0002-7719-9447
  surname: Yang
  fullname: Yang, Ta‐I
  organization: Department of Chemical Engineering Chung Yuan Christian University Taoyuan City 32023 Taiwan
– sequence: 12
  givenname: Hsuan‐Chen
  orcidid: 0000-0002-7837-1333
  surname: Wu
  fullname: Wu, Hsuan‐Chen
  organization: Department of Biochemical Science and Technology National Taiwan University Taipei City 10617 Taiwan
BookMark eNp1kD1PwzAQhi1UJNrCyhyJOeHOThxnROWjSEUMBYnNsmMbubhJcdKBjZ_Ab-SXkKqoAxLTeye9z530TMioaRtLyDlChgD0Uhm3zihQBqwo8YiMkSNPGVAxOsz4ckImXbcCwLJk-ZhkSxvc9-fX3KqgdLDJcuONjcl1VK_BN8Puw1vyoHobvQrdKTl2Q9iz35yS59ubp9k8XTze3c-uFmlNedmnVa3zEgzT4CxqYypWOuSKs1xYnTvDC0ROa-QVV0wXAIIyJ2htTa61Acem5GJ_dxPb963terlqt7EZXkoqBIqqQoFDK9-36th2XbRO1r5XvW-bPiofJILcmZE7M_JgZsCyP9gm-rWKH_8BP_fiZ0k
CitedBy_id crossref_primary_10_1002_sus2_205
crossref_primary_10_1002_smtd_202301705
crossref_primary_10_1002_adfm_202314907
crossref_primary_10_3390_biomimetics9030169
Cites_doi 10.1016/j.matt.2019.02.003
10.1021/acs.biomac.5b01130
10.1002/bit.26065
10.1007/s10853-022-08062-2
10.1371/journal.pone.0183397
10.1021/acsami.9b18646
10.1002/adma.201800129
10.1016/j.indcrop.2022.114618
10.1021/acs.biomac.8b01715
10.1039/c2sm25373a
10.1016/j.eurpolymj.2023.111844
10.1038/s41578-020-0202-4
10.1002/aenm.201502329
10.1021/jacs.7b08190
10.1038/ncomms15504
10.3390/polym12071454
10.1002/adfm.202204366
10.1002/adfm.201605665
10.1002/adfm.201910547
10.1021/ma3023603
10.1016/S0021-9258(18)41777-2
10.1088/2399-7532/ab4f9d
10.1039/D1MA00347J
10.1038/srep00782
10.1039/D1MA00823D
10.1021/ma4019153
10.1016/j.ijbiomac.2016.01.088
10.1039/C9SM00948E
10.1016/B978-0-12-407679-2.00004-1
10.1016/j.ijbiomac.2004.09.004
10.1016/j.msec.2019.110145
10.1038/srep28106
10.1016/S1359-6454(99)00294-3
10.3390/polym13081194
10.1002/adfm.201401502
10.1007/s42452-019-1486-0
10.1002/admi.201800118
10.1039/C8SM01575A
10.1038/nbt.1883
10.1002/adma.202107791
10.1021/bm200062a
10.1242/jeb.01437
10.3390/s17020407
10.4161/pri.2.4.7490
10.3390/polym13162659
10.1021/bm700877g
10.1038/s41598-018-27922-z
10.1002/adhm.201801043
10.1021/ma2001492
10.1038/nchem.1802
10.1002/admi.201800051
10.1002/adfm.201101574
10.1073/pnas.1407743111
10.1002/aenm.201700890
10.1016/B978-0-12-823472-3.00015-1
10.1126/science.1057561
10.1073/pnas.1003366107
10.1021/bm050421e
10.3389/felec.2020.594003
10.1111/1751-7915.12081
10.1002/adma.201602251
10.1016/j.crgsc.2021.100252
10.1021/acs.biomac.5b00006
10.1021/acsnano.1c01431
10.1038/s41563-020-0736-2
10.1039/C5EE02711J
10.3389/fbioe.2020.523949
10.1016/j.giant.2021.100051
10.1515/epoly-2020-0049
10.1002/adma.201305682
10.1038/srep13482
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202303571
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202303571
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c267t-9cb470d3b0fe1bdd937f16a6348eb4fd651162c1696a3b500823f82ced4bbd0f3
ISSN 1616-301X
IngestDate Fri Jul 25 06:48:01 EDT 2025
Tue Jul 01 00:30:45 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-9cb470d3b0fe1bdd937f16a6348eb4fd651162c1696a3b500823f82ced4bbd0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-1470-9938
0000-0002-2447-6834
0000-0003-3092-1786
0000-0003-1334-5895
0000-0002-7719-9447
0009-0000-0536-2009
0000-0002-1562-0144
0000-0003-0468-895X
0000-0002-7837-1333
PQID 2881899181
PQPubID 2045204
ParticipantIDs proquest_journals_2881899181
crossref_citationtrail_10_1002_adfm_202303571
crossref_primary_10_1002_adfm_202303571
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-25
PublicationDateYYYYMMDD 2023-10-25
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-25
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Shang X. (e_1_2_10_62_1) 2020
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Han S. (e_1_2_10_64_1) 2019; 11
e_1_2_10_60_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – ident: e_1_2_10_73_1
  doi: 10.1016/j.matt.2019.02.003
– ident: e_1_2_10_34_1
  doi: 10.1021/acs.biomac.5b01130
– ident: e_1_2_10_46_1
  doi: 10.1002/bit.26065
– ident: e_1_2_10_13_1
  doi: 10.1007/s10853-022-08062-2
– ident: e_1_2_10_37_1
  doi: 10.1371/journal.pone.0183397
– ident: e_1_2_10_29_1
  doi: 10.1021/acsami.9b18646
– ident: e_1_2_10_66_1
  doi: 10.1002/adma.201800129
– ident: e_1_2_10_28_1
  doi: 10.1016/j.indcrop.2022.114618
– ident: e_1_2_10_70_1
  doi: 10.1021/acs.biomac.8b01715
– ident: e_1_2_10_56_1
  doi: 10.1039/c2sm25373a
– ident: e_1_2_10_14_1
  doi: 10.1016/j.eurpolymj.2023.111844
– ident: e_1_2_10_15_1
  doi: 10.1038/s41578-020-0202-4
– ident: e_1_2_10_72_1
  doi: 10.1002/aenm.201502329
– ident: e_1_2_10_20_1
  doi: 10.1021/jacs.7b08190
– start-page: 251
  year: 2020
  ident: e_1_2_10_62_1
  publication-title: Compos. Struct.
– ident: e_1_2_10_59_1
  doi: 10.1038/ncomms15504
– ident: e_1_2_10_8_1
  doi: 10.3390/polym12071454
– ident: e_1_2_10_9_1
  doi: 10.1002/adfm.202204366
– ident: e_1_2_10_27_1
  doi: 10.1002/adfm.201605665
– ident: e_1_2_10_68_1
  doi: 10.1002/adfm.201910547
– ident: e_1_2_10_22_1
  doi: 10.1021/ma3023603
– ident: e_1_2_10_41_1
  doi: 10.1016/S0021-9258(18)41777-2
– ident: e_1_2_10_10_1
  doi: 10.1088/2399-7532/ab4f9d
– ident: e_1_2_10_19_1
  doi: 10.1039/D1MA00347J
– ident: e_1_2_10_39_1
  doi: 10.1038/srep00782
– ident: e_1_2_10_63_1
  doi: 10.1039/D1MA00823D
– ident: e_1_2_10_18_1
  doi: 10.1021/ma4019153
– ident: e_1_2_10_45_1
  doi: 10.1016/j.ijbiomac.2016.01.088
– ident: e_1_2_10_23_1
  doi: 10.1039/C9SM00948E
– ident: e_1_2_10_43_1
  doi: 10.1016/B978-0-12-407679-2.00004-1
– ident: e_1_2_10_55_1
  doi: 10.1016/j.ijbiomac.2004.09.004
– ident: e_1_2_10_53_1
  doi: 10.1016/j.msec.2019.110145
– ident: e_1_2_10_60_1
  doi: 10.1038/srep28106
– ident: e_1_2_10_1_1
  doi: 10.1016/S1359-6454(99)00294-3
– ident: e_1_2_10_26_1
  doi: 10.3390/polym13081194
– ident: e_1_2_10_31_1
  doi: 10.1002/adfm.201401502
– ident: e_1_2_10_50_1
  doi: 10.1007/s42452-019-1486-0
– ident: e_1_2_10_25_1
  doi: 10.1002/admi.201800118
– ident: e_1_2_10_33_1
  doi: 10.1039/C8SM01575A
– ident: e_1_2_10_49_1
  doi: 10.1038/nbt.1883
– ident: e_1_2_10_16_1
  doi: 10.1002/adma.202107791
– ident: e_1_2_10_52_1
  doi: 10.1021/bm200062a
– ident: e_1_2_10_48_1
  doi: 10.1242/jeb.01437
– ident: e_1_2_10_67_1
  doi: 10.3390/s17020407
– ident: e_1_2_10_35_1
  doi: 10.4161/pri.2.4.7490
– ident: e_1_2_10_47_1
  doi: 10.3390/polym13162659
– ident: e_1_2_10_44_1
  doi: 10.1021/bm700877g
– ident: e_1_2_10_57_1
  doi: 10.1038/s41598-018-27922-z
– ident: e_1_2_10_71_1
  doi: 10.1002/adhm.201801043
– ident: e_1_2_10_21_1
  doi: 10.1021/ma2001492
– ident: e_1_2_10_3_1
  doi: 10.1038/nchem.1802
– ident: e_1_2_10_24_1
  doi: 10.1002/admi.201800051
– ident: e_1_2_10_17_1
  doi: 10.1002/adfm.201101574
– ident: e_1_2_10_69_1
  doi: 10.1073/pnas.1407743111
– ident: e_1_2_10_7_1
  doi: 10.1002/aenm.201700890
– ident: e_1_2_10_12_1
  doi: 10.1016/B978-0-12-823472-3.00015-1
– ident: e_1_2_10_38_1
  doi: 10.1126/science.1057561
– ident: e_1_2_10_61_1
  doi: 10.1073/pnas.1003366107
– ident: e_1_2_10_42_1
  doi: 10.1021/bm050421e
– ident: e_1_2_10_2_1
  doi: 10.3389/felec.2020.594003
– ident: e_1_2_10_36_1
  doi: 10.1111/1751-7915.12081
– ident: e_1_2_10_6_1
  doi: 10.1002/adma.201602251
– ident: e_1_2_10_32_1
  doi: 10.1016/j.crgsc.2021.100252
– ident: e_1_2_10_54_1
  doi: 10.1021/acs.biomac.5b00006
– ident: e_1_2_10_65_1
  doi: 10.1021/acsnano.1c01431
– ident: e_1_2_10_30_1
  doi: 10.1038/s41563-020-0736-2
– ident: e_1_2_10_4_1
  doi: 10.1039/C5EE02711J
– ident: e_1_2_10_51_1
  doi: 10.3389/fbioe.2020.523949
– ident: e_1_2_10_11_1
  doi: 10.1016/j.giant.2021.100051
– ident: e_1_2_10_40_1
  doi: 10.1515/epoly-2020-0049
– ident: e_1_2_10_5_1
  doi: 10.1002/adma.201305682
– ident: e_1_2_10_58_1
  doi: 10.1038/srep13482
– volume: 11
  start-page: 3246
  year: 2019
  ident: e_1_2_10_64_1
  publication-title: Am. J. Transl. Res.
SSID ssj0017734
Score 2.4694922
Snippet Developing materials with structural flexibility that permits self‐repair in response to external disturbances remains challenging. Spider silk, which combines...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Biomedical materials
Dynamic models
Gates (circuits)
Graphene
Healing
Logic circuits
Materials science
Silk
Silkworms
Spiders
Thin films
Wearable technology
Title Self‐Healable Spider Dragline Silk Materials
URI https://www.proquest.com/docview/2881899181
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbKcimHqi_Eq1UOlTigQGJ77eS4glaIshxYULlFdmIvEdst2mYvnPoT-hv7Szp-xLsBKkEv2ZXX8SaZLzNje-YbhD7xLGciwSqmVc5jCgY5lpSoOMeV0kKRnFjeguEZO76kJ1f9q0VYkc0uaeR-efdoXsn_SBXaQK4mS_YZkg2DQgN8B_nCESQMxyfJeKQmOkQrmIQimwc1MkVfZ3tHMzG2PuSontzsDUXjrmjZGx20AQDGuvlFwe-djnbj32mmb_DR_tfhdb1Q537F-Xyu6kWHOqiTuV1ghUHG4devor4_-kmnwymAdry8IIFtaJtLXvY6lKUmnM5WwgETs9zm88C94nUMGB5gjgXygUJ3BLGi0oY1AKZLpO8qtnSZs-9ZtBBn6DiZcWHOL8L5K2gVw6QC99Dq4Gh4Ogq7Tpy7KIT2BlqSzwQfdK-g68R0bbh1TC5eo1d-RhENHDzeoBdq-hatLfFMvkP7Bih_fv1uIRI5iEQtRCIDkShA5D26_PL54vA49oUy4hIz3sR5KSlPKiITrVJZVeBy6pQJRmimJNUVA6-a4TJl8F4S2be7qzrDgC8qZZVoso560x9TtYEiLtNS5-CVljilghDJ-0xgninwW0yx0U0Ut3delJ5F3hQzmRSPP-tNtBv63zr-lH_23GkfZOHfsZ8FzsChhClMlm49eaBt9HIByx3Ua2Zz9QE8x0Z-9AL_C5MXZIY
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Healable+Spider+Dragline+Silk+Materials&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Wen%E2%80%90Chia&rft.au=Wang%2C+Ruei%E2%80%90Ci&rft.au=Yu%2C+Sheng%E2%80%90Kai&rft.au=Chen%2C+Jheng%E2%80%90Liang&rft.date=2023-10-25&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=44&rft_id=info:doi/10.1002%2Fadfm.202303571&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202303571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon