Directional Reconstruction of Iron Oxides to Active Sites for Superior Water Oxidation

Rationally constructing and manipulating the in situ formed catalytically active surface of catalysts remains a tremendous challenge for a highly efficient water electrolysis. Herein, an anion and cation co‐induced strategy is presented to modulate in situ catalyst dissolution‐redeposition and to ac...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 43
Main Authors Liu, Hai‐Jun, Zhang, Shuo, Yang, Wen‐Yu, Yu, Ning, Liu, Chun‐Ying, Chai, Yong‐Ming, Dong, Bin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 18.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rationally constructing and manipulating the in situ formed catalytically active surface of catalysts remains a tremendous challenge for a highly efficient water electrolysis. Herein, an anion and cation co‐induced strategy is presented to modulate in situ catalyst dissolution‐redeposition and to achieve the directional reconstruction of Zn and S co‐doped Fe 2 O 3 and Fe 3 O 4 on iron foams (Zn,S‐Fe 2 O 3 ‐Fe 3 O 4 /IF), for oxygen evolution reaction (OER). Benefiting from Zn, S co‐doping and the presence of Fe 3 O 4 , a directionally reconstructed surface is obtained. The Fe 2 O 3 in the Zn,S‐Fe 2 O 3 ‐Fe 3 O 4 /IF is directionally reconstructed into FeOOH (Zn,S‐Fe 3 O 4 ‐FeOOH/IF), in which the S leaching promotes the Fe dissolution and the Zn co‐deposition regulates the activity of the obtained FeOOH. Moreover, the presence of Fe 3 O 4 provides a stable site for FeOOH deposition, and thus causes more FeOOH active components to be formed. Directionally reconstructed Zn,S‐Fe 3 O 4 ‐FeOOH/IF outperformes many state‐of‐the‐art OER catalysts and demonstrates a remarkable stability. The experimental and density functional theory (DFT) calculation results show that the introduction of Zn‐doped FeOOH with abundant oxygen vacancies through directional reconstruction has activated lattice O atoms, facilitating the OER process on the heterojunction surface following the lattice oxygen mechanism (LOM) pathway. This work makes a stride in co‐induced strategy modulating directional reconstruction.
AbstractList Rationally constructing and manipulating the in situ formed catalytically active surface of catalysts remains a tremendous challenge for a highly efficient water electrolysis. Herein, an anion and cation co‐induced strategy is presented to modulate in situ catalyst dissolution‐redeposition and to achieve the directional reconstruction of Zn and S co‐doped Fe 2 O 3 and Fe 3 O 4 on iron foams (Zn,S‐Fe 2 O 3 ‐Fe 3 O 4 /IF), for oxygen evolution reaction (OER). Benefiting from Zn, S co‐doping and the presence of Fe 3 O 4 , a directionally reconstructed surface is obtained. The Fe 2 O 3 in the Zn,S‐Fe 2 O 3 ‐Fe 3 O 4 /IF is directionally reconstructed into FeOOH (Zn,S‐Fe 3 O 4 ‐FeOOH/IF), in which the S leaching promotes the Fe dissolution and the Zn co‐deposition regulates the activity of the obtained FeOOH. Moreover, the presence of Fe 3 O 4 provides a stable site for FeOOH deposition, and thus causes more FeOOH active components to be formed. Directionally reconstructed Zn,S‐Fe 3 O 4 ‐FeOOH/IF outperformes many state‐of‐the‐art OER catalysts and demonstrates a remarkable stability. The experimental and density functional theory (DFT) calculation results show that the introduction of Zn‐doped FeOOH with abundant oxygen vacancies through directional reconstruction has activated lattice O atoms, facilitating the OER process on the heterojunction surface following the lattice oxygen mechanism (LOM) pathway. This work makes a stride in co‐induced strategy modulating directional reconstruction.
Rationally constructing and manipulating the in situ formed catalytically active surface of catalysts remains a tremendous challenge for a highly efficient water electrolysis. Herein, an anion and cation co‐induced strategy is presented to modulate in situ catalyst dissolution‐redeposition and to achieve the directional reconstruction of Zn and S co‐doped Fe2O3 and Fe3O4 on iron foams (Zn,S‐Fe2O3‐Fe3O4/IF), for oxygen evolution reaction (OER). Benefiting from Zn, S co‐doping and the presence of Fe3O4, a directionally reconstructed surface is obtained. The Fe2O3 in the Zn,S‐Fe2O3‐Fe3O4/IF is directionally reconstructed into FeOOH (Zn,S‐Fe3O4‐FeOOH/IF), in which the S leaching promotes the Fe dissolution and the Zn co‐deposition regulates the activity of the obtained FeOOH. Moreover, the presence of Fe3O4 provides a stable site for FeOOH deposition, and thus causes more FeOOH active components to be formed. Directionally reconstructed Zn,S‐Fe3O4‐FeOOH/IF outperformes many state‐of‐the‐art OER catalysts and demonstrates a remarkable stability. The experimental and density functional theory (DFT) calculation results show that the introduction of Zn‐doped FeOOH with abundant oxygen vacancies through directional reconstruction has activated lattice O atoms, facilitating the OER process on the heterojunction surface following the lattice oxygen mechanism (LOM) pathway. This work makes a stride in co‐induced strategy modulating directional reconstruction.
Author Liu, Hai‐Jun
Zhang, Shuo
Dong, Bin
Yang, Wen‐Yu
Yu, Ning
Chai, Yong‐Ming
Liu, Chun‐Ying
Author_xml – sequence: 1
  givenname: Hai‐Jun
  surname: Liu
  fullname: Liu, Hai‐Jun
  organization: State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
– sequence: 2
  givenname: Shuo
  surname: Zhang
  fullname: Zhang, Shuo
  organization: State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
– sequence: 3
  givenname: Wen‐Yu
  surname: Yang
  fullname: Yang, Wen‐Yu
  organization: State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
– sequence: 4
  givenname: Ning
  surname: Yu
  fullname: Yu, Ning
  organization: State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
– sequence: 5
  givenname: Chun‐Ying
  surname: Liu
  fullname: Liu, Chun‐Ying
  organization: State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
– sequence: 6
  givenname: Yong‐Ming
  surname: Chai
  fullname: Chai, Yong‐Ming
  organization: State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
– sequence: 7
  givenname: Bin
  orcidid: 0000-0002-4817-6289
  surname: Dong
  fullname: Dong, Bin
  organization: State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
BookMark eNp1UE1rAjEQDcVC1fba80LPayfJbpIexX4JglD7dQvZmEBENzbJlvbfN2rxUOjpvZl5b5h5A9RrfWsQusQwwgDkWi3tZkSAUKCcsxPUxwyzkgIRvSPH72doEOMKAHNOqz56vXXB6OR8q9bFk9G-jSl0-0bhbTENGedfbmlikXwxzoNPUyxcyrX1oVh0WxNcJm8qmbBXqp33HJ1atY7m4heH6OX-7nnyWM7mD9PJeFZqwngqOTSUA1UKRFWBAAZ1TS2hrNJUM04Fz1gbQ4m1y4Y0rCKC2xvAwjbUqoYO0dVh7zb4j87EJFe-C_mXKLNSEAKihqyqDiodfIzBWKld2t-ZgnJriUHuEpS7BOUxwWwb_bFtg9uo8P2f4QcoR3Ti
CitedBy_id crossref_primary_10_1002_smll_202310387
crossref_primary_10_1016_j_jallcom_2024_178251
crossref_primary_10_1002_adfm_202401610
crossref_primary_10_1021_acscatal_4c05825
crossref_primary_10_1039_D3CC04070D
crossref_primary_10_1002_adfm_202402264
crossref_primary_10_1002_adfm_202406545
crossref_primary_10_3390_molecules29214990
crossref_primary_10_1016_j_cej_2024_151348
crossref_primary_10_1039_D4QI03351E
crossref_primary_10_1016_j_jcis_2024_02_198
crossref_primary_10_3390_catal15010011
crossref_primary_10_1002_adfm_202408704
crossref_primary_10_3390_molecules29010130
crossref_primary_10_1063_5_0211941
crossref_primary_10_1016_j_cej_2024_155159
crossref_primary_10_1039_D3MH02090H
crossref_primary_10_1002_advs_202412679
crossref_primary_10_1039_D4YA00238E
crossref_primary_10_1016_j_apcatb_2024_123994
crossref_primary_10_1016_j_desal_2024_118253
crossref_primary_10_1016_j_mssp_2025_109319
crossref_primary_10_1016_j_jcis_2025_137356
crossref_primary_10_1002_smll_202307069
crossref_primary_10_1021_acsanm_4c02787
crossref_primary_10_1021_acs_energyfuels_3c04545
crossref_primary_10_1016_j_ijhydene_2025_02_333
crossref_primary_10_1016_j_seppur_2024_129501
crossref_primary_10_1002_smll_202411017
crossref_primary_10_1016_j_checat_2024_101144
crossref_primary_10_1021_acscatal_3c05032
crossref_primary_10_1016_j_apsusc_2024_161264
crossref_primary_10_1039_D3QI02619A
crossref_primary_10_1016_j_jcis_2024_07_183
Cites_doi 10.1007/s40843-019-9588-5
10.1002/adfm.202209397
10.1002/adfm.202207116
10.1016/j.jcis.2019.06.080
10.1021/acsami.2c06404
10.1016/j.apcatb.2022.122165
10.1002/adma.202006351
10.1002/smll.202207727
10.1021/acsnano.2c06137
10.1002/adma.202005587
10.1002/smll.202203710
10.1002/adma.202209307
10.1016/j.apcatb.2021.120580
10.1002/adfm.202210322
10.1002/adfm.202112674
10.1002/jrs.2837
10.1002/adfm.202203520
10.1038/s41560-019-0355-9
10.1002/adma.201905107
10.1038/s41586-022-05296-7
10.1002/adfm.202208587
10.1002/aenm.202200077
10.1016/j.nanoen.2019.104293
10.1002/adma.202200270
10.1002/adma.202207041
10.1002/adfm.201505554
10.1039/D0CS01191F
10.1016/j.nanoen.2020.105230
10.1021/acssuschemeng.1c02256
10.1002/adma.202108619
10.1002/anie.202014210
10.1039/D1EE01277K
10.1002/adfm.202209543
10.1016/j.apcatb.2022.122091
10.1038/s41560-019-0404-4
10.1016/j.jpowsour.2018.12.005
10.1016/j.mtener.2021.100915
10.1038/srep12167
10.1038/s41467-020-17934-7
10.1016/j.joule.2020.01.005
10.1039/D2EE01337A
10.1002/adma.202209338
10.1038/s41467-021-24182-w
10.1038/s41467-022-33847-z
10.1021/acsnano.2c07255
10.1002/adma.202203615
10.1016/j.apcatb.2019.118134
10.1038/s41467-020-15873-x
10.1038/s41929-021-00715-w
10.1021/acscatal.9b03876
10.1016/j.apcatb.2022.122171
10.1021/jacs.9b01214
10.1002/aenm.202202522
10.1021/acscatal.2c03338
10.1016/j.apcatb.2022.122144
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202303776
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202303776
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c267t-70b3703aa084408060553f2364c3c67387c3c5ee32ffdb2b64287f9018fb3fab3
ISSN 1616-301X
IngestDate Sun Jul 13 05:19:48 EDT 2025
Tue Jul 01 00:30:46 EDT 2025
Thu Apr 24 23:12:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-70b3703aa084408060553f2364c3c67387c3c5ee32ffdb2b64287f9018fb3fab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4817-6289
PQID 2878220850
PQPubID 2045204
ParticipantIDs proquest_journals_2878220850
crossref_citationtrail_10_1002_adfm_202303776
crossref_primary_10_1002_adfm_202303776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-18
PublicationDateYYYYMMDD 2023-10-18
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-18
  day: 18
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_15_1
e_1_2_8_19_3
e_1_2_8_19_4
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_32_2
e_1_2_8_30_1
e_1_2_8_27_2
e_1_2_8_27_3
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_21_3
e_1_2_8_23_1
e_1_2_8_16_2
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_31_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
References_xml – ident: e_1_2_8_9_1
  doi: 10.1007/s40843-019-9588-5
– ident: e_1_2_8_1_2
  doi: 10.1002/adfm.202209397
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.202207116
– ident: e_1_2_8_17_1
  doi: 10.1016/j.jcis.2019.06.080
– ident: e_1_2_8_19_3
  doi: 10.1021/acsami.2c06404
– ident: e_1_2_8_2_3
  doi: 10.1016/j.apcatb.2022.122165
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.202006351
– ident: e_1_2_8_19_4
  doi: 10.1002/smll.202207727
– ident: e_1_2_8_7_2
  doi: 10.1021/acsnano.2c06137
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202005587
– ident: e_1_2_8_16_2
  doi: 10.1002/smll.202203710
– ident: e_1_2_8_32_2
  doi: 10.1002/adma.202209307
– ident: e_1_2_8_22_1
  doi: 10.1016/j.apcatb.2021.120580
– ident: e_1_2_8_1_1
  doi: 10.1002/adfm.202210322
– ident: e_1_2_8_27_2
  doi: 10.1002/adfm.202112674
– ident: e_1_2_8_19_1
  doi: 10.1002/jrs.2837
– ident: e_1_2_8_25_1
  doi: 10.1002/adfm.202203520
– ident: e_1_2_8_27_3
  doi: 10.1038/s41560-019-0355-9
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.201905107
– ident: e_1_2_8_30_1
  doi: 10.1038/s41586-022-05296-7
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.202208587
– ident: e_1_2_8_15_1
  doi: 10.1002/aenm.202200077
– ident: e_1_2_8_6_1
  doi: 10.1016/j.nanoen.2019.104293
– ident: e_1_2_8_3_2
  doi: 10.1002/adma.202200270
– ident: e_1_2_8_13_2
  doi: 10.1002/adma.202207041
– ident: e_1_2_8_19_2
  doi: 10.1002/adfm.201505554
– ident: e_1_2_8_7_1
  doi: 10.1039/D0CS01191F
– ident: e_1_2_8_21_3
  doi: 10.1016/j.nanoen.2020.105230
– ident: e_1_2_8_5_1
  doi: 10.1021/acssuschemeng.1c02256
– ident: e_1_2_8_5_2
  doi: 10.1002/adma.202108619
– ident: e_1_2_8_28_1
  doi: 10.1002/anie.202014210
– ident: e_1_2_8_31_1
  doi: 10.1039/D1EE01277K
– ident: e_1_2_8_3_1
  doi: 10.1002/adfm.202209543
– ident: e_1_2_8_2_2
  doi: 10.1016/j.apcatb.2022.122091
– ident: e_1_2_8_10_1
  doi: 10.1038/s41560-019-0404-4
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jpowsour.2018.12.005
– ident: e_1_2_8_4_1
  doi: 10.1016/j.mtener.2021.100915
– ident: e_1_2_8_20_1
  doi: 10.1038/srep12167
– ident: e_1_2_8_26_2
  doi: 10.1038/s41467-020-17934-7
– ident: e_1_2_8_16_1
  doi: 10.1016/j.joule.2020.01.005
– ident: e_1_2_8_1_3
  doi: 10.1039/D2EE01337A
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.202209338
– ident: e_1_2_8_26_1
  doi: 10.1038/s41467-021-24182-w
– ident: e_1_2_8_2_1
  doi: 10.1038/s41467-022-33847-z
– ident: e_1_2_8_4_2
  doi: 10.1021/acsnano.2c07255
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.202203615
– ident: e_1_2_8_18_1
  doi: 10.1016/j.apcatb.2019.118134
– ident: e_1_2_8_31_2
  doi: 10.1038/s41467-020-15873-x
– ident: e_1_2_8_32_1
  doi: 10.1038/s41929-021-00715-w
– ident: e_1_2_8_21_1
  doi: 10.1021/acscatal.9b03876
– ident: e_1_2_8_3_3
  doi: 10.1016/j.apcatb.2022.122171
– ident: e_1_2_8_21_2
  doi: 10.1021/jacs.9b01214
– ident: e_1_2_8_9_2
  doi: 10.1002/aenm.202202522
– ident: e_1_2_8_29_1
  doi: 10.1021/acscatal.2c03338
– ident: e_1_2_8_1_4
  doi: 10.1016/j.apcatb.2022.122144
SSID ssj0017734
Score 2.6247263
Snippet Rationally constructing and manipulating the in situ formed catalytically active surface of catalysts remains a tremendous challenge for a highly efficient...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Catalysts
Density functional theory
Deposition
Dissolution
Electrolysis
Ferric hydroxide
Ferric oxide
Heterojunctions
In situ leaching
Iron oxides
Lattice vacancies
Leaching
Materials science
Metal foams
Oxidation
Oxygen evolution reactions
Reconstruction
Zinc
Title Directional Reconstruction of Iron Oxides to Active Sites for Superior Water Oxidation
URI https://www.proquest.com/docview/2878220850
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9lIOCEoRC23lQyUOKCVrb-L0uIJWVdXHYfviFNmJLSLB7opupIpfz4ztOAlspbaXJHJsb-L5MuPxjr8hZI8djGQqTBmVpcmiMRiMSHGlIrC0opCZTIoMdyOfnafHV-OT2-R2MFh0opbqpdov_qzcV_IcqUIZyBV3yT5BsqFTKIBrkC8cQcJwfJSMvb6yi3noR7ZssHaHyG84X9xXpWNxmFjN9nla4UorBhdOa2Q5hosbiUyJWLMVU0NM24QIoP3zv_QLq-PLhWCeqrYWTFYhdOKkDqBrl6R_1POgZHzZDWi9ps33OtytHUi9VfWLEsyGt_X0aDrCkDqbDQfMTLfM7wX3ytexYHiQOcKm_5S6I4mVpUHmAHCZuBAr2LP_sWoh1tDxMrMc2-eh_QuyzsCxAM24Pvl2djoN_zwJ4SIRmhdoiD5j9qX_BP2JTN-O28nJ5WvyynsVdOIg8oYM9GyTvOxwTb4l1x2w0D5Y6NxQBAt1YKHLOXVgoRYsFMBCG7BQCxYawLJFro4OL78eRz6pRlSwVCwjESsOWl7KOMNk4zG4swk3mEag4AWmgBVwTrTmzJhSMYX-qTAwa8yM4kYq_o6szeYz_Z5QMAVpxtMylQkfa-iTjTTPNIsPRMm4zoYkakYoLzzjPCY--ZmvlsmQfAr1F45r5cGa282A5_57vMvhOWG2ixSMHx7d0Uey0cJ3m6zBwOsdmGUu1a4Hxl9PiXoP
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directional+Reconstruction+of+Iron+Oxides+to+Active+Sites+for+Superior+Water+Oxidation&rft.jtitle=Advanced+functional+materials&rft.au=Liu%2C+Hai%E2%80%90Jun&rft.au=Zhang%2C+Shuo&rft.au=Yang%2C+Wen%E2%80%90Yu&rft.au=Yu%2C+Ning&rft.date=2023-10-18&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=43&rft_id=info:doi/10.1002%2Fadfm.202303776&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202303776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon