Directional Reconstruction of Iron Oxides to Active Sites for Superior Water Oxidation
Rationally constructing and manipulating the in situ formed catalytically active surface of catalysts remains a tremendous challenge for a highly efficient water electrolysis. Herein, an anion and cation co‐induced strategy is presented to modulate in situ catalyst dissolution‐redeposition and to ac...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 43 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
18.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rationally constructing and manipulating the in situ formed catalytically active surface of catalysts remains a tremendous challenge for a highly efficient water electrolysis. Herein, an anion and cation co‐induced strategy is presented to modulate in situ catalyst dissolution‐redeposition and to achieve the directional reconstruction of Zn and S co‐doped Fe
2
O
3
and Fe
3
O
4
on iron foams (Zn,S‐Fe
2
O
3
‐Fe
3
O
4
/IF), for oxygen evolution reaction (OER). Benefiting from Zn, S co‐doping and the presence of Fe
3
O
4
, a directionally reconstructed surface is obtained. The Fe
2
O
3
in the Zn,S‐Fe
2
O
3
‐Fe
3
O
4
/IF is directionally reconstructed into FeOOH (Zn,S‐Fe
3
O
4
‐FeOOH/IF), in which the S leaching promotes the Fe dissolution and the Zn co‐deposition regulates the activity of the obtained FeOOH. Moreover, the presence of Fe
3
O
4
provides a stable site for FeOOH deposition, and thus causes more FeOOH active components to be formed. Directionally reconstructed Zn,S‐Fe
3
O
4
‐FeOOH/IF outperformes many state‐of‐the‐art OER catalysts and demonstrates a remarkable stability. The experimental and density functional theory (DFT) calculation results show that the introduction of Zn‐doped FeOOH with abundant oxygen vacancies through directional reconstruction has activated lattice O atoms, facilitating the OER process on the heterojunction surface following the lattice oxygen mechanism (LOM) pathway. This work makes a stride in co‐induced strategy modulating directional reconstruction. |
---|---|
AbstractList | Rationally constructing and manipulating the in situ formed catalytically active surface of catalysts remains a tremendous challenge for a highly efficient water electrolysis. Herein, an anion and cation co‐induced strategy is presented to modulate in situ catalyst dissolution‐redeposition and to achieve the directional reconstruction of Zn and S co‐doped Fe
2
O
3
and Fe
3
O
4
on iron foams (Zn,S‐Fe
2
O
3
‐Fe
3
O
4
/IF), for oxygen evolution reaction (OER). Benefiting from Zn, S co‐doping and the presence of Fe
3
O
4
, a directionally reconstructed surface is obtained. The Fe
2
O
3
in the Zn,S‐Fe
2
O
3
‐Fe
3
O
4
/IF is directionally reconstructed into FeOOH (Zn,S‐Fe
3
O
4
‐FeOOH/IF), in which the S leaching promotes the Fe dissolution and the Zn co‐deposition regulates the activity of the obtained FeOOH. Moreover, the presence of Fe
3
O
4
provides a stable site for FeOOH deposition, and thus causes more FeOOH active components to be formed. Directionally reconstructed Zn,S‐Fe
3
O
4
‐FeOOH/IF outperformes many state‐of‐the‐art OER catalysts and demonstrates a remarkable stability. The experimental and density functional theory (DFT) calculation results show that the introduction of Zn‐doped FeOOH with abundant oxygen vacancies through directional reconstruction has activated lattice O atoms, facilitating the OER process on the heterojunction surface following the lattice oxygen mechanism (LOM) pathway. This work makes a stride in co‐induced strategy modulating directional reconstruction. Rationally constructing and manipulating the in situ formed catalytically active surface of catalysts remains a tremendous challenge for a highly efficient water electrolysis. Herein, an anion and cation co‐induced strategy is presented to modulate in situ catalyst dissolution‐redeposition and to achieve the directional reconstruction of Zn and S co‐doped Fe2O3 and Fe3O4 on iron foams (Zn,S‐Fe2O3‐Fe3O4/IF), for oxygen evolution reaction (OER). Benefiting from Zn, S co‐doping and the presence of Fe3O4, a directionally reconstructed surface is obtained. The Fe2O3 in the Zn,S‐Fe2O3‐Fe3O4/IF is directionally reconstructed into FeOOH (Zn,S‐Fe3O4‐FeOOH/IF), in which the S leaching promotes the Fe dissolution and the Zn co‐deposition regulates the activity of the obtained FeOOH. Moreover, the presence of Fe3O4 provides a stable site for FeOOH deposition, and thus causes more FeOOH active components to be formed. Directionally reconstructed Zn,S‐Fe3O4‐FeOOH/IF outperformes many state‐of‐the‐art OER catalysts and demonstrates a remarkable stability. The experimental and density functional theory (DFT) calculation results show that the introduction of Zn‐doped FeOOH with abundant oxygen vacancies through directional reconstruction has activated lattice O atoms, facilitating the OER process on the heterojunction surface following the lattice oxygen mechanism (LOM) pathway. This work makes a stride in co‐induced strategy modulating directional reconstruction. |
Author | Liu, Hai‐Jun Zhang, Shuo Dong, Bin Yang, Wen‐Yu Yu, Ning Chai, Yong‐Ming Liu, Chun‐Ying |
Author_xml | – sequence: 1 givenname: Hai‐Jun surname: Liu fullname: Liu, Hai‐Jun organization: State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China – sequence: 2 givenname: Shuo surname: Zhang fullname: Zhang, Shuo organization: State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China – sequence: 3 givenname: Wen‐Yu surname: Yang fullname: Yang, Wen‐Yu organization: State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China – sequence: 4 givenname: Ning surname: Yu fullname: Yu, Ning organization: State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China – sequence: 5 givenname: Chun‐Ying surname: Liu fullname: Liu, Chun‐Ying organization: State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China – sequence: 6 givenname: Yong‐Ming surname: Chai fullname: Chai, Yong‐Ming organization: State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China – sequence: 7 givenname: Bin orcidid: 0000-0002-4817-6289 surname: Dong fullname: Dong, Bin organization: State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China |
BookMark | eNp1UE1rAjEQDcVC1fba80LPayfJbpIexX4JglD7dQvZmEBENzbJlvbfN2rxUOjpvZl5b5h5A9RrfWsQusQwwgDkWi3tZkSAUKCcsxPUxwyzkgIRvSPH72doEOMKAHNOqz56vXXB6OR8q9bFk9G-jSl0-0bhbTENGedfbmlikXwxzoNPUyxcyrX1oVh0WxNcJm8qmbBXqp33HJ1atY7m4heH6OX-7nnyWM7mD9PJeFZqwngqOTSUA1UKRFWBAAZ1TS2hrNJUM04Fz1gbQ4m1y4Y0rCKC2xvAwjbUqoYO0dVh7zb4j87EJFe-C_mXKLNSEAKihqyqDiodfIzBWKld2t-ZgnJriUHuEpS7BOUxwWwb_bFtg9uo8P2f4QcoR3Ti |
CitedBy_id | crossref_primary_10_1002_smll_202310387 crossref_primary_10_1016_j_jallcom_2024_178251 crossref_primary_10_1002_adfm_202401610 crossref_primary_10_1021_acscatal_4c05825 crossref_primary_10_1039_D3CC04070D crossref_primary_10_1002_adfm_202402264 crossref_primary_10_1002_adfm_202406545 crossref_primary_10_3390_molecules29214990 crossref_primary_10_1016_j_cej_2024_151348 crossref_primary_10_1039_D4QI03351E crossref_primary_10_1016_j_jcis_2024_02_198 crossref_primary_10_3390_catal15010011 crossref_primary_10_1002_adfm_202408704 crossref_primary_10_3390_molecules29010130 crossref_primary_10_1063_5_0211941 crossref_primary_10_1016_j_cej_2024_155159 crossref_primary_10_1039_D3MH02090H crossref_primary_10_1002_advs_202412679 crossref_primary_10_1039_D4YA00238E crossref_primary_10_1016_j_apcatb_2024_123994 crossref_primary_10_1016_j_desal_2024_118253 crossref_primary_10_1016_j_mssp_2025_109319 crossref_primary_10_1016_j_jcis_2025_137356 crossref_primary_10_1002_smll_202307069 crossref_primary_10_1021_acsanm_4c02787 crossref_primary_10_1021_acs_energyfuels_3c04545 crossref_primary_10_1016_j_ijhydene_2025_02_333 crossref_primary_10_1016_j_seppur_2024_129501 crossref_primary_10_1002_smll_202411017 crossref_primary_10_1016_j_checat_2024_101144 crossref_primary_10_1021_acscatal_3c05032 crossref_primary_10_1016_j_apsusc_2024_161264 crossref_primary_10_1039_D3QI02619A crossref_primary_10_1016_j_jcis_2024_07_183 |
Cites_doi | 10.1007/s40843-019-9588-5 10.1002/adfm.202209397 10.1002/adfm.202207116 10.1016/j.jcis.2019.06.080 10.1021/acsami.2c06404 10.1016/j.apcatb.2022.122165 10.1002/adma.202006351 10.1002/smll.202207727 10.1021/acsnano.2c06137 10.1002/adma.202005587 10.1002/smll.202203710 10.1002/adma.202209307 10.1016/j.apcatb.2021.120580 10.1002/adfm.202210322 10.1002/adfm.202112674 10.1002/jrs.2837 10.1002/adfm.202203520 10.1038/s41560-019-0355-9 10.1002/adma.201905107 10.1038/s41586-022-05296-7 10.1002/adfm.202208587 10.1002/aenm.202200077 10.1016/j.nanoen.2019.104293 10.1002/adma.202200270 10.1002/adma.202207041 10.1002/adfm.201505554 10.1039/D0CS01191F 10.1016/j.nanoen.2020.105230 10.1021/acssuschemeng.1c02256 10.1002/adma.202108619 10.1002/anie.202014210 10.1039/D1EE01277K 10.1002/adfm.202209543 10.1016/j.apcatb.2022.122091 10.1038/s41560-019-0404-4 10.1016/j.jpowsour.2018.12.005 10.1016/j.mtener.2021.100915 10.1038/srep12167 10.1038/s41467-020-17934-7 10.1016/j.joule.2020.01.005 10.1039/D2EE01337A 10.1002/adma.202209338 10.1038/s41467-021-24182-w 10.1038/s41467-022-33847-z 10.1021/acsnano.2c07255 10.1002/adma.202203615 10.1016/j.apcatb.2019.118134 10.1038/s41467-020-15873-x 10.1038/s41929-021-00715-w 10.1021/acscatal.9b03876 10.1016/j.apcatb.2022.122171 10.1021/jacs.9b01214 10.1002/aenm.202202522 10.1021/acscatal.2c03338 10.1016/j.apcatb.2022.122144 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202303776 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
ExternalDocumentID | 10_1002_adfm_202303776 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c267t-70b3703aa084408060553f2364c3c67387c3c5ee32ffdb2b64287f9018fb3fab3 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 05:19:48 EDT 2025 Tue Jul 01 00:30:46 EDT 2025 Thu Apr 24 23:12:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c267t-70b3703aa084408060553f2364c3c67387c3c5ee32ffdb2b64287f9018fb3fab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4817-6289 |
PQID | 2878220850 |
PQPubID | 2045204 |
ParticipantIDs | proquest_journals_2878220850 crossref_citationtrail_10_1002_adfm_202303776 crossref_primary_10_1002_adfm_202303776 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-18 |
PublicationDateYYYYMMDD | 2023-10-18 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_13_2 e_1_2_8_15_1 e_1_2_8_19_3 e_1_2_8_19_4 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_32_2 e_1_2_8_30_1 e_1_2_8_27_2 e_1_2_8_27_3 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_21_3 e_1_2_8_23_1 e_1_2_8_16_2 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_31_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 |
References_xml | – ident: e_1_2_8_9_1 doi: 10.1007/s40843-019-9588-5 – ident: e_1_2_8_1_2 doi: 10.1002/adfm.202209397 – ident: e_1_2_8_27_1 doi: 10.1002/adfm.202207116 – ident: e_1_2_8_17_1 doi: 10.1016/j.jcis.2019.06.080 – ident: e_1_2_8_19_3 doi: 10.1021/acsami.2c06404 – ident: e_1_2_8_2_3 doi: 10.1016/j.apcatb.2022.122165 – ident: e_1_2_8_24_1 doi: 10.1002/adma.202006351 – ident: e_1_2_8_19_4 doi: 10.1002/smll.202207727 – ident: e_1_2_8_7_2 doi: 10.1021/acsnano.2c06137 – ident: e_1_2_8_13_1 doi: 10.1002/adma.202005587 – ident: e_1_2_8_16_2 doi: 10.1002/smll.202203710 – ident: e_1_2_8_32_2 doi: 10.1002/adma.202209307 – ident: e_1_2_8_22_1 doi: 10.1016/j.apcatb.2021.120580 – ident: e_1_2_8_1_1 doi: 10.1002/adfm.202210322 – ident: e_1_2_8_27_2 doi: 10.1002/adfm.202112674 – ident: e_1_2_8_19_1 doi: 10.1002/jrs.2837 – ident: e_1_2_8_25_1 doi: 10.1002/adfm.202203520 – ident: e_1_2_8_27_3 doi: 10.1038/s41560-019-0355-9 – ident: e_1_2_8_11_1 doi: 10.1002/adma.201905107 – ident: e_1_2_8_30_1 doi: 10.1038/s41586-022-05296-7 – ident: e_1_2_8_14_1 doi: 10.1002/adfm.202208587 – ident: e_1_2_8_15_1 doi: 10.1002/aenm.202200077 – ident: e_1_2_8_6_1 doi: 10.1016/j.nanoen.2019.104293 – ident: e_1_2_8_3_2 doi: 10.1002/adma.202200270 – ident: e_1_2_8_13_2 doi: 10.1002/adma.202207041 – ident: e_1_2_8_19_2 doi: 10.1002/adfm.201505554 – ident: e_1_2_8_7_1 doi: 10.1039/D0CS01191F – ident: e_1_2_8_21_3 doi: 10.1016/j.nanoen.2020.105230 – ident: e_1_2_8_5_1 doi: 10.1021/acssuschemeng.1c02256 – ident: e_1_2_8_5_2 doi: 10.1002/adma.202108619 – ident: e_1_2_8_28_1 doi: 10.1002/anie.202014210 – ident: e_1_2_8_31_1 doi: 10.1039/D1EE01277K – ident: e_1_2_8_3_1 doi: 10.1002/adfm.202209543 – ident: e_1_2_8_2_2 doi: 10.1016/j.apcatb.2022.122091 – ident: e_1_2_8_10_1 doi: 10.1038/s41560-019-0404-4 – ident: e_1_2_8_8_1 doi: 10.1016/j.jpowsour.2018.12.005 – ident: e_1_2_8_4_1 doi: 10.1016/j.mtener.2021.100915 – ident: e_1_2_8_20_1 doi: 10.1038/srep12167 – ident: e_1_2_8_26_2 doi: 10.1038/s41467-020-17934-7 – ident: e_1_2_8_16_1 doi: 10.1016/j.joule.2020.01.005 – ident: e_1_2_8_1_3 doi: 10.1039/D2EE01337A – ident: e_1_2_8_12_1 doi: 10.1002/adma.202209338 – ident: e_1_2_8_26_1 doi: 10.1038/s41467-021-24182-w – ident: e_1_2_8_2_1 doi: 10.1038/s41467-022-33847-z – ident: e_1_2_8_4_2 doi: 10.1021/acsnano.2c07255 – ident: e_1_2_8_23_1 doi: 10.1002/adma.202203615 – ident: e_1_2_8_18_1 doi: 10.1016/j.apcatb.2019.118134 – ident: e_1_2_8_31_2 doi: 10.1038/s41467-020-15873-x – ident: e_1_2_8_32_1 doi: 10.1038/s41929-021-00715-w – ident: e_1_2_8_21_1 doi: 10.1021/acscatal.9b03876 – ident: e_1_2_8_3_3 doi: 10.1016/j.apcatb.2022.122171 – ident: e_1_2_8_21_2 doi: 10.1021/jacs.9b01214 – ident: e_1_2_8_9_2 doi: 10.1002/aenm.202202522 – ident: e_1_2_8_29_1 doi: 10.1021/acscatal.2c03338 – ident: e_1_2_8_1_4 doi: 10.1016/j.apcatb.2022.122144 |
SSID | ssj0017734 |
Score | 2.6247263 |
Snippet | Rationally constructing and manipulating the in situ formed catalytically active surface of catalysts remains a tremendous challenge for a highly efficient... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Catalysts Density functional theory Deposition Dissolution Electrolysis Ferric hydroxide Ferric oxide Heterojunctions In situ leaching Iron oxides Lattice vacancies Leaching Materials science Metal foams Oxidation Oxygen evolution reactions Reconstruction Zinc |
Title | Directional Reconstruction of Iron Oxides to Active Sites for Superior Water Oxidation |
URI | https://www.proquest.com/docview/2878220850 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9lIOCEoRC23lQyUOKCVrb-L0uIJWVdXHYfviFNmJLSLB7opupIpfz4ztOAlspbaXJHJsb-L5MuPxjr8hZI8djGQqTBmVpcmiMRiMSHGlIrC0opCZTIoMdyOfnafHV-OT2-R2MFh0opbqpdov_qzcV_IcqUIZyBV3yT5BsqFTKIBrkC8cQcJwfJSMvb6yi3noR7ZssHaHyG84X9xXpWNxmFjN9nla4UorBhdOa2Q5hosbiUyJWLMVU0NM24QIoP3zv_QLq-PLhWCeqrYWTFYhdOKkDqBrl6R_1POgZHzZDWi9ps33OtytHUi9VfWLEsyGt_X0aDrCkDqbDQfMTLfM7wX3ytexYHiQOcKm_5S6I4mVpUHmAHCZuBAr2LP_sWoh1tDxMrMc2-eh_QuyzsCxAM24Pvl2djoN_zwJ4SIRmhdoiD5j9qX_BP2JTN-O28nJ5WvyynsVdOIg8oYM9GyTvOxwTb4l1x2w0D5Y6NxQBAt1YKHLOXVgoRYsFMBCG7BQCxYawLJFro4OL78eRz6pRlSwVCwjESsOWl7KOMNk4zG4swk3mEag4AWmgBVwTrTmzJhSMYX-qTAwa8yM4kYq_o6szeYz_Z5QMAVpxtMylQkfa-iTjTTPNIsPRMm4zoYkakYoLzzjPCY--ZmvlsmQfAr1F45r5cGa282A5_57vMvhOWG2ixSMHx7d0Uey0cJ3m6zBwOsdmGUu1a4Hxl9PiXoP |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directional+Reconstruction+of+Iron+Oxides+to+Active+Sites+for+Superior+Water+Oxidation&rft.jtitle=Advanced+functional+materials&rft.au=Liu%2C+Hai%E2%80%90Jun&rft.au=Zhang%2C+Shuo&rft.au=Yang%2C+Wen%E2%80%90Yu&rft.au=Yu%2C+Ning&rft.date=2023-10-18&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=43&rft_id=info:doi/10.1002%2Fadfm.202303776&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202303776 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |