Training Robust Neural Networks Using Lipschitz Bounds
Due to their susceptibility to adversarial perturbations, neural networks (NNs) are hardly used in safety-critical applications. One measure of robustness to such perturbations in the input is the Lipschitz constant of the input-output map defined by an NN. In this letter, we propose a framework to...
Saved in:
Published in | IEEE control systems letters Vol. 6; pp. 121 - 126 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to their susceptibility to adversarial perturbations, neural networks (NNs) are hardly used in safety-critical applications. One measure of robustness to such perturbations in the input is the Lipschitz constant of the input-output map defined by an NN. In this letter, we propose a framework to train multi-layer NNs while at the same time encouraging robustness by keeping their Lipschitz constant small, thus addressing the robustness issue. More specifically, we design an optimization scheme based on the Alternating Direction Method of Multipliers that minimizes not only the training loss of an NN but also its Lipschitz constant resulting in a semidefinite programming based training procedure that promotes robustness. We design two versions of this training procedure. The first one includes a regularizer that penalizes an accurate upper bound on the Lipschitz constant. The second one allows to enforce a desired Lipschitz bound on the NN at all times during training. Finally, we provide two examples to show that the proposed framework successfully increases the robustness of NNs. |
---|---|
AbstractList | Due to their susceptibility to adversarial perturbations, neural networks (NNs) are hardly used in safety-critical applications. One measure of robustness to such perturbations in the input is the Lipschitz constant of the input-output map defined by an NN. In this letter, we propose a framework to train multi-layer NNs while at the same time encouraging robustness by keeping their Lipschitz constant small, thus addressing the robustness issue. More specifically, we design an optimization scheme based on the Alternating Direction Method of Multipliers that minimizes not only the training loss of an NN but also its Lipschitz constant resulting in a semidefinite programming based training procedure that promotes robustness. We design two versions of this training procedure. The first one includes a regularizer that penalizes an accurate upper bound on the Lipschitz constant. The second one allows to enforce a desired Lipschitz bound on the NN at all times during training. Finally, we provide two examples to show that the proposed framework successfully increases the robustness of NNs. |
Author | Berberich, Julian Pauli, Patricia Allgower, Frank Koch, Anne Kohler, Paul |
Author_xml | – sequence: 1 givenname: Patricia orcidid: 0000-0001-5677-7095 surname: Pauli fullname: Pauli, Patricia email: patricia.pauli@ist.uni-stuttgart.de organization: Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany – sequence: 2 givenname: Anne orcidid: 0000-0002-8213-2247 surname: Koch fullname: Koch, Anne email: anne.koch@ist.uni-stuttgart.de organization: Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany – sequence: 3 givenname: Julian orcidid: 0000-0001-6366-6238 surname: Berberich fullname: Berberich, Julian email: julian.berberich@ist.uni-stuttgart.de organization: Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany – sequence: 4 givenname: Paul orcidid: 0000-0003-4699-0735 surname: Kohler fullname: Kohler, Paul email: paulkohler@posteo.de organization: Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany – sequence: 5 givenname: Frank orcidid: 0000-0002-3702-3658 surname: Allgower fullname: Allgower, Frank email: frank.allgower@ist.uni-stuttgart.de organization: Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany |
BookMark | eNp9j9FKwzAUhoNMcM69gN70BTrPSZM0udShUygKbrvwqqRpqtHajiRD9Ond3BDxwqv_wM93fr5jMuj6zhJyijBBBHVeTOeP8wkFipMMODDGDsiQspynyLgY_LqPyDiEFwBASXOgakjEwmvXue4peeirdYjJnV173W4ivvf-NSTLsC0Ltwrm2cXP5LJfd3U4IYeNboMd73NEltdXi-lNWtzPbqcXRWqoyGMqqlpxbtA03CpeGyGBKVqbugGJmUCpUTZMKquEpjTnWiiOFAzDyuai1tmI0N1f4_sQvG3KlXdv2n-UCOVWvvyWL7fy5V5-A8k_kHFRR9d3cSPb_o-e7VBnrf3ZUhkqVDL7AkX-aPQ |
CODEN | ICSLBO |
CitedBy_id | crossref_primary_10_1109_LCSYS_2022_3150719 crossref_primary_10_1016_j_automatica_2023_111487 crossref_primary_10_1109_TAC_2021_3069388 crossref_primary_10_1016_j_neunet_2024_107086 crossref_primary_10_1016_j_ifacol_2024_10_193 crossref_primary_10_1103_PhysRevResearch_6_043326 crossref_primary_10_1109_MCS_2024_3466448 crossref_primary_10_1007_s11760_023_02931_2 crossref_primary_10_1137_22M1504573 crossref_primary_10_1145_3635159 crossref_primary_10_1109_LCSYS_2023_3285720 crossref_primary_10_1137_22M149689X crossref_primary_10_1049_cth2_12719 crossref_primary_10_2298_CSIS220703019Z crossref_primary_10_1016_j_conengprac_2024_106041 crossref_primary_10_1109_OJAP_2022_3170798 crossref_primary_10_1007_s11590_022_01958_7 crossref_primary_10_2139_ssrn_4217092 crossref_primary_10_1016_j_cam_2023_115667 crossref_primary_10_1016_j_automatica_2023_111237 crossref_primary_10_1115_1_4063474 crossref_primary_10_3390_math11112466 crossref_primary_10_1109_TCSI_2024_3386506 crossref_primary_10_1016_j_automatica_2023_111233 crossref_primary_10_1109_OJCSYS_2022_3186838 crossref_primary_10_1109_TSG_2023_3239548 crossref_primary_10_1016_j_robot_2024_104901 crossref_primary_10_1109_ACCESS_2024_3434617 crossref_primary_10_1109_JBHI_2024_3404883 crossref_primary_10_3390_electronics13142721 crossref_primary_10_1016_j_ifacol_2023_10_1219 crossref_primary_10_3389_frsip_2022_794469 crossref_primary_10_1016_j_ifacol_2022_07_306 crossref_primary_10_1017_S0960129523000142 crossref_primary_10_1109_TRO_2024_3392079 crossref_primary_10_1007_s10515_022_00337_x crossref_primary_10_1016_j_compchemeng_2023_108365 crossref_primary_10_1016_j_patcog_2022_108889 crossref_primary_10_1145_3648351 crossref_primary_10_1137_22M151861X crossref_primary_10_1016_j_sysconle_2024_105753 crossref_primary_10_1109_TAC_2023_3294101 crossref_primary_10_1109_TAC_2022_3218944 crossref_primary_10_1002_rnc_6560 crossref_primary_10_1109_ACCESS_2022_3189363 |
Cites_doi | 10.1137/19M1272780 10.1109/SP.2016.41 10.1007/s10915-018-0757-z 10.1038/nature14539 10.1561/2200000016 10.1109/CACSD.2004.1393890 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LCSYS.2021.3050444 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2475-1456 |
EndPage | 126 |
ExternalDocumentID | 10_1109_LCSYS_2021_3050444 9319198 |
Genre | orig-research |
GrantInformation_xml | – fundername: Patricia Pauli, Anne Koch – fundername: International Max Planck Research School for Intelligent Systems (IMPRS-IS) – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Germany’s Excellence Strategy—EXC grantid: 2075 - 390740016 funderid: 10.13039/501100001659 |
GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c267t-6bd955c1cf5e95dc680492dcdf0813618a18f489e96a2275a695120c41be76da3 |
IEDL.DBID | RIE |
ISSN | 2475-1456 |
IngestDate | Thu Apr 24 23:07:50 EDT 2025 Tue Jul 01 04:06:36 EDT 2025 Wed Aug 27 02:26:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c267t-6bd955c1cf5e95dc680492dcdf0813618a18f489e96a2275a695120c41be76da3 |
ORCID | 0000-0002-8213-2247 0000-0001-6366-6238 0000-0003-4699-0735 0000-0002-3702-3658 0000-0001-5677-7095 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9319198 crossref_primary_10_1109_LCSYS_2021_3050444 crossref_citationtrail_10_1109_LCSYS_2021_3050444 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE control systems letters |
PublicationTitleAbbrev | LCSYS |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | wong (ref7) 2018 gouk (ref17) 2018 krogh (ref19) 1991 collobert (ref2) 2011; 12 lee (ref23) 2016 ref10 szegedy (ref4) 2013 fazlyab (ref13) 2019 cisse (ref16) 2017 hein (ref18) 2017 madry (ref8) 2017 lecun (ref3) 2015; 521 ref24 goodfellow (ref5) 2014 ref22 (ref25) 2019 ref21 virmaux (ref11) 2018 weng (ref14) 2018 jordan (ref15) 2020 tsuzuku (ref9) 2018 latorre (ref12) 2020 ref6 krizhevsky (ref1) 2012 fazlyab (ref20) 2019 lecun (ref26) 2020 |
References_xml | – start-page: 950 year: 1991 ident: ref19 article-title: A simple weight decay can improve generalization publication-title: Proc NeurIPS – start-page: 1097 year: 2012 ident: ref1 article-title: Imagenet classification with deep convolutional neural networks publication-title: Proc NeurIPS – volume: 12 start-page: 2493 year: 2011 ident: ref2 article-title: Natural language processing (almost) from scratch publication-title: J Mach Learn Res – start-page: 2266 year: 2017 ident: ref18 article-title: Formal guarantees on the robustness of a classifier against adversarial manipulation publication-title: Proc NeurIPS – year: 2019 ident: ref25 publication-title: The MOSEK optimization toolbox for MATLAB manual Version 9 0 – year: 2019 ident: ref20 publication-title: Efficient and accurate estimation of lipschitz constants for deep neural networks – start-page: 854 year: 2017 ident: ref16 article-title: Parseval networks: Improving robustness to adversarial examples publication-title: Proc ICML – start-page: 3839 year: 2018 ident: ref11 article-title: Lipschitz regularity of deep neural networks: analysis and efficient estimation publication-title: Proc NeurIPS – year: 2018 ident: ref14 publication-title: Towards Fast Computation of Certified Robustness for ReLU Networks – ident: ref10 doi: 10.1137/19M1272780 – year: 2013 ident: ref4 publication-title: Intriguing properties of neural networks – ident: ref6 doi: 10.1109/SP.2016.41 – ident: ref22 doi: 10.1007/s10915-018-0757-z – year: 2020 ident: ref26 publication-title: The MNIST Database of Handwritten Digits – volume: 521 start-page: 436 year: 2015 ident: ref3 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2020 ident: ref15 publication-title: Exactly computing the local Lipschitz constant of ReLU networks – year: 2018 ident: ref17 publication-title: Regularisation of neural networks by enforcing lipschitz continuity – ident: ref21 doi: 10.1561/2200000016 – ident: ref24 doi: 10.1109/CACSD.2004.1393890 – start-page: 5283 year: 2018 ident: ref7 article-title: Provable defenses against adversarial examples via the convex outer adversarial polytope publication-title: Proc ICML – start-page: 11423 year: 2019 ident: ref13 article-title: Efficient and accurate estimation of Lipschitz constants for deep neural networks publication-title: Proc NeurIPS – year: 2017 ident: ref8 publication-title: Towards deep learning models resistant to adversarial attacks – year: 2020 ident: ref12 publication-title: Lipschitz constant estimation of neural networks via sparse polynomial optimization – start-page: 6542 year: 2018 ident: ref9 article-title: Lipschitz-margin training: Scalable certification of perturbation invariance for deep neural networks publication-title: Proc NeurIPS – start-page: 1246 year: 2016 ident: ref23 article-title: Gradient descent only converges to minimizers publication-title: Proc COLT – year: 2014 ident: ref5 publication-title: Explaining and Harnessing Adversarial Examples |
SSID | ssj0001827029 |
Score | 2.567447 |
Snippet | Due to their susceptibility to adversarial perturbations, neural networks (NNs) are hardly used in safety-critical applications. One measure of robustness to... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 121 |
SubjectTerms | Artificial neural networks Estimation Linear matrix inequalities neural networks Neurons Perturbation methods Robustness Training Upper bound |
Title | Training Robust Neural Networks Using Lipschitz Bounds |
URI | https://ieeexplore.ieee.org/document/9319198 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB7anry4UMW6kYM3TZqZZKaZoxZLkbYH20I9hdkCorTFJJf-et9M0rog4i2ENzB8POZ9b0foOqOSC6rg9QOu78dShL7AWexLLUmkTJgJlzEdT9hwHj8u6KKBbne9MMYYV3xmAvvpcvl6pUobKuty0BdwkpuoCY5b1av1GU9JbGcV3_bFhLw76k-fp-ABEhyAUtu5aN9sz5dlKs6WDA7QeHuLqoTkNSgLGajNjwGN_73mIdqvSaV3V2nBEWqYZRuxWb39wXtayTIvPDuHA6QmVeF37rlqAW_0ss5tLmHj3dsNS_kxmg8eZv2hX29J8BVhvcJnUnNKFVYZNZxqxRIg_UQrnYG1jxhOBE6yOOGGM0FIjwoGpIqEKsbS9JgW0QlqLVdLc4o8HQNZwOBXAuuLRci4lFEEr6HBRlCSZB2Et_ilqh4hbjdZvKXOlQh56jBPLeZpjXkH3ezOrKsBGn9Kty2eO8kayrPff5-jPWK7EVxE5AK1ivfSXAJHKOSVU44P0zC4WA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zHvTiB1Ocnz14025N2mTNUYdjareD22CeSpKmIMo2bHvZX-9L2s0PRLyV8gLhxyPv974Rukyp5IIqeP2A67uBFJ4rcBq4MpHEV9pLhc2YDoasPwkepnRaQ9frXhittS0-0y3zaXP5yVwVJlTW5qAv4CRvoE2w-xSX3VqfEZXQ9FbxVWeMx9tRd_Q8Ah-Q4BaotZmM9s36fFmnYq1JbxcNVvcoi0heW0UuW2r5Y0Tjfy-6h3YqWunclHqwj2p61kBsXO1_cJ7msshyx0ziAKlhWfqdObZewIleFpnJJiydW7NjKTtAk97duNt3qz0JriKsk7tMJpxShVVKNaeJYiHQfpKoJAV77zMcChymQcg1Z4KQDhUMaBXxVICl7rBE-IeoPpvP9BFykgDoAgbPEnhfIDzGpfR9eA811oKSMG0ivMIvVtUQcbPL4i22zoTHY4t5bDCPK8yb6Gp9ZlGO0PhTumHwXEtWUB7__vsCbfXHgyiO7oePJ2ibmN4EGx85RfX8vdBnwBhyeW4V5QOjW7uh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+Robust+Neural+Networks+Using+Lipschitz+Bounds&rft.jtitle=IEEE+control+systems+letters&rft.au=Pauli%2C+Patricia&rft.au=Koch%2C+Anne&rft.au=Berberich%2C+Julian&rft.au=Kohler%2C+Paul&rft.date=2022&rft.issn=2475-1456&rft.eissn=2475-1456&rft.volume=6&rft.spage=121&rft.epage=126&rft_id=info:doi/10.1109%2FLCSYS.2021.3050444&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCSYS_2021_3050444 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon |