Quasi‐Zero Volume Strain Cathode Materials for Sodium Ion Battery through Synergetic Substitution Effect of Li and Mg
P2‐type layered oxide material Na 2/3 Ni 1/3 Mn 2/3 O 2 is a competitive candidate for sodium‐ion batteries (SIBs). Nevertheless, it suffers from the strong P2–O2 phase transition during charging to the high voltage regime, rendering drastic volume variations and poor cycling performance. Here, a Qu...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 41 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | P2‐type layered oxide material Na
2/3
Ni
1/3
Mn
2/3
O
2
is a competitive candidate for sodium‐ion batteries (SIBs). Nevertheless, it suffers from the strong P2–O2 phase transition during charging to the high voltage regime, rendering drastic volume variations and poor cycling performance. Here, a Quasi‐zero strain P2‐Na
0.75
Li
0.15
Mg
0.05
Ni
0.1
Mn
0.7
O
2
cathode is synthesized, which reflects the vanishing P2–O2 transition with a volume change as low as 0.49%, thus resulting in the material an excellent cycling performance (83.9% capacity retention after 500 cycles at 5 C). The low‐volume strain can be attributed to two aspects: (1) the Mg
2+
riveted in the Na layer can act as a “pillar” to stabilize the crystal structure under the condition of sodium removal, thus restricting the structural changes under high voltage. (2) The entry of Li
+
into the transition metal (TM) layer can mitigate the electron localization in the highly desodiation state and can effectively immobilize the coordination oxygen atoms, thus suppressing the slip of P2–O2 transition. This study not only provides a new insight of Li and Mg synergetic substitution effect on the structural stability of P2‐type cathode, but also an efficient avenue for developing cathode materials of SIBs with ultralow bulk strain. |
---|---|
AbstractList | P2‐type layered oxide material Na
2/3
Ni
1/3
Mn
2/3
O
2
is a competitive candidate for sodium‐ion batteries (SIBs). Nevertheless, it suffers from the strong P2–O2 phase transition during charging to the high voltage regime, rendering drastic volume variations and poor cycling performance. Here, a Quasi‐zero strain P2‐Na
0.75
Li
0.15
Mg
0.05
Ni
0.1
Mn
0.7
O
2
cathode is synthesized, which reflects the vanishing P2–O2 transition with a volume change as low as 0.49%, thus resulting in the material an excellent cycling performance (83.9% capacity retention after 500 cycles at 5 C). The low‐volume strain can be attributed to two aspects: (1) the Mg
2+
riveted in the Na layer can act as a “pillar” to stabilize the crystal structure under the condition of sodium removal, thus restricting the structural changes under high voltage. (2) The entry of Li
+
into the transition metal (TM) layer can mitigate the electron localization in the highly desodiation state and can effectively immobilize the coordination oxygen atoms, thus suppressing the slip of P2–O2 transition. This study not only provides a new insight of Li and Mg synergetic substitution effect on the structural stability of P2‐type cathode, but also an efficient avenue for developing cathode materials of SIBs with ultralow bulk strain. P2‐type layered oxide material Na2/3Ni1/3Mn2/3O2 is a competitive candidate for sodium‐ion batteries (SIBs). Nevertheless, it suffers from the strong P2–O2 phase transition during charging to the high voltage regime, rendering drastic volume variations and poor cycling performance. Here, a Quasi‐zero strain P2‐Na0.75Li0.15Mg0.05Ni0.1Mn0.7O2 cathode is synthesized, which reflects the vanishing P2–O2 transition with a volume change as low as 0.49%, thus resulting in the material an excellent cycling performance (83.9% capacity retention after 500 cycles at 5 C). The low‐volume strain can be attributed to two aspects: (1) the Mg2+ riveted in the Na layer can act as a “pillar” to stabilize the crystal structure under the condition of sodium removal, thus restricting the structural changes under high voltage. (2) The entry of Li+ into the transition metal (TM) layer can mitigate the electron localization in the highly desodiation state and can effectively immobilize the coordination oxygen atoms, thus suppressing the slip of P2–O2 transition. This study not only provides a new insight of Li and Mg synergetic substitution effect on the structural stability of P2‐type cathode, but also an efficient avenue for developing cathode materials of SIBs with ultralow bulk strain. |
Author | Wu, Tao Li, Wen‐Cui Chen, Liwei Liu, Xi Lu, An‐Hui Shen, Ming‐Yuan Wang, Jing‐Song Ren, Zhouhong |
Author_xml | – sequence: 1 givenname: Ming‐Yuan surname: Shen fullname: Shen, Ming‐Yuan organization: State Key Laboratory of Fine Chemicals Frontier Science Center for Smart Materials Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China – sequence: 2 givenname: Jing‐Song surname: Wang fullname: Wang, Jing‐Song organization: State Key Laboratory of Fine Chemicals Frontier Science Center for Smart Materials Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China – sequence: 3 givenname: Zhouhong surname: Ren fullname: Ren, Zhouhong organization: School of Chemistry and Chemical Engineering in‐situ Center for Physical Sciences Frontiers Science Center for Transformative Molecules, and Energy Device Research Center (SEED) Shanghai Jiao Tong University Shanghai 200240 P. R. China – sequence: 4 givenname: Tao surname: Wu fullname: Wu, Tao organization: State Key Laboratory of Fine Chemicals Frontier Science Center for Smart Materials Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China – sequence: 5 givenname: Xi surname: Liu fullname: Liu, Xi organization: School of Chemistry and Chemical Engineering in‐situ Center for Physical Sciences Frontiers Science Center for Transformative Molecules, and Energy Device Research Center (SEED) Shanghai Jiao Tong University Shanghai 200240 P. R. China – sequence: 6 givenname: Liwei surname: Chen fullname: Chen, Liwei organization: School of Chemistry and Chemical Engineering in‐situ Center for Physical Sciences Frontiers Science Center for Transformative Molecules, and Energy Device Research Center (SEED) Shanghai Jiao Tong University Shanghai 200240 P. R. China – sequence: 7 givenname: Wen‐Cui surname: Li fullname: Li, Wen‐Cui organization: State Key Laboratory of Fine Chemicals Frontier Science Center for Smart Materials Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China – sequence: 8 givenname: An‐Hui orcidid: 0000-0003-1294-5928 surname: Lu fullname: Lu, An‐Hui organization: State Key Laboratory of Fine Chemicals Frontier Science Center for Smart Materials Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China |
BookMark | eNp1kM9Kw0AQxhepYFu9el7wnLp_kt3kqKVqoUUkKuIlbLK77ZYmWze7SG8-gs_ok5hQ8SB4moH5vm9mfiMwaGyjADjHaIIRIpdC6npCEKGIppgcgSFmmEUUkXTw2-OXEzBq2w1CmHMaD8H7QxCt-fr4fFXOwme7DbWCuXfCNHAq_NpKBZfCK2fEtoXaOphbaUIN57aB18J3kz30a2fDag3zfaPcSnlTwTyUrTc-eNPpZlqrykOr4cJA0Ui4XJ2CY90lqrOfOgZPN7PH6V20uL-dT68WUUUY9xEVJcelzDRR3WdYa4x4phDTJU6TmNGkFEgkkjOkU1mmLJOZolISXVJBcJbQMbg45O6cfQuq9cXGBtd0KwuS8phxEmPWqeKDqnK2bZ3SRWW86G_vSWwLjIoecdEjLn4Rd7bJH9vOmVq4_X-Gb-OTghs |
CitedBy_id | crossref_primary_10_1002_smll_202307377 crossref_primary_10_1002_aenm_202404093 crossref_primary_10_1021_acsami_4c07191 crossref_primary_10_1021_acsami_4c17755 crossref_primary_10_1016_j_jpowsour_2024_236069 crossref_primary_10_1016_j_cej_2024_158662 crossref_primary_10_15541_jim20240325 crossref_primary_10_1021_acsami_3c14951 crossref_primary_10_1016_j_jpowsour_2024_235407 crossref_primary_10_1039_D4CC06813K crossref_primary_10_1002_adfm_202417258 crossref_primary_10_1016_j_seppur_2024_127852 crossref_primary_10_1016_j_jallcom_2025_179926 crossref_primary_10_1002_smll_202404280 crossref_primary_10_1016_j_apsusc_2024_160341 crossref_primary_10_1039_D3TA07304A crossref_primary_10_1002_adfm_202406771 crossref_primary_10_1002_adfm_202414627 crossref_primary_10_1021_acsami_3c10991 crossref_primary_10_1002_smll_202306690 crossref_primary_10_1016_j_fuel_2025_134785 crossref_primary_10_1016_j_powtec_2024_120314 crossref_primary_10_1002_aenm_202406184 crossref_primary_10_1016_j_ensm_2024_103920 crossref_primary_10_1007_s12274_023_6133_9 crossref_primary_10_1039_D4TA04815F crossref_primary_10_1016_j_cej_2024_159102 crossref_primary_10_1021_acsaem_4c00949 crossref_primary_10_1021_acsami_4c04256 crossref_primary_10_1016_j_jallcom_2024_173459 crossref_primary_10_1016_j_ensm_2024_103935 crossref_primary_10_1021_acsami_3c18341 crossref_primary_10_1039_D4TA02290D crossref_primary_10_1016_j_mtener_2024_101775 crossref_primary_10_1039_D4TA00380B crossref_primary_10_1007_s11581_024_05748_2 crossref_primary_10_1016_j_jpowsour_2024_234925 |
Cites_doi | 10.1038/s41467-020-17290-6 10.1002/smll.201805381 10.1002/aenm.201703415 10.1021/acs.chemrev.2c00289 10.1103/PhysRevB.59.1758 10.1021/acsaem.2c01239 10.1002/aenm.202001111 10.1038/s41578-021-00324-w 10.1103/PhysRevB.57.1505 10.1002/adma.202105404 10.1002/adma.202202137 10.1021/cr500192f 10.1016/j.ensm.2023.01.005 10.1016/j.cpc.2021.108033 10.1021/acs.chemmater.9b03765 10.1002/adma.202008194 10.1002/smll.202104130 10.1002/anie.202206625 10.1002/aenm.202103461 10.1039/c2cp44467d 10.1039/C8EE02991A 10.1021/jacs.8b08638 10.1103/PhysRevLett.77.3865 10.1038/nchem.2923 10.1149/1.1407247 10.1002/anie.202003972 10.1038/s41586-019-1854-3 10.1103/PhysRevB.54.11169 10.1016/j.joule.2017.10.008 10.1016/j.nanoen.2018.10.072 10.1016/j.cej.2020.125725 10.1002/adfm.202102939 10.1002/adfm.202106923 10.1126/science.aay9972 10.1002/advs.202200498 10.1016/j.jpowsour.2021.230324 10.1002/adfm.201909530 10.1038/s41467-021-22523-3 10.1039/C4EE03192J 10.1021/jacs.9b13572 10.1002/anie.201602202 10.1016/j.jpowsour.2017.12.072 10.1016/0378-4363(80)90214-4 10.1002/anie.202108109 10.1002/aenm.201601477 10.1063/1.3382344 10.1016/j.nanoen.2020.104997 10.1016/j.commatsci.2005.04.010 10.1002/aenm.202103939 10.1016/j.cjsc.2023.100028 10.1016/j.nanoen.2021.106252 10.1021/acscentsci.9b01166 10.1002/jcc.21759 10.1021/acsami.1c24336 10.1021/jacs.2c09725 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202303812 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
ExternalDocumentID | 10_1002_adfm_202303812 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c267t-3ab71bd9f2e2021ff1079e06fb1854635ba0a5d760f8db869d9e3dd2fb3a21953 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 04:38:32 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Tue Jul 01 00:30:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c267t-3ab71bd9f2e2021ff1079e06fb1854635ba0a5d760f8db869d9e3dd2fb3a21953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1294-5928 |
PQID | 2874672416 |
PQPubID | 2045204 |
ParticipantIDs | proquest_journals_2874672416 crossref_citationtrail_10_1002_adfm_202303812 crossref_primary_10_1002_adfm_202303812 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_46_1 doi: 10.1038/s41467-020-17290-6 – ident: e_1_2_8_4_1 doi: 10.1002/smll.201805381 – ident: e_1_2_8_24_1 doi: 10.1002/aenm.201703415 – ident: e_1_2_8_3_1 doi: 10.1021/acs.chemrev.2c00289 – ident: e_1_2_8_48_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_8_36_1 doi: 10.1021/acsaem.2c01239 – ident: e_1_2_8_15_1 doi: 10.1002/aenm.202001111 – ident: e_1_2_8_2_1 doi: 10.1038/s41578-021-00324-w – ident: e_1_2_8_53_1 doi: 10.1103/PhysRevB.57.1505 – ident: e_1_2_8_37_1 doi: 10.1002/adma.202105404 – ident: e_1_2_8_6_1 doi: 10.1002/adma.202202137 – ident: e_1_2_8_1_1 doi: 10.1021/cr500192f – ident: e_1_2_8_13_1 doi: 10.1016/j.ensm.2023.01.005 – ident: e_1_2_8_54_1 doi: 10.1016/j.cpc.2021.108033 – ident: e_1_2_8_18_1 doi: 10.1021/acs.chemmater.9b03765 – ident: e_1_2_8_21_1 doi: 10.1002/adma.202008194 – ident: e_1_2_8_35_1 doi: 10.1002/smll.202104130 – ident: e_1_2_8_25_1 doi: 10.1002/anie.202206625 – ident: e_1_2_8_31_1 doi: 10.1002/aenm.202103461 – ident: e_1_2_8_30_1 doi: 10.1039/c2cp44467d – ident: e_1_2_8_45_1 doi: 10.1039/C8EE02991A – ident: e_1_2_8_22_1 doi: 10.1021/jacs.8b08638 – ident: e_1_2_8_50_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_39_1 doi: 10.1038/nchem.2923 – ident: e_1_2_8_10_1 doi: 10.1149/1.1407247 – ident: e_1_2_8_32_1 doi: 10.1002/anie.202003972 – ident: e_1_2_8_38_1 doi: 10.1038/s41586-019-1854-3 – ident: e_1_2_8_49_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_41_1 doi: 10.1016/j.joule.2017.10.008 – ident: e_1_2_8_27_1 doi: 10.1016/j.nanoen.2018.10.072 – ident: e_1_2_8_47_1 doi: 10.1016/j.cej.2020.125725 – ident: e_1_2_8_34_1 doi: 10.1002/adfm.202102939 – ident: e_1_2_8_14_1 doi: 10.1002/adfm.202106923 – ident: e_1_2_8_29_1 doi: 10.1126/science.aay9972 – ident: e_1_2_8_17_1 doi: 10.1002/advs.202200498 – ident: e_1_2_8_44_1 doi: 10.1016/j.jpowsour.2021.230324 – ident: e_1_2_8_5_1 doi: 10.1002/adfm.201909530 – ident: e_1_2_8_12_1 doi: 10.1038/s41467-021-22523-3 – ident: e_1_2_8_7_1 doi: 10.1039/C4EE03192J – ident: e_1_2_8_20_1 doi: 10.1021/jacs.9b13572 – ident: e_1_2_8_23_1 doi: 10.1002/anie.201602202 – ident: e_1_2_8_19_1 doi: 10.1016/j.jpowsour.2017.12.072 – ident: e_1_2_8_8_1 doi: 10.1016/0378-4363(80)90214-4 – ident: e_1_2_8_42_1 doi: 10.1002/anie.202108109 – ident: e_1_2_8_9_1 doi: 10.1002/aenm.201601477 – ident: e_1_2_8_51_1 doi: 10.1063/1.3382344 – ident: e_1_2_8_16_1 doi: 10.1016/j.nanoen.2020.104997 – ident: e_1_2_8_55_1 doi: 10.1016/j.commatsci.2005.04.010 – ident: e_1_2_8_11_1 doi: 10.1002/aenm.202103939 – ident: e_1_2_8_28_1 doi: 10.1016/j.cjsc.2023.100028 – ident: e_1_2_8_26_1 doi: 10.1016/j.nanoen.2021.106252 – ident: e_1_2_8_40_1 doi: 10.1021/acscentsci.9b01166 – ident: e_1_2_8_52_1 doi: 10.1002/jcc.21759 – ident: e_1_2_8_43_1 doi: 10.1021/acsami.1c24336 – ident: e_1_2_8_33_1 doi: 10.1021/jacs.2c09725 |
SSID | ssj0017734 |
Score | 2.6099331 |
Snippet | P2‐type layered oxide material Na
2/3
Ni
1/3
Mn
2/3
O
2
is a competitive candidate for sodium‐ion batteries (SIBs). Nevertheless, it suffers from the strong... P2‐type layered oxide material Na2/3Ni1/3Mn2/3O2 is a competitive candidate for sodium‐ion batteries (SIBs). Nevertheless, it suffers from the strong P2–O2... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Cathodes Crystal structure Cycles Electrode materials High voltages Materials science Oxygen atoms Phase transitions Sodium Sodium-ion batteries Structural stability Substitutes Transition metals |
Title | Quasi‐Zero Volume Strain Cathode Materials for Sodium Ion Battery through Synergetic Substitution Effect of Li and Mg |
URI | https://www.proquest.com/docview/2874672416 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaW9gIHxK8oFOQDEocq4HWydnJcQatSbYvQ7tKll8je2N2V2g1qE6Fy4hF4BV6NJ2Emdn5W_KhwiRInShzPl5lxPPMNIc9FKHQyMDYI1YAHkbFhkIQCDnnfKs0UkqBhtMWR2J9GB7PBrNf73olaKgv9cv7lt3kl_yNVaAO5YpbsP0i2uSk0wD7IF7YgYdheS8bvS3W5bMIVTsxFvvOh0ja42Kwwn09hfWgsL1S4_lRRheM8W5bnO29B8I5e86op1zO-wlxATGysVEoVR4AA8STHuKCwdLEZp123dlhHEqCZ9H8Xz-tnNjLF3Oq6sx9LVCyLNhHtoHt2jBWQjpW3qrge5LTjySIvF3nbfFxWeFN59-cFb8PgrqsiO6pZ9DFKryqwA5ar2-bTy70-d8QaHreOVesXO-F4Z1VmkYwAZmHgt_DWItZRAEfv0r3paJROdmeTG2STw0wEVOnm8M3haNwsVUnpQhfq7tXMoIy_Wr__uuezbvgrb2Zyh9z20xA6dJi6S3pmdY_c6pBT3iefK3T9-PoNcUUdrqjDFfW4og2uKOCKOlxRwBX1uKIeV7TFFe3iijpc0dzS0ZICrujh6QMy3dudvN4PfJmOYM6FLOAr17Kvs8RyA-_at7bPZGKYsBp8wQgcWq2YGmRSMBtnOhZJlpgwy7jVoeK4ivuQbKzylXlEqJFMRXHIDFjgSMpY24hFWWiYBcdbJ_EWCeohTOeewx7f-yx17Ns8xSFPmyHfIi-a6z859pY_XrldSyT1X_hlirUghAQfVzz---kn5GaL7m2yUVyU5ik4q4V-5uHyEwYCl4Y |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi%E2%80%90Zero+Volume+Strain+Cathode+Materials+for+Sodium+Ion+Battery+through+Synergetic+Substitution+Effect+of+Li+and+Mg&rft.jtitle=Advanced+functional+materials&rft.au=Ming%E2%80%90Yuan+Shen&rft.au=Jing%E2%80%90Song+Wang&rft.au=Ren%2C+Zhouhong&rft.au=Wu%2C+Tao&rft.date=2023-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=41&rft_id=info:doi/10.1002%2Fadfm.202303812&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |