Quasi‐Zero Volume Strain Cathode Materials for Sodium Ion Battery through Synergetic Substitution Effect of Li and Mg

P2‐type layered oxide material Na 2/3 Ni 1/3 Mn 2/3 O 2 is a competitive candidate for sodium‐ion batteries (SIBs). Nevertheless, it suffers from the strong P2–O2 phase transition during charging to the high voltage regime, rendering drastic volume variations and poor cycling performance. Here, a Qu...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 41
Main Authors Shen, Ming‐Yuan, Wang, Jing‐Song, Ren, Zhouhong, Wu, Tao, Liu, Xi, Chen, Liwei, Li, Wen‐Cui, Lu, An‐Hui
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract P2‐type layered oxide material Na 2/3 Ni 1/3 Mn 2/3 O 2 is a competitive candidate for sodium‐ion batteries (SIBs). Nevertheless, it suffers from the strong P2–O2 phase transition during charging to the high voltage regime, rendering drastic volume variations and poor cycling performance. Here, a Quasi‐zero strain P2‐Na 0.75 Li 0.15 Mg 0.05 Ni 0.1 Mn 0.7 O 2 cathode is synthesized, which reflects the vanishing P2–O2 transition with a volume change as low as 0.49%, thus resulting in the material an excellent cycling performance (83.9% capacity retention after 500 cycles at 5 C). The low‐volume strain can be attributed to two aspects: (1) the Mg 2+ riveted in the Na layer can act as a “pillar” to stabilize the crystal structure under the condition of sodium removal, thus restricting the structural changes under high voltage. (2) The entry of Li + into the transition metal (TM) layer can mitigate the electron localization in the highly desodiation state and can effectively immobilize the coordination oxygen atoms, thus suppressing the slip of P2–O2 transition. This study not only provides a new insight of Li and Mg synergetic substitution effect on the structural stability of P2‐type cathode, but also an efficient avenue for developing cathode materials of SIBs with ultralow bulk strain.
AbstractList P2‐type layered oxide material Na 2/3 Ni 1/3 Mn 2/3 O 2 is a competitive candidate for sodium‐ion batteries (SIBs). Nevertheless, it suffers from the strong P2–O2 phase transition during charging to the high voltage regime, rendering drastic volume variations and poor cycling performance. Here, a Quasi‐zero strain P2‐Na 0.75 Li 0.15 Mg 0.05 Ni 0.1 Mn 0.7 O 2 cathode is synthesized, which reflects the vanishing P2–O2 transition with a volume change as low as 0.49%, thus resulting in the material an excellent cycling performance (83.9% capacity retention after 500 cycles at 5 C). The low‐volume strain can be attributed to two aspects: (1) the Mg 2+ riveted in the Na layer can act as a “pillar” to stabilize the crystal structure under the condition of sodium removal, thus restricting the structural changes under high voltage. (2) The entry of Li + into the transition metal (TM) layer can mitigate the electron localization in the highly desodiation state and can effectively immobilize the coordination oxygen atoms, thus suppressing the slip of P2–O2 transition. This study not only provides a new insight of Li and Mg synergetic substitution effect on the structural stability of P2‐type cathode, but also an efficient avenue for developing cathode materials of SIBs with ultralow bulk strain.
P2‐type layered oxide material Na2/3Ni1/3Mn2/3O2 is a competitive candidate for sodium‐ion batteries (SIBs). Nevertheless, it suffers from the strong P2–O2 phase transition during charging to the high voltage regime, rendering drastic volume variations and poor cycling performance. Here, a Quasi‐zero strain P2‐Na0.75Li0.15Mg0.05Ni0.1Mn0.7O2 cathode is synthesized, which reflects the vanishing P2–O2 transition with a volume change as low as 0.49%, thus resulting in the material an excellent cycling performance (83.9% capacity retention after 500 cycles at 5 C). The low‐volume strain can be attributed to two aspects: (1) the Mg2+ riveted in the Na layer can act as a “pillar” to stabilize the crystal structure under the condition of sodium removal, thus restricting the structural changes under high voltage. (2) The entry of Li+ into the transition metal (TM) layer can mitigate the electron localization in the highly desodiation state and can effectively immobilize the coordination oxygen atoms, thus suppressing the slip of P2–O2 transition. This study not only provides a new insight of Li and Mg synergetic substitution effect on the structural stability of P2‐type cathode, but also an efficient avenue for developing cathode materials of SIBs with ultralow bulk strain.
Author Wu, Tao
Li, Wen‐Cui
Chen, Liwei
Liu, Xi
Lu, An‐Hui
Shen, Ming‐Yuan
Wang, Jing‐Song
Ren, Zhouhong
Author_xml – sequence: 1
  givenname: Ming‐Yuan
  surname: Shen
  fullname: Shen, Ming‐Yuan
  organization: State Key Laboratory of Fine Chemicals Frontier Science Center for Smart Materials Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
– sequence: 2
  givenname: Jing‐Song
  surname: Wang
  fullname: Wang, Jing‐Song
  organization: State Key Laboratory of Fine Chemicals Frontier Science Center for Smart Materials Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
– sequence: 3
  givenname: Zhouhong
  surname: Ren
  fullname: Ren, Zhouhong
  organization: School of Chemistry and Chemical Engineering in‐situ Center for Physical Sciences Frontiers Science Center for Transformative Molecules, and Energy Device Research Center (SEED) Shanghai Jiao Tong University Shanghai 200240 P. R. China
– sequence: 4
  givenname: Tao
  surname: Wu
  fullname: Wu, Tao
  organization: State Key Laboratory of Fine Chemicals Frontier Science Center for Smart Materials Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
– sequence: 5
  givenname: Xi
  surname: Liu
  fullname: Liu, Xi
  organization: School of Chemistry and Chemical Engineering in‐situ Center for Physical Sciences Frontiers Science Center for Transformative Molecules, and Energy Device Research Center (SEED) Shanghai Jiao Tong University Shanghai 200240 P. R. China
– sequence: 6
  givenname: Liwei
  surname: Chen
  fullname: Chen, Liwei
  organization: School of Chemistry and Chemical Engineering in‐situ Center for Physical Sciences Frontiers Science Center for Transformative Molecules, and Energy Device Research Center (SEED) Shanghai Jiao Tong University Shanghai 200240 P. R. China
– sequence: 7
  givenname: Wen‐Cui
  surname: Li
  fullname: Li, Wen‐Cui
  organization: State Key Laboratory of Fine Chemicals Frontier Science Center for Smart Materials Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
– sequence: 8
  givenname: An‐Hui
  orcidid: 0000-0003-1294-5928
  surname: Lu
  fullname: Lu, An‐Hui
  organization: State Key Laboratory of Fine Chemicals Frontier Science Center for Smart Materials Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
BookMark eNp1kM9Kw0AQxhepYFu9el7wnLp_kt3kqKVqoUUkKuIlbLK77ZYmWze7SG8-gs_ok5hQ8SB4moH5vm9mfiMwaGyjADjHaIIRIpdC6npCEKGIppgcgSFmmEUUkXTw2-OXEzBq2w1CmHMaD8H7QxCt-fr4fFXOwme7DbWCuXfCNHAq_NpKBZfCK2fEtoXaOphbaUIN57aB18J3kz30a2fDag3zfaPcSnlTwTyUrTc-eNPpZlqrykOr4cJA0Ui4XJ2CY90lqrOfOgZPN7PH6V20uL-dT68WUUUY9xEVJcelzDRR3WdYa4x4phDTJU6TmNGkFEgkkjOkU1mmLJOZolISXVJBcJbQMbg45O6cfQuq9cXGBtd0KwuS8phxEmPWqeKDqnK2bZ3SRWW86G_vSWwLjIoecdEjLn4Rd7bJH9vOmVq4_X-Gb-OTghs
CitedBy_id crossref_primary_10_1002_smll_202307377
crossref_primary_10_1002_aenm_202404093
crossref_primary_10_1021_acsami_4c07191
crossref_primary_10_1021_acsami_4c17755
crossref_primary_10_1016_j_jpowsour_2024_236069
crossref_primary_10_1016_j_cej_2024_158662
crossref_primary_10_15541_jim20240325
crossref_primary_10_1021_acsami_3c14951
crossref_primary_10_1016_j_jpowsour_2024_235407
crossref_primary_10_1039_D4CC06813K
crossref_primary_10_1002_adfm_202417258
crossref_primary_10_1016_j_seppur_2024_127852
crossref_primary_10_1016_j_jallcom_2025_179926
crossref_primary_10_1002_smll_202404280
crossref_primary_10_1016_j_apsusc_2024_160341
crossref_primary_10_1039_D3TA07304A
crossref_primary_10_1002_adfm_202406771
crossref_primary_10_1002_adfm_202414627
crossref_primary_10_1021_acsami_3c10991
crossref_primary_10_1002_smll_202306690
crossref_primary_10_1016_j_fuel_2025_134785
crossref_primary_10_1016_j_powtec_2024_120314
crossref_primary_10_1002_aenm_202406184
crossref_primary_10_1016_j_ensm_2024_103920
crossref_primary_10_1007_s12274_023_6133_9
crossref_primary_10_1039_D4TA04815F
crossref_primary_10_1016_j_cej_2024_159102
crossref_primary_10_1021_acsaem_4c00949
crossref_primary_10_1021_acsami_4c04256
crossref_primary_10_1016_j_jallcom_2024_173459
crossref_primary_10_1016_j_ensm_2024_103935
crossref_primary_10_1021_acsami_3c18341
crossref_primary_10_1039_D4TA02290D
crossref_primary_10_1016_j_mtener_2024_101775
crossref_primary_10_1039_D4TA00380B
crossref_primary_10_1007_s11581_024_05748_2
crossref_primary_10_1016_j_jpowsour_2024_234925
Cites_doi 10.1038/s41467-020-17290-6
10.1002/smll.201805381
10.1002/aenm.201703415
10.1021/acs.chemrev.2c00289
10.1103/PhysRevB.59.1758
10.1021/acsaem.2c01239
10.1002/aenm.202001111
10.1038/s41578-021-00324-w
10.1103/PhysRevB.57.1505
10.1002/adma.202105404
10.1002/adma.202202137
10.1021/cr500192f
10.1016/j.ensm.2023.01.005
10.1016/j.cpc.2021.108033
10.1021/acs.chemmater.9b03765
10.1002/adma.202008194
10.1002/smll.202104130
10.1002/anie.202206625
10.1002/aenm.202103461
10.1039/c2cp44467d
10.1039/C8EE02991A
10.1021/jacs.8b08638
10.1103/PhysRevLett.77.3865
10.1038/nchem.2923
10.1149/1.1407247
10.1002/anie.202003972
10.1038/s41586-019-1854-3
10.1103/PhysRevB.54.11169
10.1016/j.joule.2017.10.008
10.1016/j.nanoen.2018.10.072
10.1016/j.cej.2020.125725
10.1002/adfm.202102939
10.1002/adfm.202106923
10.1126/science.aay9972
10.1002/advs.202200498
10.1016/j.jpowsour.2021.230324
10.1002/adfm.201909530
10.1038/s41467-021-22523-3
10.1039/C4EE03192J
10.1021/jacs.9b13572
10.1002/anie.201602202
10.1016/j.jpowsour.2017.12.072
10.1016/0378-4363(80)90214-4
10.1002/anie.202108109
10.1002/aenm.201601477
10.1063/1.3382344
10.1016/j.nanoen.2020.104997
10.1016/j.commatsci.2005.04.010
10.1002/aenm.202103939
10.1016/j.cjsc.2023.100028
10.1016/j.nanoen.2021.106252
10.1021/acscentsci.9b01166
10.1002/jcc.21759
10.1021/acsami.1c24336
10.1021/jacs.2c09725
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202303812
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202303812
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c267t-3ab71bd9f2e2021ff1079e06fb1854635ba0a5d760f8db869d9e3dd2fb3a21953
ISSN 1616-301X
IngestDate Sun Jul 13 04:38:32 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Tue Jul 01 00:30:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-3ab71bd9f2e2021ff1079e06fb1854635ba0a5d760f8db869d9e3dd2fb3a21953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1294-5928
PQID 2874672416
PQPubID 2045204
ParticipantIDs proquest_journals_2874672416
crossref_citationtrail_10_1002_adfm_202303812
crossref_primary_10_1002_adfm_202303812
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_46_1
  doi: 10.1038/s41467-020-17290-6
– ident: e_1_2_8_4_1
  doi: 10.1002/smll.201805381
– ident: e_1_2_8_24_1
  doi: 10.1002/aenm.201703415
– ident: e_1_2_8_3_1
  doi: 10.1021/acs.chemrev.2c00289
– ident: e_1_2_8_48_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_8_36_1
  doi: 10.1021/acsaem.2c01239
– ident: e_1_2_8_15_1
  doi: 10.1002/aenm.202001111
– ident: e_1_2_8_2_1
  doi: 10.1038/s41578-021-00324-w
– ident: e_1_2_8_53_1
  doi: 10.1103/PhysRevB.57.1505
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.202105404
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.202202137
– ident: e_1_2_8_1_1
  doi: 10.1021/cr500192f
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ensm.2023.01.005
– ident: e_1_2_8_54_1
  doi: 10.1016/j.cpc.2021.108033
– ident: e_1_2_8_18_1
  doi: 10.1021/acs.chemmater.9b03765
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.202008194
– ident: e_1_2_8_35_1
  doi: 10.1002/smll.202104130
– ident: e_1_2_8_25_1
  doi: 10.1002/anie.202206625
– ident: e_1_2_8_31_1
  doi: 10.1002/aenm.202103461
– ident: e_1_2_8_30_1
  doi: 10.1039/c2cp44467d
– ident: e_1_2_8_45_1
  doi: 10.1039/C8EE02991A
– ident: e_1_2_8_22_1
  doi: 10.1021/jacs.8b08638
– ident: e_1_2_8_50_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_39_1
  doi: 10.1038/nchem.2923
– ident: e_1_2_8_10_1
  doi: 10.1149/1.1407247
– ident: e_1_2_8_32_1
  doi: 10.1002/anie.202003972
– ident: e_1_2_8_38_1
  doi: 10.1038/s41586-019-1854-3
– ident: e_1_2_8_49_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_41_1
  doi: 10.1016/j.joule.2017.10.008
– ident: e_1_2_8_27_1
  doi: 10.1016/j.nanoen.2018.10.072
– ident: e_1_2_8_47_1
  doi: 10.1016/j.cej.2020.125725
– ident: e_1_2_8_34_1
  doi: 10.1002/adfm.202102939
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.202106923
– ident: e_1_2_8_29_1
  doi: 10.1126/science.aay9972
– ident: e_1_2_8_17_1
  doi: 10.1002/advs.202200498
– ident: e_1_2_8_44_1
  doi: 10.1016/j.jpowsour.2021.230324
– ident: e_1_2_8_5_1
  doi: 10.1002/adfm.201909530
– ident: e_1_2_8_12_1
  doi: 10.1038/s41467-021-22523-3
– ident: e_1_2_8_7_1
  doi: 10.1039/C4EE03192J
– ident: e_1_2_8_20_1
  doi: 10.1021/jacs.9b13572
– ident: e_1_2_8_23_1
  doi: 10.1002/anie.201602202
– ident: e_1_2_8_19_1
  doi: 10.1016/j.jpowsour.2017.12.072
– ident: e_1_2_8_8_1
  doi: 10.1016/0378-4363(80)90214-4
– ident: e_1_2_8_42_1
  doi: 10.1002/anie.202108109
– ident: e_1_2_8_9_1
  doi: 10.1002/aenm.201601477
– ident: e_1_2_8_51_1
  doi: 10.1063/1.3382344
– ident: e_1_2_8_16_1
  doi: 10.1016/j.nanoen.2020.104997
– ident: e_1_2_8_55_1
  doi: 10.1016/j.commatsci.2005.04.010
– ident: e_1_2_8_11_1
  doi: 10.1002/aenm.202103939
– ident: e_1_2_8_28_1
  doi: 10.1016/j.cjsc.2023.100028
– ident: e_1_2_8_26_1
  doi: 10.1016/j.nanoen.2021.106252
– ident: e_1_2_8_40_1
  doi: 10.1021/acscentsci.9b01166
– ident: e_1_2_8_52_1
  doi: 10.1002/jcc.21759
– ident: e_1_2_8_43_1
  doi: 10.1021/acsami.1c24336
– ident: e_1_2_8_33_1
  doi: 10.1021/jacs.2c09725
SSID ssj0017734
Score 2.6099331
Snippet P2‐type layered oxide material Na 2/3 Ni 1/3 Mn 2/3 O 2 is a competitive candidate for sodium‐ion batteries (SIBs). Nevertheless, it suffers from the strong...
P2‐type layered oxide material Na2/3Ni1/3Mn2/3O2 is a competitive candidate for sodium‐ion batteries (SIBs). Nevertheless, it suffers from the strong P2–O2...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Cathodes
Crystal structure
Cycles
Electrode materials
High voltages
Materials science
Oxygen atoms
Phase transitions
Sodium
Sodium-ion batteries
Structural stability
Substitutes
Transition metals
Title Quasi‐Zero Volume Strain Cathode Materials for Sodium Ion Battery through Synergetic Substitution Effect of Li and Mg
URI https://www.proquest.com/docview/2874672416
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaW9gIHxK8oFOQDEocq4HWydnJcQatSbYvQ7tKll8je2N2V2g1qE6Fy4hF4BV6NJ2Emdn5W_KhwiRInShzPl5lxPPMNIc9FKHQyMDYI1YAHkbFhkIQCDnnfKs0UkqBhtMWR2J9GB7PBrNf73olaKgv9cv7lt3kl_yNVaAO5YpbsP0i2uSk0wD7IF7YgYdheS8bvS3W5bMIVTsxFvvOh0ja42Kwwn09hfWgsL1S4_lRRheM8W5bnO29B8I5e86op1zO-wlxATGysVEoVR4AA8STHuKCwdLEZp123dlhHEqCZ9H8Xz-tnNjLF3Oq6sx9LVCyLNhHtoHt2jBWQjpW3qrge5LTjySIvF3nbfFxWeFN59-cFb8PgrqsiO6pZ9DFKryqwA5ar2-bTy70-d8QaHreOVesXO-F4Z1VmkYwAZmHgt_DWItZRAEfv0r3paJROdmeTG2STw0wEVOnm8M3haNwsVUnpQhfq7tXMoIy_Wr__uuezbvgrb2Zyh9z20xA6dJi6S3pmdY_c6pBT3iefK3T9-PoNcUUdrqjDFfW4og2uKOCKOlxRwBX1uKIeV7TFFe3iijpc0dzS0ZICrujh6QMy3dudvN4PfJmOYM6FLOAr17Kvs8RyA-_at7bPZGKYsBp8wQgcWq2YGmRSMBtnOhZJlpgwy7jVoeK4ivuQbKzylXlEqJFMRXHIDFjgSMpY24hFWWiYBcdbJ_EWCeohTOeewx7f-yx17Ns8xSFPmyHfIi-a6z859pY_XrldSyT1X_hlirUghAQfVzz---kn5GaL7m2yUVyU5ik4q4V-5uHyEwYCl4Y
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi%E2%80%90Zero+Volume+Strain+Cathode+Materials+for+Sodium+Ion+Battery+through+Synergetic+Substitution+Effect+of+Li+and+Mg&rft.jtitle=Advanced+functional+materials&rft.au=Ming%E2%80%90Yuan+Shen&rft.au=Jing%E2%80%90Song+Wang&rft.au=Ren%2C+Zhouhong&rft.au=Wu%2C+Tao&rft.date=2023-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=41&rft_id=info:doi/10.1002%2Fadfm.202303812&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon