Toward Wearable Electromyography for Personalized Musculoskeletal Trunk Models Using an Inverse Synergy-Based Approach

Electromyography (EMG)-driven musculoskeletal models (EMS) of the trunk are used for estimating lumbosacral joint moments and compressive loads during lifting tasks. These models provide personalized estimates of the parameters using information from many sensors. However, to advance technology from...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical robotics and bionics Vol. 7; no. 1; pp. 13 - 19
Main Authors Rook, Jan Willem A., Sartori, Massimo, Refai, Mohamed Irfan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2576-3202
2576-3202
DOI10.1109/TMRB.2024.3503900

Cover

Abstract Electromyography (EMG)-driven musculoskeletal models (EMS) of the trunk are used for estimating lumbosacral joint moments and compressive loads during lifting tasks. These models provide personalized estimates of the parameters using information from many sensors. However, to advance technology from labs to workplaces, there is a need for sensor reduction to improve wearability and applicability. Therefore we introduce an EMG sensor reduction approach based on inverse synergy extrapolation, to reconstruct unmeasured EMG signals for different box-lifting techniques. 12 participants performed an array of tasks (squat, stoop, unilateral twist and bilateral twist) with different weights (0 kg, 7.5 kg and 15 kg). We found that two synergies were sufficient to explain the different lifting tasks (median variance accounted for of 0.91). Building upon this, we used two sensors at optimal subject-specific muscle locations to reconstruct the EMG of four unmeasured channels. Evaluation of the reconstructed and reference EMG showed median coefficients of determination <inline-formula> <tex-math notation="LaTeX">(R^{2}) </tex-math></inline-formula> between 0.70 and 0.86, with median root mean squared errors (RMSE) ranging from 0.02 to 0.04 relative to maximal voluntary contraction. This indicates that our proposed method shows promise for sensor reduction for driving a trunk EMS for ambulatory biomechanical risk assessment in occupational settings and exoskeleton control.
AbstractList Electromyography (EMG)-driven musculoskeletal models (EMS) of the trunk are used for estimating lumbosacral joint moments and compressive loads during lifting tasks. These models provide personalized estimates of the parameters using information from many sensors. However, to advance technology from labs to workplaces, there is a need for sensor reduction to improve wearability and applicability. Therefore we introduce an EMG sensor reduction approach based on inverse synergy extrapolation, to reconstruct unmeasured EMG signals for different box-lifting techniques. 12 participants performed an array of tasks (squat, stoop, unilateral twist and bilateral twist) with different weights (0 kg, 7.5 kg and 15 kg). We found that two synergies were sufficient to explain the different lifting tasks (median variance accounted for of 0.91). Building upon this, we used two sensors at optimal subject-specific muscle locations to reconstruct the EMG of four unmeasured channels. Evaluation of the reconstructed and reference EMG showed median coefficients of determination <inline-formula> <tex-math notation="LaTeX">(R^{2}) </tex-math></inline-formula> between 0.70 and 0.86, with median root mean squared errors (RMSE) ranging from 0.02 to 0.04 relative to maximal voluntary contraction. This indicates that our proposed method shows promise for sensor reduction for driving a trunk EMS for ambulatory biomechanical risk assessment in occupational settings and exoskeleton control.
Electromyography (EMG)-driven musculoskeletal models (EMS) of the trunk are used for estimating lumbosacral joint moments and compressive loads during lifting tasks. These models provide personalized estimates of the parameters using information from many sensors. However, to advance technology from labs to workplaces, there is a need for sensor reduction to improve wearability and applicability. Therefore we introduce an EMG sensor reduction approach based on inverse synergy extrapolation, to reconstruct unmeasured EMG signals for different box-lifting techniques. 12 participants performed an array of tasks (squat, stoop, unilateral twist and bilateral twist) with different weights (0 kg, 7.5 kg and 15 kg). We found that two synergies were sufficient to explain the different lifting tasks (median variance accounted for of 0.91). Building upon this, we used two sensors at optimal subject-specific muscle locations to reconstruct the EMG of four unmeasured channels. Evaluation of the reconstructed and reference EMG showed median coefficients of determination [Formula Omitted] between 0.70 and 0.86, with median root mean squared errors (RMSE) ranging from 0.02 to 0.04 relative to maximal voluntary contraction. This indicates that our proposed method shows promise for sensor reduction for driving a trunk EMS for ambulatory biomechanical risk assessment in occupational settings and exoskeleton control.
Author Rook, Jan Willem A.
Refai, Mohamed Irfan
Sartori, Massimo
Author_xml – sequence: 1
  givenname: Jan Willem A.
  orcidid: 0009-0004-1881-8932
  surname: Rook
  fullname: Rook, Jan Willem A.
  organization: Department of Biomechanical Engineering, Neuromuscular Robotics, University of Twente, Enschede, The Netherlands
– sequence: 2
  givenname: Massimo
  orcidid: 0000-0003-0930-6535
  surname: Sartori
  fullname: Sartori, Massimo
  organization: Department of Biomechanical Engineering, Neuromuscular Robotics, University of Twente, Enschede, The Netherlands
– sequence: 3
  givenname: Mohamed Irfan
  orcidid: 0000-0002-3617-5131
  surname: Refai
  fullname: Refai, Mohamed Irfan
  email: m.i.mohamedrefai@utwente.nl
  organization: Department of Biomechanical Engineering, Neuromuscular Robotics, University of Twente, Enschede, The Netherlands
BookMark eNp9kE1Lw0AQhhdRsH78AMHDgufU_WiyybGKX9CiaMVjmCSzNXbdrbtJJf56U9pD8eBphuF9ZpjniOxbZ5GQM86GnLPscjZ9vhoKJkZDGTOZMbZHBiJWSST74f5Of0hOQ_hgjAkeMyWTAVnN3Df4ir4heCgM0huDZePdZ-fmHpbvHdXO0yf0wVkw9Q9WdNqGsjUuLNBgA4bOfGsXdOoqNIG-htrOKVj6YFc9hPSls-jnXXQFoWfHy6V3UL6fkAMNJuDpth6T19ub2fV9NHm8e7geT6JSJKqJ5EinoDOs2CjTPFaFRmSyQi1VWiWYyaqUiYYq0TGiBlGwUSEKUFopnag-dkwuNnv7s18thib_cK3vPwm55EpInsap6FNqkyq9C8Gjzsu6gaZ2tvFQm5yzfO05X3vO157zreee5H_Ipa8_wXf_MucbpkbEnbyKM5VK-QuWM445
CODEN ITMRBT
CitedBy_id crossref_primary_10_3389_fbioe_2025_1486931
Cites_doi 10.5271/sjweh.749
10.1109/MCS.2018.2810460
10.3389/fncom.2015.00114
10.1016/S0140-6736(21)00733-9
10.1115/1.4063899
10.1249/01.mss.0000176684.24008.6f
10.3390/s22010087
10.1016/j.jbiomech.2024.111987
10.1016/j.jbiomech.2017.10.001
10.1136/oemed-2014-102346
10.3390/s21072476
10.3389/fbioe.2022.962959
10.1016/j.jbiomech.2015.09.021
10.3389/fncom.2020.588943
10.1016/S2665-9913(23)00098-X
10.1115/1.4038199
10.1016/j.jbiomech.2023.111881
10.3389/fbioe.2021.769117
10.1155/2018/3615368
10.1016/j.brainresrev.2007.08.004
10.1109/TBME.2021.3133583
10.1097/00007632-200012010-00018
10.1016/j.jbiomech.2015.06.032
10.1007/s00421-021-04604-9
10.1016/j.jbiomech.2022.111307
10.1136/oemed-2013-101862
10.3389/fnhum.2019.00142
10.1016/j.jbiomech.2023.111727
10.1080/001401399185342
10.1016/j.jbiomech.2010.08.028
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
8FD
K9.
L7M
DOI 10.1109/TMRB.2024.3503900
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-3202
EndPage 19
ExternalDocumentID 10_1109_TMRB_2024_3503900
10759783
Genre orig-research
GrantInformation_xml – fundername: European Union’s Horizon 2020 RIA
  grantid: 871237 (SOPHIA)
– fundername: Horizon 2024 RIA
  grantid: 101120408 (SWAG)
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
K9.
L7M
ID FETCH-LOGICAL-c267t-34f8af9ed049f157bfee03def378d6e93dc36fad6f5eefa2b04b2ba7f77f67ef3
IEDL.DBID RIE
ISSN 2576-3202
IngestDate Mon Jun 30 12:19:50 EDT 2025
Tue Jul 01 05:24:01 EDT 2025
Thu Apr 24 23:02:13 EDT 2025
Wed Aug 27 01:49:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-34f8af9ed049f157bfee03def378d6e93dc36fad6f5eefa2b04b2ba7f77f67ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-1881-8932
0000-0003-0930-6535
0000-0002-3617-5131
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10759783
PQID 3172318582
PQPubID 4437212
PageCount 7
ParticipantIDs ieee_primary_10759783
crossref_citationtrail_10_1109_TMRB_2024_3503900
proquest_journals_3172318582
crossref_primary_10_1109_TMRB_2024_3503900
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on medical robotics and bionics
PublicationTitleAbbrev TMRB
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref19
Moya-Esteban (ref16) 2023
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.5271/sjweh.749
– ident: ref26
  doi: 10.1109/MCS.2018.2810460
– ident: ref29
  doi: 10.3389/fncom.2015.00114
– ident: ref5
  doi: 10.1016/S0140-6736(21)00733-9
– ident: ref24
  doi: 10.1115/1.4063899
– ident: ref11
  doi: 10.1249/01.mss.0000176684.24008.6f
– ident: ref15
  doi: 10.3390/s22010087
– ident: ref31
  doi: 10.1016/j.jbiomech.2024.111987
– ident: ref14
  doi: 10.1016/j.jbiomech.2017.10.001
– ident: ref4
  doi: 10.1136/oemed-2014-102346
– ident: ref28
  doi: 10.3390/s21072476
– ident: ref23
  doi: 10.3389/fbioe.2022.962959
– ident: ref12
  doi: 10.1016/j.jbiomech.2015.09.021
– ident: ref22
  doi: 10.3389/fncom.2020.588943
– ident: ref1
  doi: 10.1016/S2665-9913(23)00098-X
– ident: ref25
  doi: 10.1115/1.4038199
– ident: ref30
  doi: 10.1016/j.jbiomech.2023.111881
– ident: ref7
  doi: 10.3389/fbioe.2021.769117
– ident: ref18
  doi: 10.1155/2018/3615368
– ident: ref17
  doi: 10.1016/j.brainresrev.2007.08.004
– ident: ref21
  doi: 10.1109/TBME.2021.3133583
– ident: ref2
  doi: 10.1097/00007632-200012010-00018
– ident: ref20
  doi: 10.1016/j.jbiomech.2015.06.032
– ident: ref27
  doi: 10.1007/s00421-021-04604-9
– ident: ref10
  doi: 10.1016/j.jbiomech.2022.111307
– ident: ref6
  doi: 10.1136/oemed-2013-101862
– year: 2023
  ident: ref16
  article-title: Adaptive assistance with an active and soft back-support exosuit to unknown external loads via model-based estimates of internal lumbosacral moments
  publication-title: arXiv:2311.01843
– ident: ref19
  doi: 10.3389/fnhum.2019.00142
– ident: ref13
  doi: 10.1016/j.jbiomech.2023.111727
– ident: ref9
  doi: 10.1080/001401399185342
– ident: ref8
  doi: 10.1016/j.jbiomech.2010.08.028
SSID ssj0002150736
Score 2.294775
Snippet Electromyography (EMG)-driven musculoskeletal models (EMS) of the trunk are used for estimating lumbosacral joint moments and compressive loads during lifting...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13
SubjectTerms Back
Biological system modeling
Biomechanics
Calibration
Customization
Electromyography
Exoskeletons
Hoisting
Load modeling
Medical services
muscle synergy
Muscles
Occupational health
sensor reduction
Sensors
Vectors
wearable sensors
Workplaces
Title Toward Wearable Electromyography for Personalized Musculoskeletal Trunk Models Using an Inverse Synergy-Based Approach
URI https://ieeexplore.ieee.org/document/10759783
https://www.proquest.com/docview/3172318582
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0RTuVQShvUUBr5wKnSBsfeXWePSRUUIQUhmghuK3-ML4FNlWQrwYHfju11EG0F4uaDLVl6Y88be94MwIlyLtk6N5LIPMUkVTxNCqmzBLPCXZRaW6m9Gnl6kU_m6flNdhPF6kELg4gh-Qx7fhj-8s1S1_6pzJ1wkfmniha0nJ01Yq3nBxXmqQ3P489lnxans-nVyEWALO3xjLrYnv7le0Izlf9u4OBWzvbhYruhJptk0as3qqcf_qnV-O4df4KPkWCSYWMRB7CD1WfYe1F28Av8mYVcWXLtrNwrp8i46YVzdx_rVxPHZMnllqY_oCHT2iesLtcL56UcXSezVV0tiG-kdrsmIe2AyIr4oh2rNZJf90FRmIycizRkGMuWt2F-Np79nCSx_0KiWS42CU_tQNoCjYsibD8TyiJSbtByMTA5FtxonltpcpshWskUTRVTUlghbC7ctEPYrZYVfgVirGLSMKOpEanhUvYHUiOzVDOjaEY7QLfIlDoWJ_c9Mm7LEKTQovRglh7MMoLZgR_PS343lTnemtz24LyY2ODSgeMt_mU8vOvSUSrmReUDdvTKsm_wgfk-wCF7-xh2N6savztyslFdaE0fx91gmk-R6udh
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB1BOQCH8lVE2gI-cELa4PhjnT22qFWAJkKwFb2t_DG-pGyqJFup_fW1vU5VQCBue_BKlp7teWPPewPwzoSQ7EMYKXQpsBCGi6LSVhYoq3BQWuu1jWrk6aycnIrPZ_Isi9WTFgYRU_EZDuNnest3C9vFq7Kww5WMVxX34UEI_EL2cq3bKxUWyQ0v89vliFYf6um3w5ADMjHkkobsnv4SfVI7lT_O4BRYjp_AbDOlvp5kPuzWZmivf3Nr_O85P4XtTDHJQb8mnsE9bJ_D4zvGgy_gsk7VsuRHWOdRO0WO-m44P6-ygzUJXJZ83RD1a3Rk2sWS1cVqHuJUIOykXnbtnMRWaucrkgoPiG5JtO1YrpB8v0qawuIwBElHDrJx-Q6cHh_VHydF7sBQWFaqdcGFH2tfoQt5hB9JZTwi5Q49V2NXYsWd5aXXrvQS0WtmqDDMaOWV8qUKw17CVrto8RUQ5w3TjjlLnRKOaz0aa4vMU8ucoZIOgG6QaWy2J49dMs6blKbQqolgNhHMJoM5gPe3v1z03hz_GrwTwbkzsMdlAPsb_Ju8fVdNIFUsysrHbPcvv72Fh5N6etKcfJp92YNHLHYFTrXc-7C1Xnb4OlCVtXmTFugNVePpfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Wearable+Electromyography+for+Personalized+Musculoskeletal+Trunk+Models+Using+an+Inverse+Synergy-Based+Approach&rft.jtitle=IEEE+transactions+on+medical+robotics+and+bionics&rft.au=Rook%2C+Jan+Willem+A&rft.au=Sartori%2C+Massimo&rft.au=Refai%2C+Mohamed+Irfan&rft.date=2025-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2576-3202&rft.volume=7&rft.issue=1&rft.spage=13&rft_id=info:doi/10.1109%2FTMRB.2024.3503900&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3202&client=summon