Toward Wearable Electromyography for Personalized Musculoskeletal Trunk Models Using an Inverse Synergy-Based Approach
Electromyography (EMG)-driven musculoskeletal models (EMS) of the trunk are used for estimating lumbosacral joint moments and compressive loads during lifting tasks. These models provide personalized estimates of the parameters using information from many sensors. However, to advance technology from...
Saved in:
Published in | IEEE transactions on medical robotics and bionics Vol. 7; no. 1; pp. 13 - 19 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2576-3202 2576-3202 |
DOI | 10.1109/TMRB.2024.3503900 |
Cover
Abstract | Electromyography (EMG)-driven musculoskeletal models (EMS) of the trunk are used for estimating lumbosacral joint moments and compressive loads during lifting tasks. These models provide personalized estimates of the parameters using information from many sensors. However, to advance technology from labs to workplaces, there is a need for sensor reduction to improve wearability and applicability. Therefore we introduce an EMG sensor reduction approach based on inverse synergy extrapolation, to reconstruct unmeasured EMG signals for different box-lifting techniques. 12 participants performed an array of tasks (squat, stoop, unilateral twist and bilateral twist) with different weights (0 kg, 7.5 kg and 15 kg). We found that two synergies were sufficient to explain the different lifting tasks (median variance accounted for of 0.91). Building upon this, we used two sensors at optimal subject-specific muscle locations to reconstruct the EMG of four unmeasured channels. Evaluation of the reconstructed and reference EMG showed median coefficients of determination <inline-formula> <tex-math notation="LaTeX">(R^{2}) </tex-math></inline-formula> between 0.70 and 0.86, with median root mean squared errors (RMSE) ranging from 0.02 to 0.04 relative to maximal voluntary contraction. This indicates that our proposed method shows promise for sensor reduction for driving a trunk EMS for ambulatory biomechanical risk assessment in occupational settings and exoskeleton control. |
---|---|
AbstractList | Electromyography (EMG)-driven musculoskeletal models (EMS) of the trunk are used for estimating lumbosacral joint moments and compressive loads during lifting tasks. These models provide personalized estimates of the parameters using information from many sensors. However, to advance technology from labs to workplaces, there is a need for sensor reduction to improve wearability and applicability. Therefore we introduce an EMG sensor reduction approach based on inverse synergy extrapolation, to reconstruct unmeasured EMG signals for different box-lifting techniques. 12 participants performed an array of tasks (squat, stoop, unilateral twist and bilateral twist) with different weights (0 kg, 7.5 kg and 15 kg). We found that two synergies were sufficient to explain the different lifting tasks (median variance accounted for of 0.91). Building upon this, we used two sensors at optimal subject-specific muscle locations to reconstruct the EMG of four unmeasured channels. Evaluation of the reconstructed and reference EMG showed median coefficients of determination <inline-formula> <tex-math notation="LaTeX">(R^{2}) </tex-math></inline-formula> between 0.70 and 0.86, with median root mean squared errors (RMSE) ranging from 0.02 to 0.04 relative to maximal voluntary contraction. This indicates that our proposed method shows promise for sensor reduction for driving a trunk EMS for ambulatory biomechanical risk assessment in occupational settings and exoskeleton control. Electromyography (EMG)-driven musculoskeletal models (EMS) of the trunk are used for estimating lumbosacral joint moments and compressive loads during lifting tasks. These models provide personalized estimates of the parameters using information from many sensors. However, to advance technology from labs to workplaces, there is a need for sensor reduction to improve wearability and applicability. Therefore we introduce an EMG sensor reduction approach based on inverse synergy extrapolation, to reconstruct unmeasured EMG signals for different box-lifting techniques. 12 participants performed an array of tasks (squat, stoop, unilateral twist and bilateral twist) with different weights (0 kg, 7.5 kg and 15 kg). We found that two synergies were sufficient to explain the different lifting tasks (median variance accounted for of 0.91). Building upon this, we used two sensors at optimal subject-specific muscle locations to reconstruct the EMG of four unmeasured channels. Evaluation of the reconstructed and reference EMG showed median coefficients of determination [Formula Omitted] between 0.70 and 0.86, with median root mean squared errors (RMSE) ranging from 0.02 to 0.04 relative to maximal voluntary contraction. This indicates that our proposed method shows promise for sensor reduction for driving a trunk EMS for ambulatory biomechanical risk assessment in occupational settings and exoskeleton control. |
Author | Rook, Jan Willem A. Refai, Mohamed Irfan Sartori, Massimo |
Author_xml | – sequence: 1 givenname: Jan Willem A. orcidid: 0009-0004-1881-8932 surname: Rook fullname: Rook, Jan Willem A. organization: Department of Biomechanical Engineering, Neuromuscular Robotics, University of Twente, Enschede, The Netherlands – sequence: 2 givenname: Massimo orcidid: 0000-0003-0930-6535 surname: Sartori fullname: Sartori, Massimo organization: Department of Biomechanical Engineering, Neuromuscular Robotics, University of Twente, Enschede, The Netherlands – sequence: 3 givenname: Mohamed Irfan orcidid: 0000-0002-3617-5131 surname: Refai fullname: Refai, Mohamed Irfan email: m.i.mohamedrefai@utwente.nl organization: Department of Biomechanical Engineering, Neuromuscular Robotics, University of Twente, Enschede, The Netherlands |
BookMark | eNp9kE1Lw0AQhhdRsH78AMHDgufU_WiyybGKX9CiaMVjmCSzNXbdrbtJJf56U9pD8eBphuF9ZpjniOxbZ5GQM86GnLPscjZ9vhoKJkZDGTOZMbZHBiJWSST74f5Of0hOQ_hgjAkeMyWTAVnN3Df4ir4heCgM0huDZePdZ-fmHpbvHdXO0yf0wVkw9Q9WdNqGsjUuLNBgA4bOfGsXdOoqNIG-htrOKVj6YFc9hPSls-jnXXQFoWfHy6V3UL6fkAMNJuDpth6T19ub2fV9NHm8e7geT6JSJKqJ5EinoDOs2CjTPFaFRmSyQi1VWiWYyaqUiYYq0TGiBlGwUSEKUFopnag-dkwuNnv7s18thib_cK3vPwm55EpInsap6FNqkyq9C8Gjzsu6gaZ2tvFQm5yzfO05X3vO157zreee5H_Ipa8_wXf_MucbpkbEnbyKM5VK-QuWM445 |
CODEN | ITMRBT |
CitedBy_id | crossref_primary_10_3389_fbioe_2025_1486931 |
Cites_doi | 10.5271/sjweh.749 10.1109/MCS.2018.2810460 10.3389/fncom.2015.00114 10.1016/S0140-6736(21)00733-9 10.1115/1.4063899 10.1249/01.mss.0000176684.24008.6f 10.3390/s22010087 10.1016/j.jbiomech.2024.111987 10.1016/j.jbiomech.2017.10.001 10.1136/oemed-2014-102346 10.3390/s21072476 10.3389/fbioe.2022.962959 10.1016/j.jbiomech.2015.09.021 10.3389/fncom.2020.588943 10.1016/S2665-9913(23)00098-X 10.1115/1.4038199 10.1016/j.jbiomech.2023.111881 10.3389/fbioe.2021.769117 10.1155/2018/3615368 10.1016/j.brainresrev.2007.08.004 10.1109/TBME.2021.3133583 10.1097/00007632-200012010-00018 10.1016/j.jbiomech.2015.06.032 10.1007/s00421-021-04604-9 10.1016/j.jbiomech.2022.111307 10.1136/oemed-2013-101862 10.3389/fnhum.2019.00142 10.1016/j.jbiomech.2023.111727 10.1080/001401399185342 10.1016/j.jbiomech.2010.08.028 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD K9. L7M |
DOI | 10.1109/TMRB.2024.3503900 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-3202 |
EndPage | 19 |
ExternalDocumentID | 10_1109_TMRB_2024_3503900 10759783 |
Genre | orig-research |
GrantInformation_xml | – fundername: European Union’s Horizon 2020 RIA grantid: 871237 (SOPHIA) – fundername: Horizon 2024 RIA grantid: 101120408 (SWAG) |
GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE JAVBF M~E OCL RIA RIE AAYXX CITATION 7SP 8FD K9. L7M |
ID | FETCH-LOGICAL-c267t-34f8af9ed049f157bfee03def378d6e93dc36fad6f5eefa2b04b2ba7f77f67ef3 |
IEDL.DBID | RIE |
ISSN | 2576-3202 |
IngestDate | Mon Jun 30 12:19:50 EDT 2025 Tue Jul 01 05:24:01 EDT 2025 Thu Apr 24 23:02:13 EDT 2025 Wed Aug 27 01:49:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c267t-34f8af9ed049f157bfee03def378d6e93dc36fad6f5eefa2b04b2ba7f77f67ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0004-1881-8932 0000-0003-0930-6535 0000-0002-3617-5131 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10759783 |
PQID | 3172318582 |
PQPubID | 4437212 |
PageCount | 7 |
ParticipantIDs | ieee_primary_10759783 crossref_citationtrail_10_1109_TMRB_2024_3503900 proquest_journals_3172318582 crossref_primary_10_1109_TMRB_2024_3503900 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on medical robotics and bionics |
PublicationTitleAbbrev | TMRB |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref19 Moya-Esteban (ref16) 2023 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref3 doi: 10.5271/sjweh.749 – ident: ref26 doi: 10.1109/MCS.2018.2810460 – ident: ref29 doi: 10.3389/fncom.2015.00114 – ident: ref5 doi: 10.1016/S0140-6736(21)00733-9 – ident: ref24 doi: 10.1115/1.4063899 – ident: ref11 doi: 10.1249/01.mss.0000176684.24008.6f – ident: ref15 doi: 10.3390/s22010087 – ident: ref31 doi: 10.1016/j.jbiomech.2024.111987 – ident: ref14 doi: 10.1016/j.jbiomech.2017.10.001 – ident: ref4 doi: 10.1136/oemed-2014-102346 – ident: ref28 doi: 10.3390/s21072476 – ident: ref23 doi: 10.3389/fbioe.2022.962959 – ident: ref12 doi: 10.1016/j.jbiomech.2015.09.021 – ident: ref22 doi: 10.3389/fncom.2020.588943 – ident: ref1 doi: 10.1016/S2665-9913(23)00098-X – ident: ref25 doi: 10.1115/1.4038199 – ident: ref30 doi: 10.1016/j.jbiomech.2023.111881 – ident: ref7 doi: 10.3389/fbioe.2021.769117 – ident: ref18 doi: 10.1155/2018/3615368 – ident: ref17 doi: 10.1016/j.brainresrev.2007.08.004 – ident: ref21 doi: 10.1109/TBME.2021.3133583 – ident: ref2 doi: 10.1097/00007632-200012010-00018 – ident: ref20 doi: 10.1016/j.jbiomech.2015.06.032 – ident: ref27 doi: 10.1007/s00421-021-04604-9 – ident: ref10 doi: 10.1016/j.jbiomech.2022.111307 – ident: ref6 doi: 10.1136/oemed-2013-101862 – year: 2023 ident: ref16 article-title: Adaptive assistance with an active and soft back-support exosuit to unknown external loads via model-based estimates of internal lumbosacral moments publication-title: arXiv:2311.01843 – ident: ref19 doi: 10.3389/fnhum.2019.00142 – ident: ref13 doi: 10.1016/j.jbiomech.2023.111727 – ident: ref9 doi: 10.1080/001401399185342 – ident: ref8 doi: 10.1016/j.jbiomech.2010.08.028 |
SSID | ssj0002150736 |
Score | 2.294775 |
Snippet | Electromyography (EMG)-driven musculoskeletal models (EMS) of the trunk are used for estimating lumbosacral joint moments and compressive loads during lifting... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13 |
SubjectTerms | Back Biological system modeling Biomechanics Calibration Customization Electromyography Exoskeletons Hoisting Load modeling Medical services muscle synergy Muscles Occupational health sensor reduction Sensors Vectors wearable sensors Workplaces |
Title | Toward Wearable Electromyography for Personalized Musculoskeletal Trunk Models Using an Inverse Synergy-Based Approach |
URI | https://ieeexplore.ieee.org/document/10759783 https://www.proquest.com/docview/3172318582 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0RTuVQShvUUBr5wKnSBsfeXWePSRUUIQUhmghuK3-ML4FNlWQrwYHfju11EG0F4uaDLVl6Y88be94MwIlyLtk6N5LIPMUkVTxNCqmzBLPCXZRaW6m9Gnl6kU_m6flNdhPF6kELg4gh-Qx7fhj-8s1S1_6pzJ1wkfmniha0nJ01Yq3nBxXmqQ3P489lnxans-nVyEWALO3xjLrYnv7le0Izlf9u4OBWzvbhYruhJptk0as3qqcf_qnV-O4df4KPkWCSYWMRB7CD1WfYe1F28Av8mYVcWXLtrNwrp8i46YVzdx_rVxPHZMnllqY_oCHT2iesLtcL56UcXSezVV0tiG-kdrsmIe2AyIr4oh2rNZJf90FRmIycizRkGMuWt2F-Np79nCSx_0KiWS42CU_tQNoCjYsibD8TyiJSbtByMTA5FtxonltpcpshWskUTRVTUlghbC7ctEPYrZYVfgVirGLSMKOpEanhUvYHUiOzVDOjaEY7QLfIlDoWJ_c9Mm7LEKTQovRglh7MMoLZgR_PS343lTnemtz24LyY2ODSgeMt_mU8vOvSUSrmReUDdvTKsm_wgfk-wCF7-xh2N6savztyslFdaE0fx91gmk-R6udh |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB1BOQCH8lVE2gI-cELa4PhjnT22qFWAJkKwFb2t_DG-pGyqJFup_fW1vU5VQCBue_BKlp7teWPPewPwzoSQ7EMYKXQpsBCGi6LSVhYoq3BQWuu1jWrk6aycnIrPZ_Isi9WTFgYRU_EZDuNnest3C9vFq7Kww5WMVxX34UEI_EL2cq3bKxUWyQ0v89vliFYf6um3w5ADMjHkkobsnv4SfVI7lT_O4BRYjp_AbDOlvp5kPuzWZmivf3Nr_O85P4XtTDHJQb8mnsE9bJ_D4zvGgy_gsk7VsuRHWOdRO0WO-m44P6-ygzUJXJZ83RD1a3Rk2sWS1cVqHuJUIOykXnbtnMRWaucrkgoPiG5JtO1YrpB8v0qawuIwBElHDrJx-Q6cHh_VHydF7sBQWFaqdcGFH2tfoQt5hB9JZTwi5Q49V2NXYsWd5aXXrvQS0WtmqDDMaOWV8qUKw17CVrto8RUQ5w3TjjlLnRKOaz0aa4vMU8ucoZIOgG6QaWy2J49dMs6blKbQqolgNhHMJoM5gPe3v1z03hz_GrwTwbkzsMdlAPsb_Ju8fVdNIFUsysrHbPcvv72Fh5N6etKcfJp92YNHLHYFTrXc-7C1Xnb4OlCVtXmTFugNVePpfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Wearable+Electromyography+for+Personalized+Musculoskeletal+Trunk+Models+Using+an+Inverse+Synergy-Based+Approach&rft.jtitle=IEEE+transactions+on+medical+robotics+and+bionics&rft.au=Rook%2C+Jan+Willem+A&rft.au=Sartori%2C+Massimo&rft.au=Refai%2C+Mohamed+Irfan&rft.date=2025-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2576-3202&rft.volume=7&rft.issue=1&rft.spage=13&rft_id=info:doi/10.1109%2FTMRB.2024.3503900&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3202&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3202&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3202&client=summon |