Guidance to improve the scientific value of zeta-potential measurements in nanoEHS
Nanoparticle zeta-potentials are relatively easy to measure, and have consistently been proposed in guidance documents as a particle property that must be included for complete nanoparticle characterization. There is also an increasing interest in integrating data collected on nanomaterial propertie...
Saved in:
Published in | Environmental science. Nano Vol. 3; no. 5; pp. 953 - 965 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
2016
|
Online Access | Get full text |
Cover
Loading…
Abstract | Nanoparticle zeta-potentials are relatively easy to measure, and have consistently been proposed in guidance documents as a particle property that must be included for complete nanoparticle characterization. There is also an increasing interest in integrating data collected on nanomaterial properties and behavior measured in different systems (
e.g. in vitro
assays, surface water, soil) to identify the properties controlling nanomaterial fate and effects, to be able to integrate and reuse datasets beyond their original intent, and ultimately to predict behaviors of new nanomaterials based on their measured properties (
i.e.
read across), including zeta-potential. Several confounding factors pose difficulty in taking, integrating and interpreting this measurement consistently. Zeta-potential is a modeled quantity determined from measurements of the electrophoretic mobility in a suspension, and its value depends on the nanomaterial properties, the solution conditions, and the theoretical model applied. The ability to use zeta-potential as an explanatory variable for measured behaviors in different systems (or potentially to predict specific behaviors) therefore requires robust reporting with relevant meta-data for the measurement conditions and the model used to convert mobility measurements to zeta-potentials. However, there is currently no such standardization for reporting in the nanoEHS literature. The objective of this tutorial review is to familiarize the nanoEHS research community with the zeta-potential concept and the factors that influence its calculated value and interpretation, including the effects of adsorbed macromolecules. We also provide practical guidance on the precision of measurement, interpretation of zeta-potential as an explanatory variable for processes of interest (
e.g.
toxicity, environmental fate), and provide advice for addressing common challenges associated with making meaningful zeta-potential measurements using commercial instruments. Finally, we provide specific guidance on the parameters that need to be reported with zeta-potential measurements to maximize interpretability and to support scientific synthesis across data sets.
Nanoparticle zeta potentials are easy to measure and proposed as a required property for complete nanoparticle characterization, but relevant metadata must be reported with zeta potential to be scientifically useful. |
---|---|
AbstractList | Nanoparticle zeta-potentials are relatively easy to measure, and have consistently been proposed in guidance documents as a particle property that must be included for complete nanoparticle characterization. There is also an increasing interest in integrating data collected on nanomaterial properties and behavior measured in different systems (
e.g. in vitro
assays, surface water, soil) to identify the properties controlling nanomaterial fate and effects, to be able to integrate and reuse datasets beyond their original intent, and ultimately to predict behaviors of new nanomaterials based on their measured properties (
i.e.
read across), including zeta-potential. Several confounding factors pose difficulty in taking, integrating and interpreting this measurement consistently. Zeta-potential is a modeled quantity determined from measurements of the electrophoretic mobility in a suspension, and its value depends on the nanomaterial properties, the solution conditions, and the theoretical model applied. The ability to use zeta-potential as an explanatory variable for measured behaviors in different systems (or potentially to predict specific behaviors) therefore requires robust reporting with relevant meta-data for the measurement conditions and the model used to convert mobility measurements to zeta-potentials. However, there is currently no such standardization for reporting in the nanoEHS literature. The objective of this tutorial review is to familiarize the nanoEHS research community with the zeta-potential concept and the factors that influence its calculated value and interpretation, including the effects of adsorbed macromolecules. We also provide practical guidance on the precision of measurement, interpretation of zeta-potential as an explanatory variable for processes of interest (
e.g.
toxicity, environmental fate), and provide advice for addressing common challenges associated with making meaningful zeta-potential measurements using commercial instruments. Finally, we provide specific guidance on the parameters that need to be reported with zeta-potential measurements to maximize interpretability and to support scientific synthesis across data sets.
Nanoparticle zeta potentials are easy to measure and proposed as a required property for complete nanoparticle characterization, but relevant metadata must be reported with zeta potential to be scientifically useful. Nanoparticle zeta-potentials are relatively easy to measure, and have consistently been proposed in guidance documents as a particle property that must be included for complete nanoparticle characterization. There is also an increasing interest in integrating data collected on nanomaterial properties and behavior measured in different systems (e.g. in vitro assays, surface water, soil) to identify the properties controlling nanomaterial fate and effects, to be able to integrate and reuse datasets beyond their original intent, and ultimately to predict behaviors of new nanomaterials based on their measured properties (i.e. read across), including zeta-potential. Several confounding factors pose difficulty in taking, integrating and interpreting this measurement consistently. Zeta-potential is a modeled quantity determined from measurements of the electrophoretic mobility in a suspension, and its value depends on the nanomaterial properties, the solution conditions, and the theoretical model applied. The ability to use zeta-potential as an explanatory variable for measured behaviors in different systems (or potentially to predict specific behaviors) therefore requires robust reporting with relevant meta-data for the measurement conditions and the model used to convert mobility measurements to zeta-potentials. However, there is currently no such standardization for reporting in the nanoEHS literature. The objective of this tutorial review is to familiarize the nanoEHS research community with the zeta-potential concept and the factors that influence its calculated value and interpretation, including the effects of adsorbed macromolecules. We also provide practical guidance on the precision of measurement, interpretation of zeta-potential as an explanatory variable for processes of interest (e.g. toxicity, environmental fate), and provide advice for addressing common challenges associated with making meaningful zeta-potential measurements using commercial instruments. Finally, we provide specific guidance on the parameters that need to be reported with zeta-potential measurements to maximize interpretability and to support scientific synthesis across data sets. Nanoparticle zeta-potentials are relatively easy to measure, and have consistently been proposed in guidance documents as a particle property that must be included for complete nanoparticle characterization. There is also an increasing interest in integrating data collected on nanomaterial properties and behavior measured in different systems ( e.g. in vitro assays, surface water, soil) to identify the properties controlling nanomaterial fate and effects, to be able to integrate and reuse datasets beyond their original intent, and ultimately to predict behaviors of new nanomaterials based on their measured properties ( i.e. read across), including zeta-potential. Several confounding factors pose difficulty in taking, integrating and interpreting this measurement consistently. Zeta-potential is a modeled quantity determined from measurements of the electrophoretic mobility in a suspension, and its value depends on the nanomaterial properties, the solution conditions, and the theoretical model applied. The ability to use zeta-potential as an explanatory variable for measured behaviors in different systems (or potentially to predict specific behaviors) therefore requires robust reporting with relevant meta-data for the measurement conditions and the model used to convert mobility measurements to zeta-potentials. However, there is currently no such standardization for reporting in the nanoEHS literature. The objective of this tutorial review is to familiarize the nanoEHS research community with the zeta-potential concept and the factors that influence its calculated value and interpretation, including the effects of adsorbed macromolecules. We also provide practical guidance on the precision of measurement, interpretation of zeta-potential as an explanatory variable for processes of interest ( e.g. toxicity, environmental fate), and provide advice for addressing common challenges associated with making meaningful zeta-potential measurements using commercial instruments. Finally, we provide specific guidance on the parameters that need to be reported with zeta-potential measurements to maximize interpretability and to support scientific synthesis across data sets. |
Author | Lowry, Gregory V Rumble, John Sayre, Philip Hendren, Christine Ogilvie Nobbmann, Ulf Hill, Reghan J Rawle, Alan F Harper, Stacey Klaessig, Fred |
AuthorAffiliation | LLC Civil & Environmental Engineering Formerly with the U.S. Environmental Protection Agency Pennsylvania Bio Nano Systems Carnegie Mellon University, Civil & Environmental Engineering Biological, and Environmental Engineering R&R Data Services Malvern Instruments Inc Duke University Oregon State University Center for the Environmental Implications of Nanotechnology Environmental & Molecular Toxicology/Chemical McGill University, Department of Chemical Engineering |
AuthorAffiliation_xml | – sequence: 0 name: Malvern Instruments Inc – sequence: 0 name: Center for the Environmental Implications of Nanotechnology – sequence: 0 name: McGill University, Department of Chemical Engineering – sequence: 0 name: Pennsylvania Bio Nano Systems – sequence: 0 name: Civil & Environmental Engineering – sequence: 0 name: Duke University – sequence: 0 name: R&R Data Services – sequence: 0 name: Biological, and Environmental Engineering – sequence: 0 name: LLC – sequence: 0 name: Carnegie Mellon University, Civil & Environmental Engineering – sequence: 0 name: Oregon State University – sequence: 0 name: Environmental & Molecular Toxicology/Chemical – sequence: 0 name: Formerly with the U.S. Environmental Protection Agency |
Author_xml | – sequence: 1 givenname: Gregory V surname: Lowry fullname: Lowry, Gregory V – sequence: 2 givenname: Reghan J surname: Hill fullname: Hill, Reghan J – sequence: 3 givenname: Stacey surname: Harper fullname: Harper, Stacey – sequence: 4 givenname: Alan F surname: Rawle fullname: Rawle, Alan F – sequence: 5 givenname: Christine Ogilvie surname: Hendren fullname: Hendren, Christine Ogilvie – sequence: 6 givenname: Fred surname: Klaessig fullname: Klaessig, Fred – sequence: 7 givenname: Ulf surname: Nobbmann fullname: Nobbmann, Ulf – sequence: 8 givenname: Philip surname: Sayre fullname: Sayre, Philip – sequence: 9 givenname: John surname: Rumble fullname: Rumble, John |
BookMark | eNptkc1LAzEQxYNUsNZevAs5irCabLLZeJRSW6Uo-HFestkJRnaTmmQL-te7taIgnuYN83vD8OYQjZx3gNAxJeeUsMsLLcARQpl43UPjnBQ0k1TQ0Y8u2AGaxvhKBojmBRPlGD0setsopwEnj223Dn4zyBfAUVtwyRqr8Ua1PWBv8Ackla192g5UiztQsQ_QDW3E1mGnnJ8vH4_QvlFthOl3naDn6_nTbJmt7hc3s6tVpnNRpoxRJQxoLWVtiOaqVAWvGfCSM6hB5kZyyEtTlLIhBWmagjcy57Iua61r3nA2Qae7vcPRbz3EVHU2amhb5cD3saKSlYyzXMgBPduhOvgYA5hqHWynwntFSbXNrpqJ-d1XdrcDTP7A2iaVrHcpKNv-bznZWULUP6t_38E-AYBQfZQ |
CitedBy_id | crossref_primary_10_1002_slct_202400483 crossref_primary_10_1016_j_tsf_2024_140229 crossref_primary_10_1016_j_desal_2023_116561 crossref_primary_10_1016_j_ejps_2017_05_060 crossref_primary_10_1021_acs_iecr_4c00886 crossref_primary_10_3390_pharmaceutics16020177 crossref_primary_10_1007_s12011_023_03892_w crossref_primary_10_3390_cancers14143490 crossref_primary_10_1002_bbb_2150 crossref_primary_10_1016_j_ijpharm_2021_120944 crossref_primary_10_1186_s12989_024_00599_1 crossref_primary_10_1002_jpln_202200457 crossref_primary_10_1002_ppsc_202400242 crossref_primary_10_1016_j_carbon_2021_12_054 crossref_primary_10_1021_acs_macromol_0c00877 crossref_primary_10_1016_j_colsurfb_2023_113249 crossref_primary_10_3390_powders4010003 crossref_primary_10_3390_ph15030370 crossref_primary_10_1016_j_scitotenv_2018_03_131 crossref_primary_10_1002_slct_202302703 crossref_primary_10_3390_pharmaceutics13101537 crossref_primary_10_1021_acs_jpcc_0c08387 crossref_primary_10_1186_s12903_024_05035_6 crossref_primary_10_1021_acsami_4c18519 crossref_primary_10_1021_acsnano_3c03739 crossref_primary_10_1016_j_cis_2022_102778 crossref_primary_10_1016_j_powtec_2024_120290 crossref_primary_10_3390_pharmaceutics14010174 crossref_primary_10_1021_acsami_3c14725 crossref_primary_10_3390_molecules25235502 crossref_primary_10_22270_jddt_v11i3_4847 crossref_primary_10_1111_jerd_12699 crossref_primary_10_1007_s10853_022_06994_3 crossref_primary_10_1021_acsami_4c02936 crossref_primary_10_1016_j_jcis_2023_11_055 crossref_primary_10_3390_gels10060352 crossref_primary_10_1080_02652048_2022_2071492 crossref_primary_10_1007_s40192_017_0095_2 crossref_primary_10_3390_nano10101936 crossref_primary_10_1002_adsu_202100100 crossref_primary_10_1021_acs_biomac_4c00138 crossref_primary_10_1016_j_talanta_2019_06_062 crossref_primary_10_1021_acssuschemeng_1c07021 crossref_primary_10_3390_foods11182926 crossref_primary_10_1021_acsabm_0c00521 crossref_primary_10_1021_acsestengg_3c00438 crossref_primary_10_1016_j_scitotenv_2021_148175 crossref_primary_10_2147_IJN_S490444 crossref_primary_10_3390_catal15020190 crossref_primary_10_1021_acs_est_4c08032 crossref_primary_10_1038_s41565_021_00852_0 crossref_primary_10_1016_j_cej_2023_143979 crossref_primary_10_1016_j_jcis_2019_06_086 crossref_primary_10_1016_j_microc_2023_108470 crossref_primary_10_1088_1742_6596_2175_1_012029 crossref_primary_10_1016_j_jcis_2022_06_097 crossref_primary_10_1080_21650373_2024_2411303 crossref_primary_10_1038_s41598_023_27500_y crossref_primary_10_3390_toxics11030283 crossref_primary_10_1021_acs_langmuir_1c03088 crossref_primary_10_1016_j_impact_2021_100308 crossref_primary_10_1016_j_jcis_2020_09_070 crossref_primary_10_1016_j_apsusc_2022_153764 crossref_primary_10_1088_2632_959X_ac0355 crossref_primary_10_1007_s12668_025_01806_9 crossref_primary_10_3390_biomedicines11082285 crossref_primary_10_1007_s10876_024_02704_y crossref_primary_10_1002_adma_202106627 crossref_primary_10_1016_j_jenvman_2022_114828 crossref_primary_10_1002_adfm_202314088 crossref_primary_10_3390_nano11102740 crossref_primary_10_1007_s10967_023_08875_8 crossref_primary_10_1016_j_diamond_2023_110783 crossref_primary_10_3390_polysaccharides6010004 crossref_primary_10_1080_01932691_2021_2022489 crossref_primary_10_1021_acs_est_7b05236 crossref_primary_10_3390_polym13193302 crossref_primary_10_1016_j_jhazmat_2024_134746 crossref_primary_10_1016_j_micromeso_2021_111562 crossref_primary_10_1016_j_scitotenv_2021_151506 crossref_primary_10_1016_j_colsurfa_2025_136328 crossref_primary_10_3390_toxics12020142 crossref_primary_10_1016_j_cej_2024_148693 crossref_primary_10_1016_j_eurpolymj_2019_109229 crossref_primary_10_1016_j_jhazmat_2021_125854 crossref_primary_10_1002_adma_202404026 crossref_primary_10_1016_j_cej_2023_147756 crossref_primary_10_1021_acs_cgd_9b01550 crossref_primary_10_3389_fchem_2020_00497 crossref_primary_10_1021_acs_jpcc_9b10644 crossref_primary_10_1016_j_jenvman_2023_117739 crossref_primary_10_1038_s41597_024_03324_x crossref_primary_10_3390_ma15103562 crossref_primary_10_1016_j_jfoodeng_2021_110569 crossref_primary_10_1002_smll_202200671 crossref_primary_10_1016_j_ijhydene_2024_05_134 crossref_primary_10_1021_acs_langmuir_2c01912 crossref_primary_10_1016_j_molliq_2025_126920 crossref_primary_10_1080_00268976_2023_2260014 crossref_primary_10_1016_j_cartre_2024_100327 crossref_primary_10_3390_molecules29092135 crossref_primary_10_3390_molecules25081982 crossref_primary_10_1016_j_ijbiomac_2023_124635 crossref_primary_10_1016_j_est_2024_115240 crossref_primary_10_1016_j_molliq_2020_115221 crossref_primary_10_1021_acs_jpcb_0c02808 crossref_primary_10_1016_j_jallcom_2024_177860 crossref_primary_10_1016_j_impact_2017_06_004 crossref_primary_10_1016_j_cis_2024_103285 crossref_primary_10_1038_s41598_017_11402_x crossref_primary_10_3390_pharmaceutics12100953 crossref_primary_10_1016_j_jece_2024_115010 crossref_primary_10_1016_j_colsurfa_2022_130135 crossref_primary_10_1016_j_desal_2024_118174 crossref_primary_10_3897_pharmacia_70_e96593 crossref_primary_10_1007_s00604_021_05029_z crossref_primary_10_3390_ijms25094910 crossref_primary_10_1016_j_ijpharm_2023_122656 crossref_primary_10_1016_j_scitotenv_2023_169419 crossref_primary_10_1016_j_ces_2019_115338 crossref_primary_10_1016_j_conbuildmat_2024_138773 crossref_primary_10_1016_j_ibiod_2022_105377 crossref_primary_10_1016_j_eti_2022_102483 crossref_primary_10_1016_j_apgeochem_2020_104823 crossref_primary_10_1038_s41598_017_14981_x crossref_primary_10_1016_j_scitotenv_2021_152623 crossref_primary_10_1007_s10856_020_06382_w crossref_primary_10_1002_admt_202400382 crossref_primary_10_1002_adhm_202401625 crossref_primary_10_1016_j_ijpharm_2018_09_046 crossref_primary_10_1016_j_jmmm_2024_172667 crossref_primary_10_1021_acsabm_4c00037 crossref_primary_10_1016_j_colsurfa_2022_129039 crossref_primary_10_1002_bkcs_12855 crossref_primary_10_1186_s12645_020_00060_w crossref_primary_10_1002_VIW_20200086 crossref_primary_10_3390_pharmaceutics16111349 crossref_primary_10_1021_acs_langmuir_4c00274 crossref_primary_10_1038_s41598_021_87960_y crossref_primary_10_1002_smll_202401032 crossref_primary_10_1007_s40089_020_00317_7 crossref_primary_10_1016_j_rechem_2022_100478 crossref_primary_10_1021_acs_analchem_4c01634 crossref_primary_10_1016_j_scitotenv_2018_02_038 crossref_primary_10_1007_s10570_023_05422_2 crossref_primary_10_1021_acs_langmuir_2c03000 crossref_primary_10_1016_j_microc_2023_108864 crossref_primary_10_1134_S2635167622060027 crossref_primary_10_1038_s41598_021_01216_3 crossref_primary_10_3390_nano10102048 crossref_primary_10_3390_cells10061519 crossref_primary_10_1126_science_aba8653 crossref_primary_10_1016_j_cej_2023_148127 crossref_primary_10_1021_acs_est_6b05876 crossref_primary_10_1016_j_apsusc_2023_156842 crossref_primary_10_3390_molecules25092139 crossref_primary_10_3390_pharmaceutics16070960 crossref_primary_10_1002_jbm_b_35117 crossref_primary_10_1016_j_jconrel_2024_11_074 crossref_primary_10_3390_foods13091340 crossref_primary_10_1016_j_jsps_2021_09_016 crossref_primary_10_1016_j_matlet_2023_135427 crossref_primary_10_1007_s00216_021_03647_3 crossref_primary_10_1016_j_ijbiomac_2024_136675 crossref_primary_10_1016_j_impact_2017_09_002 crossref_primary_10_1016_j_chemosphere_2022_136768 crossref_primary_10_1016_j_clay_2024_107659 crossref_primary_10_1016_j_watres_2022_119206 crossref_primary_10_1016_j_powtec_2021_117106 crossref_primary_10_1002_cmdc_202000983 crossref_primary_10_1016_j_chemosphere_2021_131452 crossref_primary_10_3390_nano12111870 crossref_primary_10_1021_acsami_4c05846 crossref_primary_10_1021_acsnano_9b09178 crossref_primary_10_1021_acs_chemmater_2c01098 crossref_primary_10_1021_acs_langmuir_9b02163 crossref_primary_10_1007_s13346_021_00918_5 crossref_primary_10_18311_jnr_2023_32238 crossref_primary_10_1016_j_apsusc_2020_148824 crossref_primary_10_1002_wer_1313 crossref_primary_10_1002_adfm_202105577 crossref_primary_10_3390_ijms241914687 crossref_primary_10_1002_marc_202100712 crossref_primary_10_1002_cjce_23914 crossref_primary_10_1364_BOE_474273 crossref_primary_10_3389_fbioe_2021_782799 crossref_primary_10_1021_acsanm_0c00010 crossref_primary_10_1007_s10876_024_02757_z crossref_primary_10_1021_acs_est_8b02324 crossref_primary_10_1080_07391102_2023_2267666 crossref_primary_10_1021_acsanm_1c03250 crossref_primary_10_3390_polym13142361 crossref_primary_10_1007_s10876_022_02225_6 crossref_primary_10_1021_acsanm_2c04322 crossref_primary_10_1016_j_colsurfb_2024_113937 crossref_primary_10_1007_s00396_024_05301_7 crossref_primary_10_1007_s13369_019_03872_0 crossref_primary_10_3390_pharmaceutics13040549 crossref_primary_10_1016_j_powtec_2022_117932 crossref_primary_10_1002_etc_4465 crossref_primary_10_1016_j_cej_2024_155153 crossref_primary_10_3390_plants12173094 crossref_primary_10_1002_etc_4349 crossref_primary_10_1021_acs_nanolett_0c05059 crossref_primary_10_1002_adfm_202100863 crossref_primary_10_1002_ange_202107156 crossref_primary_10_3390_mi11121065 crossref_primary_10_1021_acsagscitech_3c00204 crossref_primary_10_1016_j_trac_2023_117175 crossref_primary_10_1021_acsestwater_2c00200 crossref_primary_10_3390_nano11010111 crossref_primary_10_3390_cryst15020132 crossref_primary_10_3390_ph17091220 crossref_primary_10_1007_s11095_022_03256_4 crossref_primary_10_1111_ics_12511 crossref_primary_10_1016_j_cplett_2021_138996 crossref_primary_10_1021_acsomega_4c02287 crossref_primary_10_1002_sia_6884 crossref_primary_10_1016_j_carbon_2022_04_017 crossref_primary_10_1016_j_ijft_2024_100679 crossref_primary_10_3390_ijms20051076 crossref_primary_10_3390_nano10091840 crossref_primary_10_1080_03639045_2022_2135101 crossref_primary_10_1002_adhm_202202482 crossref_primary_10_1021_acs_jpcc_1c00143 crossref_primary_10_1002_anie_202107156 crossref_primary_10_1016_j_molliq_2024_124023 crossref_primary_10_3390_pharmaceutics12080778 crossref_primary_10_1186_s41120_021_00041_2 crossref_primary_10_1007_s42729_021_00585_y crossref_primary_10_1016_j_heliyon_2022_e11988 crossref_primary_10_3390_ijms23041944 crossref_primary_10_1021_acsami_3c18717 crossref_primary_10_1016_j_powtec_2019_08_017 crossref_primary_10_1016_j_aquatox_2017_06_021 crossref_primary_10_1080_10601325_2021_2013727 crossref_primary_10_1007_s10570_022_04666_8 crossref_primary_10_1021_acsomega_3c03727 crossref_primary_10_3390_w11040721 crossref_primary_10_1021_acs_chemmater_0c03126 crossref_primary_10_1016_j_colsurfb_2021_112308 crossref_primary_10_1149_1945_7111_ac51f8 crossref_primary_10_1016_j_jcis_2023_09_090 crossref_primary_10_1080_19392699_2021_1964490 crossref_primary_10_1002_smll_201906588 crossref_primary_10_1371_journal_pone_0181735 crossref_primary_10_3390_w12113216 crossref_primary_10_1016_j_colcom_2024_100804 crossref_primary_10_3390_molecules26082305 crossref_primary_10_3390_pr11020309 crossref_primary_10_1016_j_scitotenv_2023_165339 crossref_primary_10_1021_acsanm_3c01238 crossref_primary_10_3390_molecules25204602 |
Cites_doi | 10.1351/pac200577101753 10.1006/jcis.1994.1126 10.1039/f29787401607 10.1504/IJNT.2008.016552 10.1016/S0927-7765(98)00030-7 10.1073/pnas.0608582104 10.1016/j.envpol.2014.01.016 10.1016/S0021-9797(02)00043-7 10.1021/es9010543 10.1021/es060589n 10.1098/rspa.2015.0522 10.1021/acs.langmuir.5b02809 10.1007/s11051-008-9446-4 10.1098/rspa.1950.0154 10.1186/1743-8977-5-14 10.1016/j.jcis.2008.01.046 10.2903/j.efsa.2011.2140 10.1098/rspa.1960.0190 10.1016/S0927-7757(98)00631-1 10.1016/j.jcis.2010.02.028 10.1016/S0021-9797(03)00536-8 10.1016/j.envint.2012.11.009 10.3109/17435390903276941 10.1071/EN13191 10.1021/es505003d 10.1186/s12989-015-0091-7 10.1016/j.cocis.2016.05.002 10.1016/j.scitotenv.2015.06.100 10.1098/rspa.1931.0133 10.1016/j.biomaterials.2007.07.029 10.1016/j.jcis.2006.12.075 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7QH 7ST 7TV 7UA C1K F1W H97 L.G SOI |
DOI | 10.1039/c6en00136j |
DatabaseName | CrossRef Aqualine Environment Abstracts Pollution Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Pollution Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2051-8161 |
EndPage | 965 |
ExternalDocumentID | 10_1039_C6EN00136J c6en00136j |
GroupedDBID | -JG 0R~ 4.4 AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENGV AETIL AFLYV AFOGI AFRAH AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AUNWK BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP H13 HZ~ H~N J3I O-G O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY AAYXX ABIQK AFRZK AKMSF CITATION J3G J3H 7QH 7ST 7TV 7UA C1K F1W H97 L.G SOI |
ID | FETCH-LOGICAL-c267t-31a6fecc88bf0c4a7a54b3e4743ebe82f84e27f578d050dd54d8248b7bccb4d43 |
ISSN | 2051-8153 |
IngestDate | Thu Jul 10 22:35:09 EDT 2025 Tue Jul 01 02:35:32 EDT 2025 Thu Apr 24 22:58:42 EDT 2025 Tue Dec 17 20:59:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c267t-31a6fecc88bf0c4a7a54b3e4743ebe82f84e27f578d050dd54d8248b7bccb4d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8599-008X |
PQID | 1837343268 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1837343268 crossref_primary_10_1039_C6EN00136J rsc_primary_c6en00136j crossref_citationtrail_10_1039_C6EN00136J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-00-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016-00-00 |
PublicationDecade | 2010 |
PublicationTitle | Environmental science. Nano |
PublicationYear | 2016 |
References | Abramson (C6EN00136J-(cit30)/*[position()=1]) 1943 López-Garcia (C6EN00136J-(cit37)/*[position()=1]) 2003; 265 Hunter (C6EN00136J-(cit23)/*[position()=1]) 1988 Patil (C6EN00136J-(cit13)/*[position()=1]) 2007; 28 Riddick (C6EN00136J-(cit22)/*[position()=1]) 1968 Bihari (C6EN00136J-(cit44)/*[position()=1]) 2008; 5 Ruenraroengsak (C6EN00136J-(cit45)/*[position()=1]) 2015; 12 Smoluchowski (C6EN00136J-(cit29)/*[position()=1]) 1921 Hill (C6EN00136J-(cit38)/*[position()=1]) 2015; 471 Long (C6EN00136J-(cit40)/*[position()=1]) 2006; 40 (C6EN00136J-(cit43)/*[position()=1]) 2012 (C6EN00136J-(cit10)/*[position()=1]) 2016 Hückel (C6EN00136J-(cit28)/*[position()=1]) 1924; 25 Ispas (C6EN00136J-(cit50)/*[position()=1]) 2009; 43 (C6EN00136J-(cit6)/*[position()=1]) 2012 Berg (C6EN00136J-(cit12)/*[position()=1]) 2009; 3 Delgado (C6EN00136J-(cit17)/*[position()=1]) 2005; 77 Hill (C6EN00136J-(cit18)/*[position()=1]) 2003; 258 Hill (C6EN00136J-(cit36)/*[position()=1]) 2003; 258 Delgado (C6EN00136J-(cit16)/*[position()=1]) 2007; 309 Haydon (C6EN00136J-(cit26)/*[position()=1]) 1960; 258 (C6EN00136J-(cit3)/*[position()=1]) 2012 MacDonald (C6EN00136J-(cit48)/*[position()=1]) 1998; 11 Harper (C6EN00136J-(cit9)/*[position()=1]) 2008; 5 (C6EN00136J-(cit7)/*[position()=1]) 2014 C6EN00136J-(cit2)/*[position()=1] Schwegmann (C6EN00136J-(cit14)/*[position()=1]) 2010; 347 Ohshima (C6EN00136J-(cit34)/*[position()=1]) 1994; 163 Pelley (C6EN00136J-(cit46)/*[position()=1]) 2008; 321 Auffan (C6EN00136J-(cit51)/*[position()=1]) 2014; 188 Ohshima (C6EN00136J-(cit19)/*[position()=1]) 1994; 163 Morris (C6EN00136J-(cit49)/*[position()=1]) 1999; 155 Louie (C6EN00136J-(cit33)/*[position()=1]) 2016; 3 Louie (C6EN00136J-(cit31)/*[position()=1]) 2015; 49 O'Brien (C6EN00136J-(cit20)/*[position()=1]) 1978; 74 (C6EN00136J-(cit4)/*[position()=1]) 2012 Hill (C6EN00136J-(cit35)/*[position()=1]) 2008 Hill (C6EN00136J-(cit39)/*[position()=1]) 2015; 31 Jiang (C6EN00136J-(cit11)/*[position()=1]) 2009; 11 O'Brien (C6EN00136J-(cit21)/*[position()=1]) 1978; 74 Booth (C6EN00136J-(cit25)/*[position()=1]) 1950; 203 Hendren (C6EN00136J-(cit15)/*[position()=1]) 2015; 536 European Food Safety Authority (C6EN00136J-(cit42)/*[position()=1]) 2011; 9 de la Iglesia (C6EN00136J-(cit8)/*[position()=1]) 2011 Hotze (C6EN00136J-(cit24)/*[position()=1]) 2014; 11 Cedervall (C6EN00136J-(cit32)/*[position()=1]) 2007; 104 Pettitt (C6EN00136J-(cit1)/*[position()=1]) 2013; 52 (C6EN00136J-(cit5)/*[position()=1]) 2012 Henry (C6EN00136J-(cit27)/*[position()=1]) 1931; 133 Duval (C6EN00136J-(cit47)/*[position()=1]) 2016; 24 |
References_xml | – issn: 2012 – issn: 1921 publication-title: Electrische Endosmose und Strö-mungsströme doi: Smoluchowski – issn: 2014 – issn: 2016 – issn: 2012 publication-title: Guidance on the safety assessment of nanomaterials in cosmetics, Report SCCS/1484/12 – issn: 1988 publication-title: Zeta potential in colloid science: Principles and Applications doi: Hunter – issn: 2011 publication-title: Nanoinformatics 2020 Roadmap doi: de la Iglesia Harper Hoover Klaessig Lippel Maddux Morse Nel Rajan Reznik-Zellen Tuominen – issn: 1943 publication-title: Electrophoresis of proteins and the chemistry of cell surfaces doi: Abramson Moyer Gorin – issn: 1968 publication-title: Control of Colloid Stability through Zeta Potential: With a closing chapter on its relationship to cardiovascular disease doi: Riddick – issn: 2008 publication-title: User guide for MPEK −0.02 doi: Hill – doi: Cecil Corbett Connah Mattison – volume: 77 start-page: 1753 year: 2005 ident: C6EN00136J-(cit17)/*[position()=1] publication-title: Pure Appl. Chem. doi: 10.1351/pac200577101753 – volume: 163 start-page: 474 year: 1994 ident: C6EN00136J-(cit34)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1994.1126 – ident: C6EN00136J-(cit2)/*[position()=1] – volume: 74 start-page: 1607 year: 1978 ident: C6EN00136J-(cit20)/*[position()=1] publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/f29787401607 – year: 2012 ident: C6EN00136J-(cit3)/*[position()=1] – volume: 5 start-page: 124 year: 2008 ident: C6EN00136J-(cit9)/*[position()=1] publication-title: Int. J. Nanotechnol. doi: 10.1504/IJNT.2008.016552 – volume-title: Zeta potential in colloid science: Principles and Applications year: 1988 ident: C6EN00136J-(cit23)/*[position()=1] – volume: 11 start-page: 131 year: 1998 ident: C6EN00136J-(cit48)/*[position()=1] publication-title: Colloids Surf., B doi: 10.1016/S0927-7765(98)00030-7 – volume: 104 start-page: 2050 year: 2007 ident: C6EN00136J-(cit32)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0608582104 – volume: 3 start-page: 283 year: 2016 ident: C6EN00136J-(cit33)/*[position()=1] publication-title: Environ. Sci.: Nano – year: 2012 ident: C6EN00136J-(cit6)/*[position()=1] – volume: 188 start-page: 1 year: 2014 ident: C6EN00136J-(cit51)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2014.01.016 – volume: 258 start-page: 56 year: 2003 ident: C6EN00136J-(cit18)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/S0021-9797(02)00043-7 – volume: 25 start-page: 204 year: 1924 ident: C6EN00136J-(cit28)/*[position()=1] publication-title: Phys. Z. – volume: 43 start-page: 6349 year: 2009 ident: C6EN00136J-(cit50)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es9010543 – volume: 40 start-page: 4346 year: 2006 ident: C6EN00136J-(cit40)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es060589n – volume-title: Electrische Endosmose und Strö-mungsströme year: 1921 ident: C6EN00136J-(cit29)/*[position()=1] – volume-title: Guidance on the safety assessment of nanomaterials in cosmetics, Report SCCS/1484/12 year: 2012 ident: C6EN00136J-(cit43)/*[position()=1] – year: 2014 ident: C6EN00136J-(cit7)/*[position()=1] – volume: 471 start-page: 20150522 year: 2015 ident: C6EN00136J-(cit38)/*[position()=1] publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2015.0522 – volume-title: Control of Colloid Stability through Zeta Potential: With a closing chapter on its relationship to cardiovascular disease year: 1968 ident: C6EN00136J-(cit22)/*[position()=1] – volume: 31 start-page: 10246 year: 2015 ident: C6EN00136J-(cit39)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.5b02809 – volume: 11 start-page: 77 year: 2009 ident: C6EN00136J-(cit11)/*[position()=1] publication-title: J. Nanopart. Res. doi: 10.1007/s11051-008-9446-4 – volume: 203 start-page: 514 year: 1950 ident: C6EN00136J-(cit25)/*[position()=1] publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1950.0154 – volume: 5 start-page: 14 year: 2008 ident: C6EN00136J-(cit44)/*[position()=1] publication-title: Part. Fibre Toxicol. doi: 10.1186/1743-8977-5-14 – volume: 321 start-page: 74 year: 2008 ident: C6EN00136J-(cit46)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2008.01.046 – volume: 9 start-page: 2140 issue: 5 year: 2011 ident: C6EN00136J-(cit42)/*[position()=1] publication-title: EFSA J. doi: 10.2903/j.efsa.2011.2140 – volume: 258 start-page: 319 year: 1960 ident: C6EN00136J-(cit26)/*[position()=1] publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1960.0190 – volume: 155 start-page: 27 year: 1999 ident: C6EN00136J-(cit49)/*[position()=1] publication-title: Colloids Surf., A doi: 10.1016/S0927-7757(98)00631-1 – year: 2012 ident: C6EN00136J-(cit5)/*[position()=1] – volume: 74 start-page: 1607 year: 1978 ident: C6EN00136J-(cit21)/*[position()=1] publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/f29787401607 – volume-title: User guide for MPEK −0.02 year: 2008 ident: C6EN00136J-(cit35)/*[position()=1] – volume: 347 start-page: 43 year: 2010 ident: C6EN00136J-(cit14)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.02.028 – volume: 265 start-page: 327 year: 2003 ident: C6EN00136J-(cit37)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/S0021-9797(03)00536-8 – volume: 163 start-page: 474 year: 1994 ident: C6EN00136J-(cit19)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1994.1126 – volume: 52 start-page: 41 year: 2013 ident: C6EN00136J-(cit1)/*[position()=1] publication-title: Environ. Int. doi: 10.1016/j.envint.2012.11.009 – volume: 3 start-page: 276 year: 2009 ident: C6EN00136J-(cit12)/*[position()=1] publication-title: Nanotoxicology doi: 10.3109/17435390903276941 – volume: 11 start-page: 257 year: 2014 ident: C6EN00136J-(cit24)/*[position()=1] publication-title: Environ. Chem. doi: 10.1071/EN13191 – volume: 49 start-page: 2188 year: 2015 ident: C6EN00136J-(cit31)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es505003d – volume: 12 start-page: 1 year: 2015 ident: C6EN00136J-(cit45)/*[position()=1] publication-title: Part. Fibre Toxicol. doi: 10.1186/s12989-015-0091-7 – volume: 24 start-page: 1 year: 2016 ident: C6EN00136J-(cit47)/*[position()=1] publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2016.05.002 – volume: 258 start-page: 56 year: 2003 ident: C6EN00136J-(cit36)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/S0021-9797(02)00043-7 – year: 2012 ident: C6EN00136J-(cit4)/*[position()=1] – volume: 536 start-page: 1029 year: 2015 ident: C6EN00136J-(cit15)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.06.100 – year: 2016 ident: C6EN00136J-(cit10)/*[position()=1] – volume: 133 start-page: 106 year: 1931 ident: C6EN00136J-(cit27)/*[position()=1] publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1931.0133 – volume: 28 start-page: 4600 year: 2007 ident: C6EN00136J-(cit13)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.07.029 – volume-title: Nanoinformatics 2020 Roadmap year: 2011 ident: C6EN00136J-(cit8)/*[position()=1] – volume: 309 start-page: 194 year: 2007 ident: C6EN00136J-(cit16)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.12.075 – volume-title: Electrophoresis of proteins and the chemistry of cell surfaces year: 1943 ident: C6EN00136J-(cit30)/*[position()=1] |
SSID | ssj0001125367 |
Score | 2.5309637 |
Snippet | Nanoparticle zeta-potentials are relatively easy to measure, and have consistently been proposed in guidance documents as a particle property that must be... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 953 |
Title | Guidance to improve the scientific value of zeta-potential measurements in nanoEHS |
URI | https://www.proquest.com/docview/1837343268 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdr-rKXsbKVZR9Fo3sZw5kjy7byGIqztGQZZA7kzejLW0axQ-ZQ6F-_k-SvsD50ezG2Ioug--l0Ot_vDqEPIo59qhn3xhPhe5Tk1BNEBZ6CrViDzLnwDVH46zKar-nNJtz0GNeGXVKJkbx_kFfyP1KFNpCrYcn-g2TbQaEB7kG-cAUJw_VRMv5y2Cob8g8G5NZ6B7Q1JB3L0QQBfTLJvK1b4F5X3NuVlfnBMkZa36CNiC14USbz70eO-o4D1zAnpR4ZfVy2YTzl3b5PdelCZud1muyV_vHTMKQ6Tbff1bW-Ki5169Bf8TsX2Dy9he6zvjPCsSSdtiKwuj02dpl_R7rf5rKtN-o26KEq7KnOSfOqe3IVJP5S8H5g8qPKSBc229yvbhtrPt0vv2Wz9WKRpckmPUGnBI4PZIBOp0l6vei8b2DXBba8cPu_m9y1weRzN_yxtdIdQU72TX0Ya4ekz9Gz-gCBpw4NZ-iJLl6gVYMEXJW4RgIGJOAOCdgiAZc5PkYC7iMBbwtcI-ElWs-S9Gru1dUyPEmiuILNlEc5LEjGRO5LymMeUhFoCiYiLFRGckY1iXPQ0MoPfaVCqhihTMRCSkEVDc7RoCgL_QphrfI4zBWHs7-kNJICNkHCQh4QERM9FkP0sZmVTNap5E1Fk9vMhjQEk-wqSpZ2Bm-G6LLtu3MJVB7s9b6Z3Az0m_loxQtdHn5nsOXEhvwcsSE6h1lvB-mE9PoRL79BTw1enfPsLRpU-4N-B-ZkJS5qbPwBRlZ55Q |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidance+to+improve+the+scientific+value+of+zeta-potential+measurements+in+nanoEHS&rft.jtitle=Environmental+science.+Nano&rft.au=Lowry%2C+Gregory+V&rft.au=Hill%2C+Reghan+J&rft.au=Harper%2C+Stacey&rft.au=Rawle%2C+Alan+F&rft.date=2016&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=3&rft.issue=5&rft.spage=953&rft.epage=965&rft_id=info:doi/10.1039%2Fc6en00136j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon |