Guidance to improve the scientific value of zeta-potential measurements in nanoEHS

Nanoparticle zeta-potentials are relatively easy to measure, and have consistently been proposed in guidance documents as a particle property that must be included for complete nanoparticle characterization. There is also an increasing interest in integrating data collected on nanomaterial propertie...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science. Nano Vol. 3; no. 5; pp. 953 - 965
Main Authors Lowry, Gregory V, Hill, Reghan J, Harper, Stacey, Rawle, Alan F, Hendren, Christine Ogilvie, Klaessig, Fred, Nobbmann, Ulf, Sayre, Philip, Rumble, John
Format Journal Article
LanguageEnglish
Published 2016
Online AccessGet full text

Cover

Loading…
Abstract Nanoparticle zeta-potentials are relatively easy to measure, and have consistently been proposed in guidance documents as a particle property that must be included for complete nanoparticle characterization. There is also an increasing interest in integrating data collected on nanomaterial properties and behavior measured in different systems ( e.g. in vitro assays, surface water, soil) to identify the properties controlling nanomaterial fate and effects, to be able to integrate and reuse datasets beyond their original intent, and ultimately to predict behaviors of new nanomaterials based on their measured properties ( i.e. read across), including zeta-potential. Several confounding factors pose difficulty in taking, integrating and interpreting this measurement consistently. Zeta-potential is a modeled quantity determined from measurements of the electrophoretic mobility in a suspension, and its value depends on the nanomaterial properties, the solution conditions, and the theoretical model applied. The ability to use zeta-potential as an explanatory variable for measured behaviors in different systems (or potentially to predict specific behaviors) therefore requires robust reporting with relevant meta-data for the measurement conditions and the model used to convert mobility measurements to zeta-potentials. However, there is currently no such standardization for reporting in the nanoEHS literature. The objective of this tutorial review is to familiarize the nanoEHS research community with the zeta-potential concept and the factors that influence its calculated value and interpretation, including the effects of adsorbed macromolecules. We also provide practical guidance on the precision of measurement, interpretation of zeta-potential as an explanatory variable for processes of interest ( e.g. toxicity, environmental fate), and provide advice for addressing common challenges associated with making meaningful zeta-potential measurements using commercial instruments. Finally, we provide specific guidance on the parameters that need to be reported with zeta-potential measurements to maximize interpretability and to support scientific synthesis across data sets. Nanoparticle zeta potentials are easy to measure and proposed as a required property for complete nanoparticle characterization, but relevant metadata must be reported with zeta potential to be scientifically useful.
AbstractList Nanoparticle zeta-potentials are relatively easy to measure, and have consistently been proposed in guidance documents as a particle property that must be included for complete nanoparticle characterization. There is also an increasing interest in integrating data collected on nanomaterial properties and behavior measured in different systems ( e.g. in vitro assays, surface water, soil) to identify the properties controlling nanomaterial fate and effects, to be able to integrate and reuse datasets beyond their original intent, and ultimately to predict behaviors of new nanomaterials based on their measured properties ( i.e. read across), including zeta-potential. Several confounding factors pose difficulty in taking, integrating and interpreting this measurement consistently. Zeta-potential is a modeled quantity determined from measurements of the electrophoretic mobility in a suspension, and its value depends on the nanomaterial properties, the solution conditions, and the theoretical model applied. The ability to use zeta-potential as an explanatory variable for measured behaviors in different systems (or potentially to predict specific behaviors) therefore requires robust reporting with relevant meta-data for the measurement conditions and the model used to convert mobility measurements to zeta-potentials. However, there is currently no such standardization for reporting in the nanoEHS literature. The objective of this tutorial review is to familiarize the nanoEHS research community with the zeta-potential concept and the factors that influence its calculated value and interpretation, including the effects of adsorbed macromolecules. We also provide practical guidance on the precision of measurement, interpretation of zeta-potential as an explanatory variable for processes of interest ( e.g. toxicity, environmental fate), and provide advice for addressing common challenges associated with making meaningful zeta-potential measurements using commercial instruments. Finally, we provide specific guidance on the parameters that need to be reported with zeta-potential measurements to maximize interpretability and to support scientific synthesis across data sets. Nanoparticle zeta potentials are easy to measure and proposed as a required property for complete nanoparticle characterization, but relevant metadata must be reported with zeta potential to be scientifically useful.
Nanoparticle zeta-potentials are relatively easy to measure, and have consistently been proposed in guidance documents as a particle property that must be included for complete nanoparticle characterization. There is also an increasing interest in integrating data collected on nanomaterial properties and behavior measured in different systems (e.g. in vitro assays, surface water, soil) to identify the properties controlling nanomaterial fate and effects, to be able to integrate and reuse datasets beyond their original intent, and ultimately to predict behaviors of new nanomaterials based on their measured properties (i.e. read across), including zeta-potential. Several confounding factors pose difficulty in taking, integrating and interpreting this measurement consistently. Zeta-potential is a modeled quantity determined from measurements of the electrophoretic mobility in a suspension, and its value depends on the nanomaterial properties, the solution conditions, and the theoretical model applied. The ability to use zeta-potential as an explanatory variable for measured behaviors in different systems (or potentially to predict specific behaviors) therefore requires robust reporting with relevant meta-data for the measurement conditions and the model used to convert mobility measurements to zeta-potentials. However, there is currently no such standardization for reporting in the nanoEHS literature. The objective of this tutorial review is to familiarize the nanoEHS research community with the zeta-potential concept and the factors that influence its calculated value and interpretation, including the effects of adsorbed macromolecules. We also provide practical guidance on the precision of measurement, interpretation of zeta-potential as an explanatory variable for processes of interest (e.g. toxicity, environmental fate), and provide advice for addressing common challenges associated with making meaningful zeta-potential measurements using commercial instruments. Finally, we provide specific guidance on the parameters that need to be reported with zeta-potential measurements to maximize interpretability and to support scientific synthesis across data sets.
Nanoparticle zeta-potentials are relatively easy to measure, and have consistently been proposed in guidance documents as a particle property that must be included for complete nanoparticle characterization. There is also an increasing interest in integrating data collected on nanomaterial properties and behavior measured in different systems ( e.g. in vitro assays, surface water, soil) to identify the properties controlling nanomaterial fate and effects, to be able to integrate and reuse datasets beyond their original intent, and ultimately to predict behaviors of new nanomaterials based on their measured properties ( i.e. read across), including zeta-potential. Several confounding factors pose difficulty in taking, integrating and interpreting this measurement consistently. Zeta-potential is a modeled quantity determined from measurements of the electrophoretic mobility in a suspension, and its value depends on the nanomaterial properties, the solution conditions, and the theoretical model applied. The ability to use zeta-potential as an explanatory variable for measured behaviors in different systems (or potentially to predict specific behaviors) therefore requires robust reporting with relevant meta-data for the measurement conditions and the model used to convert mobility measurements to zeta-potentials. However, there is currently no such standardization for reporting in the nanoEHS literature. The objective of this tutorial review is to familiarize the nanoEHS research community with the zeta-potential concept and the factors that influence its calculated value and interpretation, including the effects of adsorbed macromolecules. We also provide practical guidance on the precision of measurement, interpretation of zeta-potential as an explanatory variable for processes of interest ( e.g. toxicity, environmental fate), and provide advice for addressing common challenges associated with making meaningful zeta-potential measurements using commercial instruments. Finally, we provide specific guidance on the parameters that need to be reported with zeta-potential measurements to maximize interpretability and to support scientific synthesis across data sets.
Author Lowry, Gregory V
Rumble, John
Sayre, Philip
Hendren, Christine Ogilvie
Nobbmann, Ulf
Hill, Reghan J
Rawle, Alan F
Harper, Stacey
Klaessig, Fred
AuthorAffiliation LLC
Civil & Environmental Engineering
Formerly with the U.S. Environmental Protection Agency
Pennsylvania Bio Nano Systems
Carnegie Mellon University, Civil & Environmental Engineering
Biological, and Environmental Engineering
R&R Data Services
Malvern Instruments Inc
Duke University
Oregon State University
Center for the Environmental Implications of Nanotechnology
Environmental & Molecular Toxicology/Chemical
McGill University, Department of Chemical Engineering
AuthorAffiliation_xml – sequence: 0
  name: Malvern Instruments Inc
– sequence: 0
  name: Center for the Environmental Implications of Nanotechnology
– sequence: 0
  name: McGill University, Department of Chemical Engineering
– sequence: 0
  name: Pennsylvania Bio Nano Systems
– sequence: 0
  name: Civil & Environmental Engineering
– sequence: 0
  name: Duke University
– sequence: 0
  name: R&R Data Services
– sequence: 0
  name: Biological, and Environmental Engineering
– sequence: 0
  name: LLC
– sequence: 0
  name: Carnegie Mellon University, Civil & Environmental Engineering
– sequence: 0
  name: Oregon State University
– sequence: 0
  name: Environmental & Molecular Toxicology/Chemical
– sequence: 0
  name: Formerly with the U.S. Environmental Protection Agency
Author_xml – sequence: 1
  givenname: Gregory V
  surname: Lowry
  fullname: Lowry, Gregory V
– sequence: 2
  givenname: Reghan J
  surname: Hill
  fullname: Hill, Reghan J
– sequence: 3
  givenname: Stacey
  surname: Harper
  fullname: Harper, Stacey
– sequence: 4
  givenname: Alan F
  surname: Rawle
  fullname: Rawle, Alan F
– sequence: 5
  givenname: Christine Ogilvie
  surname: Hendren
  fullname: Hendren, Christine Ogilvie
– sequence: 6
  givenname: Fred
  surname: Klaessig
  fullname: Klaessig, Fred
– sequence: 7
  givenname: Ulf
  surname: Nobbmann
  fullname: Nobbmann, Ulf
– sequence: 8
  givenname: Philip
  surname: Sayre
  fullname: Sayre, Philip
– sequence: 9
  givenname: John
  surname: Rumble
  fullname: Rumble, John
BookMark eNptkc1LAzEQxYNUsNZevAs5irCabLLZeJRSW6Uo-HFestkJRnaTmmQL-te7taIgnuYN83vD8OYQjZx3gNAxJeeUsMsLLcARQpl43UPjnBQ0k1TQ0Y8u2AGaxvhKBojmBRPlGD0setsopwEnj223Dn4zyBfAUVtwyRqr8Ua1PWBv8Ackla192g5UiztQsQ_QDW3E1mGnnJ8vH4_QvlFthOl3naDn6_nTbJmt7hc3s6tVpnNRpoxRJQxoLWVtiOaqVAWvGfCSM6hB5kZyyEtTlLIhBWmagjcy57Iua61r3nA2Qae7vcPRbz3EVHU2amhb5cD3saKSlYyzXMgBPduhOvgYA5hqHWynwntFSbXNrpqJ-d1XdrcDTP7A2iaVrHcpKNv-bznZWULUP6t_38E-AYBQfZQ
CitedBy_id crossref_primary_10_1002_slct_202400483
crossref_primary_10_1016_j_tsf_2024_140229
crossref_primary_10_1016_j_desal_2023_116561
crossref_primary_10_1016_j_ejps_2017_05_060
crossref_primary_10_1021_acs_iecr_4c00886
crossref_primary_10_3390_pharmaceutics16020177
crossref_primary_10_1007_s12011_023_03892_w
crossref_primary_10_3390_cancers14143490
crossref_primary_10_1002_bbb_2150
crossref_primary_10_1016_j_ijpharm_2021_120944
crossref_primary_10_1186_s12989_024_00599_1
crossref_primary_10_1002_jpln_202200457
crossref_primary_10_1002_ppsc_202400242
crossref_primary_10_1016_j_carbon_2021_12_054
crossref_primary_10_1021_acs_macromol_0c00877
crossref_primary_10_1016_j_colsurfb_2023_113249
crossref_primary_10_3390_powders4010003
crossref_primary_10_3390_ph15030370
crossref_primary_10_1016_j_scitotenv_2018_03_131
crossref_primary_10_1002_slct_202302703
crossref_primary_10_3390_pharmaceutics13101537
crossref_primary_10_1021_acs_jpcc_0c08387
crossref_primary_10_1186_s12903_024_05035_6
crossref_primary_10_1021_acsami_4c18519
crossref_primary_10_1021_acsnano_3c03739
crossref_primary_10_1016_j_cis_2022_102778
crossref_primary_10_1016_j_powtec_2024_120290
crossref_primary_10_3390_pharmaceutics14010174
crossref_primary_10_1021_acsami_3c14725
crossref_primary_10_3390_molecules25235502
crossref_primary_10_22270_jddt_v11i3_4847
crossref_primary_10_1111_jerd_12699
crossref_primary_10_1007_s10853_022_06994_3
crossref_primary_10_1021_acsami_4c02936
crossref_primary_10_1016_j_jcis_2023_11_055
crossref_primary_10_3390_gels10060352
crossref_primary_10_1080_02652048_2022_2071492
crossref_primary_10_1007_s40192_017_0095_2
crossref_primary_10_3390_nano10101936
crossref_primary_10_1002_adsu_202100100
crossref_primary_10_1021_acs_biomac_4c00138
crossref_primary_10_1016_j_talanta_2019_06_062
crossref_primary_10_1021_acssuschemeng_1c07021
crossref_primary_10_3390_foods11182926
crossref_primary_10_1021_acsabm_0c00521
crossref_primary_10_1021_acsestengg_3c00438
crossref_primary_10_1016_j_scitotenv_2021_148175
crossref_primary_10_2147_IJN_S490444
crossref_primary_10_3390_catal15020190
crossref_primary_10_1021_acs_est_4c08032
crossref_primary_10_1038_s41565_021_00852_0
crossref_primary_10_1016_j_cej_2023_143979
crossref_primary_10_1016_j_jcis_2019_06_086
crossref_primary_10_1016_j_microc_2023_108470
crossref_primary_10_1088_1742_6596_2175_1_012029
crossref_primary_10_1016_j_jcis_2022_06_097
crossref_primary_10_1080_21650373_2024_2411303
crossref_primary_10_1038_s41598_023_27500_y
crossref_primary_10_3390_toxics11030283
crossref_primary_10_1021_acs_langmuir_1c03088
crossref_primary_10_1016_j_impact_2021_100308
crossref_primary_10_1016_j_jcis_2020_09_070
crossref_primary_10_1016_j_apsusc_2022_153764
crossref_primary_10_1088_2632_959X_ac0355
crossref_primary_10_1007_s12668_025_01806_9
crossref_primary_10_3390_biomedicines11082285
crossref_primary_10_1007_s10876_024_02704_y
crossref_primary_10_1002_adma_202106627
crossref_primary_10_1016_j_jenvman_2022_114828
crossref_primary_10_1002_adfm_202314088
crossref_primary_10_3390_nano11102740
crossref_primary_10_1007_s10967_023_08875_8
crossref_primary_10_1016_j_diamond_2023_110783
crossref_primary_10_3390_polysaccharides6010004
crossref_primary_10_1080_01932691_2021_2022489
crossref_primary_10_1021_acs_est_7b05236
crossref_primary_10_3390_polym13193302
crossref_primary_10_1016_j_jhazmat_2024_134746
crossref_primary_10_1016_j_micromeso_2021_111562
crossref_primary_10_1016_j_scitotenv_2021_151506
crossref_primary_10_1016_j_colsurfa_2025_136328
crossref_primary_10_3390_toxics12020142
crossref_primary_10_1016_j_cej_2024_148693
crossref_primary_10_1016_j_eurpolymj_2019_109229
crossref_primary_10_1016_j_jhazmat_2021_125854
crossref_primary_10_1002_adma_202404026
crossref_primary_10_1016_j_cej_2023_147756
crossref_primary_10_1021_acs_cgd_9b01550
crossref_primary_10_3389_fchem_2020_00497
crossref_primary_10_1021_acs_jpcc_9b10644
crossref_primary_10_1016_j_jenvman_2023_117739
crossref_primary_10_1038_s41597_024_03324_x
crossref_primary_10_3390_ma15103562
crossref_primary_10_1016_j_jfoodeng_2021_110569
crossref_primary_10_1002_smll_202200671
crossref_primary_10_1016_j_ijhydene_2024_05_134
crossref_primary_10_1021_acs_langmuir_2c01912
crossref_primary_10_1016_j_molliq_2025_126920
crossref_primary_10_1080_00268976_2023_2260014
crossref_primary_10_1016_j_cartre_2024_100327
crossref_primary_10_3390_molecules29092135
crossref_primary_10_3390_molecules25081982
crossref_primary_10_1016_j_ijbiomac_2023_124635
crossref_primary_10_1016_j_est_2024_115240
crossref_primary_10_1016_j_molliq_2020_115221
crossref_primary_10_1021_acs_jpcb_0c02808
crossref_primary_10_1016_j_jallcom_2024_177860
crossref_primary_10_1016_j_impact_2017_06_004
crossref_primary_10_1016_j_cis_2024_103285
crossref_primary_10_1038_s41598_017_11402_x
crossref_primary_10_3390_pharmaceutics12100953
crossref_primary_10_1016_j_jece_2024_115010
crossref_primary_10_1016_j_colsurfa_2022_130135
crossref_primary_10_1016_j_desal_2024_118174
crossref_primary_10_3897_pharmacia_70_e96593
crossref_primary_10_1007_s00604_021_05029_z
crossref_primary_10_3390_ijms25094910
crossref_primary_10_1016_j_ijpharm_2023_122656
crossref_primary_10_1016_j_scitotenv_2023_169419
crossref_primary_10_1016_j_ces_2019_115338
crossref_primary_10_1016_j_conbuildmat_2024_138773
crossref_primary_10_1016_j_ibiod_2022_105377
crossref_primary_10_1016_j_eti_2022_102483
crossref_primary_10_1016_j_apgeochem_2020_104823
crossref_primary_10_1038_s41598_017_14981_x
crossref_primary_10_1016_j_scitotenv_2021_152623
crossref_primary_10_1007_s10856_020_06382_w
crossref_primary_10_1002_admt_202400382
crossref_primary_10_1002_adhm_202401625
crossref_primary_10_1016_j_ijpharm_2018_09_046
crossref_primary_10_1016_j_jmmm_2024_172667
crossref_primary_10_1021_acsabm_4c00037
crossref_primary_10_1016_j_colsurfa_2022_129039
crossref_primary_10_1002_bkcs_12855
crossref_primary_10_1186_s12645_020_00060_w
crossref_primary_10_1002_VIW_20200086
crossref_primary_10_3390_pharmaceutics16111349
crossref_primary_10_1021_acs_langmuir_4c00274
crossref_primary_10_1038_s41598_021_87960_y
crossref_primary_10_1002_smll_202401032
crossref_primary_10_1007_s40089_020_00317_7
crossref_primary_10_1016_j_rechem_2022_100478
crossref_primary_10_1021_acs_analchem_4c01634
crossref_primary_10_1016_j_scitotenv_2018_02_038
crossref_primary_10_1007_s10570_023_05422_2
crossref_primary_10_1021_acs_langmuir_2c03000
crossref_primary_10_1016_j_microc_2023_108864
crossref_primary_10_1134_S2635167622060027
crossref_primary_10_1038_s41598_021_01216_3
crossref_primary_10_3390_nano10102048
crossref_primary_10_3390_cells10061519
crossref_primary_10_1126_science_aba8653
crossref_primary_10_1016_j_cej_2023_148127
crossref_primary_10_1021_acs_est_6b05876
crossref_primary_10_1016_j_apsusc_2023_156842
crossref_primary_10_3390_molecules25092139
crossref_primary_10_3390_pharmaceutics16070960
crossref_primary_10_1002_jbm_b_35117
crossref_primary_10_1016_j_jconrel_2024_11_074
crossref_primary_10_3390_foods13091340
crossref_primary_10_1016_j_jsps_2021_09_016
crossref_primary_10_1016_j_matlet_2023_135427
crossref_primary_10_1007_s00216_021_03647_3
crossref_primary_10_1016_j_ijbiomac_2024_136675
crossref_primary_10_1016_j_impact_2017_09_002
crossref_primary_10_1016_j_chemosphere_2022_136768
crossref_primary_10_1016_j_clay_2024_107659
crossref_primary_10_1016_j_watres_2022_119206
crossref_primary_10_1016_j_powtec_2021_117106
crossref_primary_10_1002_cmdc_202000983
crossref_primary_10_1016_j_chemosphere_2021_131452
crossref_primary_10_3390_nano12111870
crossref_primary_10_1021_acsami_4c05846
crossref_primary_10_1021_acsnano_9b09178
crossref_primary_10_1021_acs_chemmater_2c01098
crossref_primary_10_1021_acs_langmuir_9b02163
crossref_primary_10_1007_s13346_021_00918_5
crossref_primary_10_18311_jnr_2023_32238
crossref_primary_10_1016_j_apsusc_2020_148824
crossref_primary_10_1002_wer_1313
crossref_primary_10_1002_adfm_202105577
crossref_primary_10_3390_ijms241914687
crossref_primary_10_1002_marc_202100712
crossref_primary_10_1002_cjce_23914
crossref_primary_10_1364_BOE_474273
crossref_primary_10_3389_fbioe_2021_782799
crossref_primary_10_1021_acsanm_0c00010
crossref_primary_10_1007_s10876_024_02757_z
crossref_primary_10_1021_acs_est_8b02324
crossref_primary_10_1080_07391102_2023_2267666
crossref_primary_10_1021_acsanm_1c03250
crossref_primary_10_3390_polym13142361
crossref_primary_10_1007_s10876_022_02225_6
crossref_primary_10_1021_acsanm_2c04322
crossref_primary_10_1016_j_colsurfb_2024_113937
crossref_primary_10_1007_s00396_024_05301_7
crossref_primary_10_1007_s13369_019_03872_0
crossref_primary_10_3390_pharmaceutics13040549
crossref_primary_10_1016_j_powtec_2022_117932
crossref_primary_10_1002_etc_4465
crossref_primary_10_1016_j_cej_2024_155153
crossref_primary_10_3390_plants12173094
crossref_primary_10_1002_etc_4349
crossref_primary_10_1021_acs_nanolett_0c05059
crossref_primary_10_1002_adfm_202100863
crossref_primary_10_1002_ange_202107156
crossref_primary_10_3390_mi11121065
crossref_primary_10_1021_acsagscitech_3c00204
crossref_primary_10_1016_j_trac_2023_117175
crossref_primary_10_1021_acsestwater_2c00200
crossref_primary_10_3390_nano11010111
crossref_primary_10_3390_cryst15020132
crossref_primary_10_3390_ph17091220
crossref_primary_10_1007_s11095_022_03256_4
crossref_primary_10_1111_ics_12511
crossref_primary_10_1016_j_cplett_2021_138996
crossref_primary_10_1021_acsomega_4c02287
crossref_primary_10_1002_sia_6884
crossref_primary_10_1016_j_carbon_2022_04_017
crossref_primary_10_1016_j_ijft_2024_100679
crossref_primary_10_3390_ijms20051076
crossref_primary_10_3390_nano10091840
crossref_primary_10_1080_03639045_2022_2135101
crossref_primary_10_1002_adhm_202202482
crossref_primary_10_1021_acs_jpcc_1c00143
crossref_primary_10_1002_anie_202107156
crossref_primary_10_1016_j_molliq_2024_124023
crossref_primary_10_3390_pharmaceutics12080778
crossref_primary_10_1186_s41120_021_00041_2
crossref_primary_10_1007_s42729_021_00585_y
crossref_primary_10_1016_j_heliyon_2022_e11988
crossref_primary_10_3390_ijms23041944
crossref_primary_10_1021_acsami_3c18717
crossref_primary_10_1016_j_powtec_2019_08_017
crossref_primary_10_1016_j_aquatox_2017_06_021
crossref_primary_10_1080_10601325_2021_2013727
crossref_primary_10_1007_s10570_022_04666_8
crossref_primary_10_1021_acsomega_3c03727
crossref_primary_10_3390_w11040721
crossref_primary_10_1021_acs_chemmater_0c03126
crossref_primary_10_1016_j_colsurfb_2021_112308
crossref_primary_10_1149_1945_7111_ac51f8
crossref_primary_10_1016_j_jcis_2023_09_090
crossref_primary_10_1080_19392699_2021_1964490
crossref_primary_10_1002_smll_201906588
crossref_primary_10_1371_journal_pone_0181735
crossref_primary_10_3390_w12113216
crossref_primary_10_1016_j_colcom_2024_100804
crossref_primary_10_3390_molecules26082305
crossref_primary_10_3390_pr11020309
crossref_primary_10_1016_j_scitotenv_2023_165339
crossref_primary_10_1021_acsanm_3c01238
crossref_primary_10_3390_molecules25204602
Cites_doi 10.1351/pac200577101753
10.1006/jcis.1994.1126
10.1039/f29787401607
10.1504/IJNT.2008.016552
10.1016/S0927-7765(98)00030-7
10.1073/pnas.0608582104
10.1016/j.envpol.2014.01.016
10.1016/S0021-9797(02)00043-7
10.1021/es9010543
10.1021/es060589n
10.1098/rspa.2015.0522
10.1021/acs.langmuir.5b02809
10.1007/s11051-008-9446-4
10.1098/rspa.1950.0154
10.1186/1743-8977-5-14
10.1016/j.jcis.2008.01.046
10.2903/j.efsa.2011.2140
10.1098/rspa.1960.0190
10.1016/S0927-7757(98)00631-1
10.1016/j.jcis.2010.02.028
10.1016/S0021-9797(03)00536-8
10.1016/j.envint.2012.11.009
10.3109/17435390903276941
10.1071/EN13191
10.1021/es505003d
10.1186/s12989-015-0091-7
10.1016/j.cocis.2016.05.002
10.1016/j.scitotenv.2015.06.100
10.1098/rspa.1931.0133
10.1016/j.biomaterials.2007.07.029
10.1016/j.jcis.2006.12.075
ContentType Journal Article
DBID AAYXX
CITATION
7QH
7ST
7TV
7UA
C1K
F1W
H97
L.G
SOI
DOI 10.1039/c6en00136j
DatabaseName CrossRef
Aqualine
Environment Abstracts
Pollution Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Pollution Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2051-8161
EndPage 965
ExternalDocumentID 10_1039_C6EN00136J
c6en00136j
GroupedDBID -JG
0R~
4.4
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENGV
AETIL
AFLYV
AFOGI
AFRAH
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AUNWK
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AAYXX
ABIQK
AFRZK
AKMSF
CITATION
J3G
J3H
7QH
7ST
7TV
7UA
C1K
F1W
H97
L.G
SOI
ID FETCH-LOGICAL-c267t-31a6fecc88bf0c4a7a54b3e4743ebe82f84e27f578d050dd54d8248b7bccb4d43
ISSN 2051-8153
IngestDate Thu Jul 10 22:35:09 EDT 2025
Tue Jul 01 02:35:32 EDT 2025
Thu Apr 24 22:58:42 EDT 2025
Tue Dec 17 20:59:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-31a6fecc88bf0c4a7a54b3e4743ebe82f84e27f578d050dd54d8248b7bccb4d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8599-008X
PQID 1837343268
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_1837343268
crossref_primary_10_1039_C6EN00136J
rsc_primary_c6en00136j
crossref_citationtrail_10_1039_C6EN00136J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationTitle Environmental science. Nano
PublicationYear 2016
References Abramson (C6EN00136J-(cit30)/*[position()=1]) 1943
López-Garcia (C6EN00136J-(cit37)/*[position()=1]) 2003; 265
Hunter (C6EN00136J-(cit23)/*[position()=1]) 1988
Patil (C6EN00136J-(cit13)/*[position()=1]) 2007; 28
Riddick (C6EN00136J-(cit22)/*[position()=1]) 1968
Bihari (C6EN00136J-(cit44)/*[position()=1]) 2008; 5
Ruenraroengsak (C6EN00136J-(cit45)/*[position()=1]) 2015; 12
Smoluchowski (C6EN00136J-(cit29)/*[position()=1]) 1921
Hill (C6EN00136J-(cit38)/*[position()=1]) 2015; 471
Long (C6EN00136J-(cit40)/*[position()=1]) 2006; 40
(C6EN00136J-(cit43)/*[position()=1]) 2012
(C6EN00136J-(cit10)/*[position()=1]) 2016
Hückel (C6EN00136J-(cit28)/*[position()=1]) 1924; 25
Ispas (C6EN00136J-(cit50)/*[position()=1]) 2009; 43
(C6EN00136J-(cit6)/*[position()=1]) 2012
Berg (C6EN00136J-(cit12)/*[position()=1]) 2009; 3
Delgado (C6EN00136J-(cit17)/*[position()=1]) 2005; 77
Hill (C6EN00136J-(cit18)/*[position()=1]) 2003; 258
Hill (C6EN00136J-(cit36)/*[position()=1]) 2003; 258
Delgado (C6EN00136J-(cit16)/*[position()=1]) 2007; 309
Haydon (C6EN00136J-(cit26)/*[position()=1]) 1960; 258
(C6EN00136J-(cit3)/*[position()=1]) 2012
MacDonald (C6EN00136J-(cit48)/*[position()=1]) 1998; 11
Harper (C6EN00136J-(cit9)/*[position()=1]) 2008; 5
(C6EN00136J-(cit7)/*[position()=1]) 2014
C6EN00136J-(cit2)/*[position()=1]
Schwegmann (C6EN00136J-(cit14)/*[position()=1]) 2010; 347
Ohshima (C6EN00136J-(cit34)/*[position()=1]) 1994; 163
Pelley (C6EN00136J-(cit46)/*[position()=1]) 2008; 321
Auffan (C6EN00136J-(cit51)/*[position()=1]) 2014; 188
Ohshima (C6EN00136J-(cit19)/*[position()=1]) 1994; 163
Morris (C6EN00136J-(cit49)/*[position()=1]) 1999; 155
Louie (C6EN00136J-(cit33)/*[position()=1]) 2016; 3
Louie (C6EN00136J-(cit31)/*[position()=1]) 2015; 49
O'Brien (C6EN00136J-(cit20)/*[position()=1]) 1978; 74
(C6EN00136J-(cit4)/*[position()=1]) 2012
Hill (C6EN00136J-(cit35)/*[position()=1]) 2008
Hill (C6EN00136J-(cit39)/*[position()=1]) 2015; 31
Jiang (C6EN00136J-(cit11)/*[position()=1]) 2009; 11
O'Brien (C6EN00136J-(cit21)/*[position()=1]) 1978; 74
Booth (C6EN00136J-(cit25)/*[position()=1]) 1950; 203
Hendren (C6EN00136J-(cit15)/*[position()=1]) 2015; 536
European Food Safety Authority (C6EN00136J-(cit42)/*[position()=1]) 2011; 9
de la Iglesia (C6EN00136J-(cit8)/*[position()=1]) 2011
Hotze (C6EN00136J-(cit24)/*[position()=1]) 2014; 11
Cedervall (C6EN00136J-(cit32)/*[position()=1]) 2007; 104
Pettitt (C6EN00136J-(cit1)/*[position()=1]) 2013; 52
(C6EN00136J-(cit5)/*[position()=1]) 2012
Henry (C6EN00136J-(cit27)/*[position()=1]) 1931; 133
Duval (C6EN00136J-(cit47)/*[position()=1]) 2016; 24
References_xml – issn: 2012
– issn: 1921
  publication-title: Electrische Endosmose und Strö-mungsströme
  doi: Smoluchowski
– issn: 2014
– issn: 2016
– issn: 2012
  publication-title: Guidance on the safety assessment of nanomaterials in cosmetics, Report SCCS/1484/12
– issn: 1988
  publication-title: Zeta potential in colloid science: Principles and Applications
  doi: Hunter
– issn: 2011
  publication-title: Nanoinformatics 2020 Roadmap
  doi: de la Iglesia Harper Hoover Klaessig Lippel Maddux Morse Nel Rajan Reznik-Zellen Tuominen
– issn: 1943
  publication-title: Electrophoresis of proteins and the chemistry of cell surfaces
  doi: Abramson Moyer Gorin
– issn: 1968
  publication-title: Control of Colloid Stability through Zeta Potential: With a closing chapter on its relationship to cardiovascular disease
  doi: Riddick
– issn: 2008
  publication-title: User guide for MPEK −0.02
  doi: Hill
– doi: Cecil Corbett Connah Mattison
– volume: 77
  start-page: 1753
  year: 2005
  ident: C6EN00136J-(cit17)/*[position()=1]
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200577101753
– volume: 163
  start-page: 474
  year: 1994
  ident: C6EN00136J-(cit34)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1994.1126
– ident: C6EN00136J-(cit2)/*[position()=1]
– volume: 74
  start-page: 1607
  year: 1978
  ident: C6EN00136J-(cit20)/*[position()=1]
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/f29787401607
– year: 2012
  ident: C6EN00136J-(cit3)/*[position()=1]
– volume: 5
  start-page: 124
  year: 2008
  ident: C6EN00136J-(cit9)/*[position()=1]
  publication-title: Int. J. Nanotechnol.
  doi: 10.1504/IJNT.2008.016552
– volume-title: Zeta potential in colloid science: Principles and Applications
  year: 1988
  ident: C6EN00136J-(cit23)/*[position()=1]
– volume: 11
  start-page: 131
  year: 1998
  ident: C6EN00136J-(cit48)/*[position()=1]
  publication-title: Colloids Surf., B
  doi: 10.1016/S0927-7765(98)00030-7
– volume: 104
  start-page: 2050
  year: 2007
  ident: C6EN00136J-(cit32)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0608582104
– volume: 3
  start-page: 283
  year: 2016
  ident: C6EN00136J-(cit33)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– year: 2012
  ident: C6EN00136J-(cit6)/*[position()=1]
– volume: 188
  start-page: 1
  year: 2014
  ident: C6EN00136J-(cit51)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2014.01.016
– volume: 258
  start-page: 56
  year: 2003
  ident: C6EN00136J-(cit18)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(02)00043-7
– volume: 25
  start-page: 204
  year: 1924
  ident: C6EN00136J-(cit28)/*[position()=1]
  publication-title: Phys. Z.
– volume: 43
  start-page: 6349
  year: 2009
  ident: C6EN00136J-(cit50)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9010543
– volume: 40
  start-page: 4346
  year: 2006
  ident: C6EN00136J-(cit40)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060589n
– volume-title: Electrische Endosmose und Strö-mungsströme
  year: 1921
  ident: C6EN00136J-(cit29)/*[position()=1]
– volume-title: Guidance on the safety assessment of nanomaterials in cosmetics, Report SCCS/1484/12
  year: 2012
  ident: C6EN00136J-(cit43)/*[position()=1]
– year: 2014
  ident: C6EN00136J-(cit7)/*[position()=1]
– volume: 471
  start-page: 20150522
  year: 2015
  ident: C6EN00136J-(cit38)/*[position()=1]
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2015.0522
– volume-title: Control of Colloid Stability through Zeta Potential: With a closing chapter on its relationship to cardiovascular disease
  year: 1968
  ident: C6EN00136J-(cit22)/*[position()=1]
– volume: 31
  start-page: 10246
  year: 2015
  ident: C6EN00136J-(cit39)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b02809
– volume: 11
  start-page: 77
  year: 2009
  ident: C6EN00136J-(cit11)/*[position()=1]
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-008-9446-4
– volume: 203
  start-page: 514
  year: 1950
  ident: C6EN00136J-(cit25)/*[position()=1]
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1950.0154
– volume: 5
  start-page: 14
  year: 2008
  ident: C6EN00136J-(cit44)/*[position()=1]
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-5-14
– volume: 321
  start-page: 74
  year: 2008
  ident: C6EN00136J-(cit46)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2008.01.046
– volume: 9
  start-page: 2140
  issue: 5
  year: 2011
  ident: C6EN00136J-(cit42)/*[position()=1]
  publication-title: EFSA J.
  doi: 10.2903/j.efsa.2011.2140
– volume: 258
  start-page: 319
  year: 1960
  ident: C6EN00136J-(cit26)/*[position()=1]
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1960.0190
– volume: 155
  start-page: 27
  year: 1999
  ident: C6EN00136J-(cit49)/*[position()=1]
  publication-title: Colloids Surf., A
  doi: 10.1016/S0927-7757(98)00631-1
– year: 2012
  ident: C6EN00136J-(cit5)/*[position()=1]
– volume: 74
  start-page: 1607
  year: 1978
  ident: C6EN00136J-(cit21)/*[position()=1]
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/f29787401607
– volume-title: User guide for MPEK −0.02
  year: 2008
  ident: C6EN00136J-(cit35)/*[position()=1]
– volume: 347
  start-page: 43
  year: 2010
  ident: C6EN00136J-(cit14)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2010.02.028
– volume: 265
  start-page: 327
  year: 2003
  ident: C6EN00136J-(cit37)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(03)00536-8
– volume: 163
  start-page: 474
  year: 1994
  ident: C6EN00136J-(cit19)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1994.1126
– volume: 52
  start-page: 41
  year: 2013
  ident: C6EN00136J-(cit1)/*[position()=1]
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2012.11.009
– volume: 3
  start-page: 276
  year: 2009
  ident: C6EN00136J-(cit12)/*[position()=1]
  publication-title: Nanotoxicology
  doi: 10.3109/17435390903276941
– volume: 11
  start-page: 257
  year: 2014
  ident: C6EN00136J-(cit24)/*[position()=1]
  publication-title: Environ. Chem.
  doi: 10.1071/EN13191
– volume: 49
  start-page: 2188
  year: 2015
  ident: C6EN00136J-(cit31)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es505003d
– volume: 12
  start-page: 1
  year: 2015
  ident: C6EN00136J-(cit45)/*[position()=1]
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/s12989-015-0091-7
– volume: 24
  start-page: 1
  year: 2016
  ident: C6EN00136J-(cit47)/*[position()=1]
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2016.05.002
– volume: 258
  start-page: 56
  year: 2003
  ident: C6EN00136J-(cit36)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(02)00043-7
– year: 2012
  ident: C6EN00136J-(cit4)/*[position()=1]
– volume: 536
  start-page: 1029
  year: 2015
  ident: C6EN00136J-(cit15)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.06.100
– year: 2016
  ident: C6EN00136J-(cit10)/*[position()=1]
– volume: 133
  start-page: 106
  year: 1931
  ident: C6EN00136J-(cit27)/*[position()=1]
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1931.0133
– volume: 28
  start-page: 4600
  year: 2007
  ident: C6EN00136J-(cit13)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.07.029
– volume-title: Nanoinformatics 2020 Roadmap
  year: 2011
  ident: C6EN00136J-(cit8)/*[position()=1]
– volume: 309
  start-page: 194
  year: 2007
  ident: C6EN00136J-(cit16)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.12.075
– volume-title: Electrophoresis of proteins and the chemistry of cell surfaces
  year: 1943
  ident: C6EN00136J-(cit30)/*[position()=1]
SSID ssj0001125367
Score 2.5309637
Snippet Nanoparticle zeta-potentials are relatively easy to measure, and have consistently been proposed in guidance documents as a particle property that must be...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 953
Title Guidance to improve the scientific value of zeta-potential measurements in nanoEHS
URI https://www.proquest.com/docview/1837343268
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdr-rKXsbKVZR9Fo3sZw5kjy7byGIqztGQZZA7kzejLW0axQ-ZQ6F-_k-SvsD50ezG2Ioug--l0Ot_vDqEPIo59qhn3xhPhe5Tk1BNEBZ6CrViDzLnwDVH46zKar-nNJtz0GNeGXVKJkbx_kFfyP1KFNpCrYcn-g2TbQaEB7kG-cAUJw_VRMv5y2Cob8g8G5NZ6B7Q1JB3L0QQBfTLJvK1b4F5X3NuVlfnBMkZa36CNiC14USbz70eO-o4D1zAnpR4ZfVy2YTzl3b5PdelCZud1muyV_vHTMKQ6Tbff1bW-Ki5169Bf8TsX2Dy9he6zvjPCsSSdtiKwuj02dpl_R7rf5rKtN-o26KEq7KnOSfOqe3IVJP5S8H5g8qPKSBc229yvbhtrPt0vv2Wz9WKRpckmPUGnBI4PZIBOp0l6vei8b2DXBba8cPu_m9y1weRzN_yxtdIdQU72TX0Ya4ekz9Gz-gCBpw4NZ-iJLl6gVYMEXJW4RgIGJOAOCdgiAZc5PkYC7iMBbwtcI-ElWs-S9Gru1dUyPEmiuILNlEc5LEjGRO5LymMeUhFoCiYiLFRGckY1iXPQ0MoPfaVCqhihTMRCSkEVDc7RoCgL_QphrfI4zBWHs7-kNJICNkHCQh4QERM9FkP0sZmVTNap5E1Fk9vMhjQEk-wqSpZ2Bm-G6LLtu3MJVB7s9b6Z3Az0m_loxQtdHn5nsOXEhvwcsSE6h1lvB-mE9PoRL79BTw1enfPsLRpU-4N-B-ZkJS5qbPwBRlZ55Q
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidance+to+improve+the+scientific+value+of+zeta-potential+measurements+in+nanoEHS&rft.jtitle=Environmental+science.+Nano&rft.au=Lowry%2C+Gregory+V&rft.au=Hill%2C+Reghan+J&rft.au=Harper%2C+Stacey&rft.au=Rawle%2C+Alan+F&rft.date=2016&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=3&rft.issue=5&rft.spage=953&rft.epage=965&rft_id=info:doi/10.1039%2Fc6en00136j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon