Engineering and Controlling Perovskite Emissions via Optical Quasi‐Bound‐States‐in‐the‐Continuum

Abstract Metal halide perovskite quantum dots (PQDs) have emerged as promising materials due to their exceptional photoluminescence (PL) properties. A wide range of applications could benefit from adjustable luminescence properties, while preserving the physical and chemical properties of the PQDs....

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 2
Main Authors Csányi, Evelin, Liu, Yan, Rezaei, Soroosh Daqiqeh, Lee, Henry Yit Loong, Tjiptoharsono, Febiana, Mahfoud, Zackaria, Gorelik, Sergey, Zhao, Xiaofei, Lim, Li Jun, Zhu, Di, Wu, Jing, Goh, Kuan Eng Johnson, Gao, Weibo, Tan, Zhi‐Kuang, Leggett, Graham, Qiu, Cheng‐Wei, Dong, Zhaogang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 09.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Metal halide perovskite quantum dots (PQDs) have emerged as promising materials due to their exceptional photoluminescence (PL) properties. A wide range of applications could benefit from adjustable luminescence properties, while preserving the physical and chemical properties of the PQDs. Therefore, post‐synthesis engineering has gained attention recently, involving the use of ion‐exchange or external stimuli, such as extreme pressure, magnetic and electric fields. Nevertheless, these methods typically suffer from spectrum broadening, intensity quenching or yield multiple bands. Alternatively, photonic antennas can modify the radiative decay channel of perovskites via the Purcell effect, with the largest wavelength shift being 8 nm to date, at an expense of fivefold intensity loss. Here, this work presents an optical nanoantenna array with polarization‐controlled quasi‐bound‐states‐in‐the‐continuum resonances, which can engineer and shift the photoluminescence wavelength over a ≈39 nm range and confers a 21‐fold emission enhancement of FAPbI 3 perovskite QDs. The spectrum is engineered in a non‐invasive manner via lithographically defined antennas and the pump laser polarization at ambient conditions. This research provides a path toward advanced optoelectronic devices, such as spectrally tailored quantum emitters and lasers.
AbstractList Abstract Metal halide perovskite quantum dots (PQDs) have emerged as promising materials due to their exceptional photoluminescence (PL) properties. A wide range of applications could benefit from adjustable luminescence properties, while preserving the physical and chemical properties of the PQDs. Therefore, post‐synthesis engineering has gained attention recently, involving the use of ion‐exchange or external stimuli, such as extreme pressure, magnetic and electric fields. Nevertheless, these methods typically suffer from spectrum broadening, intensity quenching or yield multiple bands. Alternatively, photonic antennas can modify the radiative decay channel of perovskites via the Purcell effect, with the largest wavelength shift being 8 nm to date, at an expense of fivefold intensity loss. Here, this work presents an optical nanoantenna array with polarization‐controlled quasi‐bound‐states‐in‐the‐continuum resonances, which can engineer and shift the photoluminescence wavelength over a ≈39 nm range and confers a 21‐fold emission enhancement of FAPbI 3 perovskite QDs. The spectrum is engineered in a non‐invasive manner via lithographically defined antennas and the pump laser polarization at ambient conditions. This research provides a path toward advanced optoelectronic devices, such as spectrally tailored quantum emitters and lasers.
Metal halide perovskite quantum dots (PQDs) have emerged as promising materials due to their exceptional photoluminescence (PL) properties. A wide range of applications could benefit from adjustable luminescence properties, while preserving the physical and chemical properties of the PQDs. Therefore, post‐synthesis engineering has gained attention recently, involving the use of ion‐exchange or external stimuli, such as extreme pressure, magnetic and electric fields. Nevertheless, these methods typically suffer from spectrum broadening, intensity quenching or yield multiple bands. Alternatively, photonic antennas can modify the radiative decay channel of perovskites via the Purcell effect, with the largest wavelength shift being 8 nm to date, at an expense of fivefold intensity loss. Here, this work presents an optical nanoantenna array with polarization‐controlled quasi‐bound‐states‐in‐the‐continuum resonances, which can engineer and shift the photoluminescence wavelength over a ≈39 nm range and confers a 21‐fold emission enhancement of FAPbI3 perovskite QDs. The spectrum is engineered in a non‐invasive manner via lithographically defined antennas and the pump laser polarization at ambient conditions. This research provides a path toward advanced optoelectronic devices, such as spectrally tailored quantum emitters and lasers.
Author Csányi, Evelin
Rezaei, Soroosh Daqiqeh
Goh, Kuan Eng Johnson
Dong, Zhaogang
Tjiptoharsono, Febiana
Tan, Zhi‐Kuang
Gorelik, Sergey
Gao, Weibo
Lim, Li Jun
Zhu, Di
Leggett, Graham
Liu, Yan
Wu, Jing
Mahfoud, Zackaria
Qiu, Cheng‐Wei
Zhao, Xiaofei
Lee, Henry Yit Loong
Author_xml – sequence: 1
  givenname: Evelin
  surname: Csányi
  fullname: Csányi, Evelin
  organization: Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (ASTAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Singapore, Department of Chemistry University of Sheffield Brook Hill Sheffield S3 7HF UK
– sequence: 2
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
  organization: Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (ASTAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Singapore
– sequence: 3
  givenname: Soroosh Daqiqeh
  surname: Rezaei
  fullname: Rezaei, Soroosh Daqiqeh
  organization: Pennsylvania State University State College PA 16801 USA
– sequence: 4
  givenname: Henry Yit Loong
  surname: Lee
  fullname: Lee, Henry Yit Loong
  organization: Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (ASTAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Singapore
– sequence: 5
  givenname: Febiana
  surname: Tjiptoharsono
  fullname: Tjiptoharsono, Febiana
  organization: Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (ASTAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Singapore
– sequence: 6
  givenname: Zackaria
  surname: Mahfoud
  fullname: Mahfoud, Zackaria
  organization: Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (ASTAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Singapore
– sequence: 7
  givenname: Sergey
  surname: Gorelik
  fullname: Gorelik, Sergey
  organization: Singapore Institute of Food and Biotechnology Innovation Agency for Science Technology and Research (ASTAR) 31 Biopolis Way, #01‐02 Nanos Singapore 138669 Singapore
– sequence: 8
  givenname: Xiaofei
  surname: Zhao
  fullname: Zhao, Xiaofei
  organization: Department of Chemistry 3 Science Drive 3 National University of Singapore Singapore 117543 Singapore
– sequence: 9
  givenname: Li Jun
  surname: Lim
  fullname: Lim, Li Jun
  organization: Department of Chemistry 3 Science Drive 3 National University of Singapore Singapore 117543 Singapore
– sequence: 10
  givenname: Di
  surname: Zhu
  fullname: Zhu, Di
  organization: Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (ASTAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Singapore
– sequence: 11
  givenname: Jing
  surname: Wu
  fullname: Wu, Jing
  organization: Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (ASTAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Singapore
– sequence: 12
  givenname: Kuan Eng Johnson
  surname: Goh
  fullname: Goh, Kuan Eng Johnson
  organization: Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (ASTAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Singapore, Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore, Department of Physics National University of Singapore Singapore 117551 Singapore
– sequence: 13
  givenname: Weibo
  surname: Gao
  fullname: Gao, Weibo
  organization: Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
– sequence: 14
  givenname: Zhi‐Kuang
  surname: Tan
  fullname: Tan, Zhi‐Kuang
  organization: Department of Chemistry 3 Science Drive 3 National University of Singapore Singapore 117543 Singapore
– sequence: 15
  givenname: Graham
  surname: Leggett
  fullname: Leggett, Graham
  organization: Department of Chemistry University of Sheffield Brook Hill Sheffield S3 7HF UK
– sequence: 16
  givenname: Cheng‐Wei
  surname: Qiu
  fullname: Qiu, Cheng‐Wei
  organization: Department of Electrical and Computer Engineering National University of Singapore 4 Engineering Drive 3 Singapore 117583 Singapore
– sequence: 17
  givenname: Zhaogang
  orcidid: 0000-0002-0929-7723
  surname: Dong
  fullname: Dong, Zhaogang
  organization: Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (ASTAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Singapore, Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117575 Singapore
BookMark eNo9kF9LwzAUxYNMcJu--lzwuTPJbdr0Ucf8A4MpKvgWsjSdmW0yk3Tgmx_Bz-gnsWXiyznnwuFc-E3QyDqrEToneEYwppeyqtsZxRRwyaA8QmOSkzwFTPnoP5PXEzQJYYsxKQrIxmi7sBtjtfbGbhJpq2TubPSuaYb7QXu3D-8m6mTRmhCMsyHZG5msdtEo2SSPnQzm5-v72nW26v0pyqhDH4ztJb7pXodBY7uuPUXHtWyCPvvzKXq5WTzP79Ll6vZ-frVMFc2LmAKBap0rTktKOGd6zdeQKaJqxmQNGaegJJSK40JVuaS1KmlBCAbGAHOqCpiii8PuzruPTocotq7ztn8paEkoyfOMQd-aHVrKuxC8rsXOm1b6T0GwGHiKgaf45wm_4gBwXQ
CitedBy_id crossref_primary_10_1016_j_rinp_2024_107795
crossref_primary_10_1021_acsphotonics_4c00319
crossref_primary_10_1002_adom_202301697
crossref_primary_10_1364_OME_523542
Cites_doi 10.1038/s41566-017-0047-6
10.1021/acs.chemmater.6b03980
10.1002/adma.201502567
10.1002/adma.202006004
10.1038/s41578-019-0080-9
10.1002/lpor.202200091
10.1021/acs.chemrev.1c00294
10.1002/adfm.202109495
10.1021/acs.jpclett.0c00879
10.1002/lpor.202200551
10.1017/CBO9780511813535
10.1002/adpr.202100335
10.1126/sciadv.abm4512
10.1038/s41563-018-0018-4
10.1038/s41566-022-01018-7
10.1021/acsnano.5b05769
10.1021/acs.jpclett.0c02136
10.1038/s41928-021-00624-7
10.1016/j.apsusc.2018.12.084
10.1038/s41377-021-00707-2
10.1038/am.2016.167
10.1021/jacs.5b05602
10.1021/acs.nanolett.2c00909
10.1103/PhysRev.69.37
10.1002/adom.202101324
10.1126/sciadv.aav9445
10.1002/smtd.201700419
10.1103/PhysRevResearch.4.023189
10.1038/s42254-023-00583-2
10.1021/acs.nanolett.7b03613
10.1038/srep12956
10.1021/acs.nanolett.7b04727
10.1038/s41377-020-0264-5
10.1038/nphoton.2016.62
10.1002/adma.202207317
10.1016/B978-0-08-055630-7.50017-1
10.1021/acsphotonics.0c01219
10.1021/acs.nanolett.1c00232
10.1021/jacs.0c09132
10.1002/lpor.202200189
10.1038/nphoton.2015.156
10.1002/adom.201800278
10.1021/acs.nanolett.9b03243
10.1002/adma.202000306
10.1103/PhysRevLett.123.253901
10.1038/nnano.2015.90
10.1021/acs.chemrev.8b00477
10.1126/science.aam7093
10.1063/5.0085947
10.1002/adma.201604268
10.1002/adma.202109157
10.1038/s41467-019-10090-7
10.1103/PhysRevLett.121.193903
10.1002/adma.202210477
10.1002/lpor.201900079
10.1021/acs.nanolett.5b02109
10.1002/adom.202202230
10.1093/nsr/nwaa288
10.1021/acs.nanolett.7b02827
10.1038/s41563-020-0784-7
10.1016/j.joule.2018.07.018
10.1021/acsenergylett.9b01427
10.1038/lsa.2016.56
10.1002/aenm.201700267
10.1038/s41563-023-01531-2
10.1038/s41467-018-05876-0
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202309539
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202309539
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c267t-313db6c82921885eb8b34c1cf55af34823ca39c807cd6a2fc9271103553082c73
ISSN 1616-301X
IngestDate Fri Sep 13 08:51:05 EDT 2024
Fri Aug 23 03:03:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-313db6c82921885eb8b34c1cf55af34823ca39c807cd6a2fc9271103553082c73
ORCID 0000-0002-0929-7723
PQID 2912166453
PQPubID 2045204
ParticipantIDs proquest_journals_2912166453
crossref_primary_10_1002_adfm_202309539
PublicationCentury 2000
PublicationDate 2024-01-09
PublicationDateYYYYMMDD 2024-01-09
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-09
  day: 09
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_31_1
e_1_2_9_52_1
Kuznetsov A. I. (e_1_2_9_36_1) 2016; 354
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
Hider M. H. (e_1_2_9_60_1) 1991; 44
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_20_1
  doi: 10.1038/s41566-017-0047-6
– ident: e_1_2_9_23_1
  doi: 10.1021/acs.chemmater.6b03980
– ident: e_1_2_9_14_1
  doi: 10.1002/adma.201502567
– ident: e_1_2_9_1_1
  doi: 10.1002/adma.202006004
– ident: e_1_2_9_4_1
  doi: 10.1038/s41578-019-0080-9
– ident: e_1_2_9_42_1
  doi: 10.1002/lpor.202200091
– ident: e_1_2_9_52_1
  doi: 10.1021/acs.chemrev.1c00294
– ident: e_1_2_9_12_1
  doi: 10.1002/adfm.202109495
– ident: e_1_2_9_32_1
  doi: 10.1021/acs.jpclett.0c00879
– ident: e_1_2_9_11_1
  doi: 10.1002/lpor.202200551
– ident: e_1_2_9_62_1
  doi: 10.1017/CBO9780511813535
– ident: e_1_2_9_17_1
  doi: 10.1002/adpr.202100335
– ident: e_1_2_9_39_1
  doi: 10.1126/sciadv.abm4512
– ident: e_1_2_9_8_1
  doi: 10.1038/s41563-018-0018-4
– ident: e_1_2_9_35_1
  doi: 10.1038/s41566-022-01018-7
– ident: e_1_2_9_19_1
  doi: 10.1021/acsnano.5b05769
– ident: e_1_2_9_65_1
  doi: 10.1021/acs.jpclett.0c02136
– ident: e_1_2_9_54_1
  doi: 10.1038/s41928-021-00624-7
– ident: e_1_2_9_25_1
  doi: 10.1016/j.apsusc.2018.12.084
– ident: e_1_2_9_34_1
  doi: 10.1038/s41377-021-00707-2
– ident: e_1_2_9_10_1
  doi: 10.1038/am.2016.167
– ident: e_1_2_9_22_1
  doi: 10.1021/jacs.5b05602
– ident: e_1_2_9_28_1
  doi: 10.1021/acs.nanolett.2c00909
– ident: e_1_2_9_50_1
  doi: 10.1103/PhysRev.69.37
– ident: e_1_2_9_41_1
  doi: 10.1002/adom.202101324
– ident: e_1_2_9_26_1
  doi: 10.1126/sciadv.aav9445
– volume: 354
  year: 2016
  ident: e_1_2_9_36_1
  publication-title: Science 1979.
  contributor:
    fullname: Kuznetsov A. I.
– volume: 44
  start-page: 15
  year: 1991
  ident: e_1_2_9_60_1
  publication-title: Phys. Rev. B
  contributor:
    fullname: Hider M. H.
– ident: e_1_2_9_6_1
  doi: 10.1002/smtd.201700419
– ident: e_1_2_9_51_1
  doi: 10.1103/PhysRevResearch.4.023189
– ident: e_1_2_9_64_1
  doi: 10.1038/s42254-023-00583-2
– ident: e_1_2_9_68_1
  doi: 10.1021/acs.nanolett.7b03613
– ident: e_1_2_9_61_1
  doi: 10.1038/srep12956
– ident: e_1_2_9_38_1
  doi: 10.1021/acs.nanolett.7b04727
– ident: e_1_2_9_16_1
  doi: 10.1038/s41377-020-0264-5
– ident: e_1_2_9_5_1
  doi: 10.1038/nphoton.2016.62
– ident: e_1_2_9_44_1
  doi: 10.1002/adma.202207317
– ident: e_1_2_9_67_1
  doi: 10.1016/B978-0-08-055630-7.50017-1
– ident: e_1_2_9_48_1
  doi: 10.1021/acsphotonics.0c01219
– ident: e_1_2_9_57_1
  doi: 10.1021/acs.nanolett.1c00232
– ident: e_1_2_9_29_1
  doi: 10.1021/jacs.0c09132
– ident: e_1_2_9_21_1
  doi: 10.1002/lpor.202200189
– ident: e_1_2_9_18_1
  doi: 10.1038/nphoton.2015.156
– ident: e_1_2_9_55_1
  doi: 10.1002/adom.201800278
– ident: e_1_2_9_66_1
  doi: 10.1021/acs.nanolett.9b03243
– ident: e_1_2_9_7_1
  doi: 10.1002/adma.202000306
– ident: e_1_2_9_49_1
  doi: 10.1103/PhysRevLett.123.253901
– ident: e_1_2_9_15_1
  doi: 10.1038/nnano.2015.90
– ident: e_1_2_9_9_1
  doi: 10.1021/acs.chemrev.8b00477
– ident: e_1_2_9_2_1
  doi: 10.1126/science.aam7093
– ident: e_1_2_9_33_1
  doi: 10.1063/5.0085947
– ident: e_1_2_9_40_1
  doi: 10.1002/adma.201604268
– ident: e_1_2_9_45_1
  doi: 10.1002/adma.202109157
– ident: e_1_2_9_43_1
  doi: 10.1038/s41467-019-10090-7
– ident: e_1_2_9_37_1
  doi: 10.1103/PhysRevLett.121.193903
– ident: e_1_2_9_47_1
  doi: 10.1002/adma.202210477
– ident: e_1_2_9_53_1
  doi: 10.1002/lpor.201900079
– ident: e_1_2_9_58_1
  doi: 10.1021/acs.nanolett.5b02109
– ident: e_1_2_9_24_1
  doi: 10.1002/adom.202202230
– ident: e_1_2_9_27_1
  doi: 10.1093/nsr/nwaa288
– ident: e_1_2_9_31_1
  doi: 10.1021/acs.nanolett.7b02827
– ident: e_1_2_9_13_1
  doi: 10.1038/s41563-020-0784-7
– ident: e_1_2_9_56_1
  doi: 10.1016/j.joule.2018.07.018
– ident: e_1_2_9_30_1
  doi: 10.1021/acsenergylett.9b01427
– ident: e_1_2_9_63_1
  doi: 10.1038/lsa.2016.56
– ident: e_1_2_9_3_1
  doi: 10.1002/aenm.201700267
– ident: e_1_2_9_46_1
  doi: 10.1038/s41563-023-01531-2
– ident: e_1_2_9_59_1
  doi: 10.1038/s41467-018-05876-0
SSID ssj0017734
Score 2.5143976
Snippet Abstract Metal halide perovskite quantum dots (PQDs) have emerged as promising materials due to their exceptional photoluminescence (PL) properties. A wide...
Metal halide perovskite quantum dots (PQDs) have emerged as promising materials due to their exceptional photoluminescence (PL) properties. A wide range of...
SourceID proquest
crossref
SourceType Aggregation Database
SubjectTerms Chemical properties
Electric fields
Emitters
External pressure
Luminescence
Metal halides
Nanoantennas
Optical properties
Optoelectronic devices
Perovskites
Photoluminescence
Polarization
Quantum dots
Spectral emittance
Title Engineering and Controlling Perovskite Emissions via Optical Quasi‐Bound‐States‐in‐the‐Continuum
URI https://www.proquest.com/docview/2912166453/abstract/
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKcoED4lcsuyAfkDhUgcZx_o6wdLVCZReWViqnyHFsYQ7p7iaptHviEXgWHoknYfwTNxUIsVxc262SauZLZjye-YzQc0aFpBmRQUjZJKBcyADWISQAc1GlgpVJarYL3h8nRwv6bhkvR6Mfg6ylri1f8qs_1pX8j1ZhDvSqq2SvoVl_UZiAPugXWtAwtP-k4wGZoNkEOLB556bC_IO4WK0bHZsdT0GXjUl4Wys2Pjmz4euPHWuUz3V4o49X8iPrgvqhqn0X_EXf17dTdefIHHoq2z6pQFtMF2gEr9iKw-94NGaDPqwvTTLBdK2r4n1ukOqMYdjg9lRcMWF--WkFnn7zBcB6rs6FD2WbUovxZ9WOZyt9eNJMiGE4g1ATzrjOS3Pwsk5CnbdnjtwBWzaccwXn7g3vwqVqs9D-zXBYIlpWSc1OAMuyPLYcS9sM3ccnxeFiNivm0-X8BrpJAMh6wf_21FOWhWlqMxn6_9YThU7Iq-2rbztC236AcW7md9EdtyrBry3E7qGRqO-j2wN4PUBfByMMYMMDsOEN2LAHGwawYQc2bMD289t3AzP4tACDjqqhAVBB6-H0EC0Op_ODo8Ad1BFwkqQt2PGoKhOekRwcxiwWZVZGlIdcxjGTmj0p4izKeTZJeZUwInlOUnA7I31kVUZ4Gj1CO_WqFo8RljLiEyqqPIbnvOQVExXIi-WZ5BWnYb6LXvRSK84sH0thmbdJoeVbePnuov1eqIV7ZpuC5CEJk4TG0ZO_f72Hbm3QuY922otOPAX3sy2fGX3_AvKqivY
link.rule.ids 315,786,790,27957,27958
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+and+Controlling+Perovskite+Emissions+via+Optical+Quasi%E2%80%90Bound%E2%80%90States%E2%80%90in%E2%80%90the%E2%80%90Continuum&rft.jtitle=Advanced+functional+materials&rft.au=Cs%C3%A1nyi%2C+Evelin&rft.au=Liu%2C+Yan&rft.au=Rezaei%2C+Soroosh+Daqiqeh&rft.au=Henry+Yit+Loong+Lee&rft.date=2024-01-09&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=2&rft_id=info:doi/10.1002%2Fadfm.202309539&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon