Non-Asymptotic Identification of Linear Dynamical Systems Using Multiple Trajectories
This letter considers the problem of linear time-invariant (LTI) system identification using input/output data. Recent work has provided non-asymptotic results on partially observed LTI system identification using a single trajectory but is only suitable for stable systems. We provide finite-time an...
Saved in:
Published in | IEEE control systems letters Vol. 5; no. 5; pp. 1693 - 1698 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This letter considers the problem of linear time-invariant (LTI) system identification using input/output data. Recent work has provided non-asymptotic results on partially observed LTI system identification using a single trajectory but is only suitable for stable systems. We provide finite-time analysis for learning Markov parameters based on the ordinary least-squares (OLS) estimator using multiple trajectories, which covers both stable and unstable systems. For unstable systems, our results suggest that the Markov parameters are harder to estimate in the presence of process noise. Without process noise, our upper bound on the estimation error is independent of the spectral radius of system dynamics with high probability. These two features are different from fully observed LTI systems for which recent work has shown that unstable systems with a bigger spectral radius are easier to estimate. Extensive numerical experiments demonstrate the performance of our OLS estimator. |
---|---|
AbstractList | This letter considers the problem of linear time-invariant (LTI) system identification using input/output data. Recent work has provided non-asymptotic results on partially observed LTI system identification using a single trajectory but is only suitable for stable systems. We provide finite-time analysis for learning Markov parameters based on the ordinary least-squares (OLS) estimator using multiple trajectories, which covers both stable and unstable systems. For unstable systems, our results suggest that the Markov parameters are harder to estimate in the presence of process noise. Without process noise, our upper bound on the estimation error is independent of the spectral radius of system dynamics with high probability. These two features are different from fully observed LTI systems for which recent work has shown that unstable systems with a bigger spectral radius are easier to estimate. Extensive numerical experiments demonstrate the performance of our OLS estimator. |
Author | Zheng, Yang Li, Na |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0001-6500-8423 surname: Zheng fullname: Zheng, Yang email: zhengy@g.harvard.edu organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA – sequence: 2 givenname: Na orcidid: 0000-0001-9545-3050 surname: Li fullname: Li, Na email: nali@seas.harvard.edu organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA |
BookMark | eNp9kMlOwzAURS1UJErpD8DGP5DiKU68rMpUKcAi7YJV5DovyFXiVLZZ5O_pJIRYsHpXTzpXV-cajVzvAKFbSmaUEnVfLMqPcsYIIzNOBFNMXKAxE1maUJHK0a98haYhbAkhNGcZYWqM1m-9S-Zh6Haxj9bgZQ0u2sYaHW3vcN_gwjrQHj8MTnf7d4vLIUToAl4H6z7x61cb7a4FvPJ6Cyb23kK4QZeNbgNMz3eCVk-Pq8VLUrw_LxfzIjFMZjFhupZEwkZyoShQBYTxJmc1b6DJlKg3KdcpEMhrpY1UAgTUoFNZMyMNMD5B-anW-D4ED01lbDwOj17btqKkOgiqjoKqg6DqLGiPsj_ozttO--F_6O4EWQD4ARTLRcoV_wYeLnXA |
CODEN | ICSLBO |
CitedBy_id | crossref_primary_10_1007_s10107_023_01938_4 crossref_primary_10_1016_j_automatica_2022_110486 crossref_primary_10_1016_j_automatica_2023_111332 crossref_primary_10_1016_j_heliyon_2024_e26949 crossref_primary_10_1016_j_ifacol_2025_01_007 crossref_primary_10_1109_TAC_2023_3303816 crossref_primary_10_1109_TAC_2024_3469392 crossref_primary_10_1109_OJCSYS_2022_3200015 crossref_primary_10_1109_TAC_2022_3180692 crossref_primary_10_1016_j_physd_2024_134146 crossref_primary_10_1016_j_ifacol_2024_08_523 crossref_primary_10_1109_TAC_2024_3455508 crossref_primary_10_1016_j_ifacol_2023_10_1874 crossref_primary_10_1016_j_sysconle_2023_105565 crossref_primary_10_1049_cth2_12761 crossref_primary_10_1109_JSEN_2024_3374058 crossref_primary_10_1109_LRA_2024_3464368 crossref_primary_10_1109_TIT_2024_3413534 |
Cites_doi | 10.1016/j.automatica.2014.01.001 10.1007/s10208-019-09426-y 10.1109/LCSYS.2019.2920205 10.1016/0005-1098(71)90059-8 10.1016/j.arcontrol.2019.03.006 10.1109/CDC40024.2019.9029499 10.1002/047134608X.W1046 10.1109/TAC.2020.2979785 10.1524/auto.1966.14.112.545 10.23919/ACC.2019.8814438 10.1016/j.compchemeng.2006.05.045 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LCSYS.2020.3042924 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2475-1456 |
EndPage | 1698 |
ExternalDocumentID | 10_1109_LCSYS_2020_3042924 9284539 |
Genre | orig-research |
GrantInformation_xml | – fundername: NSF career grantid: 1553407 funderid: 10.13039/100000001 – fundername: Air Force Office of Scientific Research Young Investigator Program funderid: 10.13039/100000181 – fundername: Office of Naval Research Young Investigator Program funderid: 10.13039/100000006 |
GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c267t-2ad606eb63491e19e023f82d3fef794db53a5e0e8d9ac694e4edea56d2c6ce23 |
IEDL.DBID | RIE |
ISSN | 2475-1456 |
IngestDate | Tue Jul 01 04:06:35 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Wed Aug 27 05:47:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c267t-2ad606eb63491e19e023f82d3fef794db53a5e0e8d9ac694e4edea56d2c6ce23 |
ORCID | 0000-0001-6500-8423 0000-0001-9545-3050 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1109_LCSYS_2020_3042924 crossref_primary_10_1109_LCSYS_2020_3042924 ieee_primary_9284539 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Nov. 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-Nov. |
PublicationDecade | 2020 |
PublicationTitle | IEEE control systems letters |
PublicationTitleAbbrev | LCSYS |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref12 sarkar (ref9) 2018 ref15 ref20 sarkar (ref13) 2019 hardt (ref16) 2018; 19 ref21 van overschee (ref2) 2012 ref1 sun (ref17) 2020 zheng (ref18) 2020 tu (ref7) 2017 ref19 åström (ref3) 1971; 7 ho (ref11) 1966; 14 ref4 zhou (ref8) 1996; 40 ref6 ref5 simchowitz (ref10) 2018 simchowitz (ref14) 2019 |
References_xml | – ident: ref4 doi: 10.1016/j.automatica.2014.01.001 – volume: 19 start-page: 1025 year: 2018 ident: ref16 article-title: Gradient descent learns linear dynamical systems publication-title: J Mach Learn Res – year: 2012 ident: ref2 publication-title: Subspace Identification for Linear Systems Theory Implementation Applications – ident: ref6 doi: 10.1007/s10208-019-09426-y – ident: ref20 doi: 10.1109/LCSYS.2019.2920205 – year: 2018 ident: ref10 publication-title: Learning without mixing Towards a sharp analysis of linear system identification – year: 2019 ident: ref13 publication-title: Finite-time system identification for partially observed LTI systems of unknown order – year: 2017 ident: ref7 publication-title: Non-Asymptotic Analysis of Robust Control from Coarse-Grained Identification – volume: 7 start-page: 123 year: 1971 ident: ref3 article-title: System identification-A survey publication-title: Automatica doi: 10.1016/0005-1098(71)90059-8 – ident: ref21 doi: 10.1016/j.arcontrol.2019.03.006 – volume: 40 year: 1996 ident: ref8 publication-title: Robust and Optimal Control – ident: ref15 doi: 10.1109/CDC40024.2019.9029499 – year: 2020 ident: ref18 publication-title: Non-asymptotic identification of linear dynamical systems using multiple trajectories – ident: ref1 doi: 10.1002/047134608X.W1046 – year: 2018 ident: ref9 publication-title: Near optimal finite time identification of arbitrary linear dynamical systems – year: 2019 ident: ref14 publication-title: Learning linear dynamical systems with semi-parametric least squares – ident: ref19 doi: 10.1109/TAC.2020.2979785 – volume: 14 start-page: 545 year: 1966 ident: ref11 article-title: Effective construction of linear state-variable models from input/output functions publication-title: Automatisierungstechnik doi: 10.1524/auto.1966.14.112.545 – start-page: 16 year: 2020 ident: ref17 article-title: Finite sample system identification: Optimal rates and the role of regularization publication-title: Proc Learn Dyn Control – ident: ref12 doi: 10.23919/ACC.2019.8814438 – ident: ref5 doi: 10.1016/j.compchemeng.2006.05.045 |
SSID | ssj0001827029 |
Score | 2.5024621 |
Snippet | This letter considers the problem of linear time-invariant (LTI) system identification using input/output data. Recent work has provided non-asymptotic results... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1693 |
SubjectTerms | Asymptotic stability Estimation error finite-time analysis Linear systems Markov processes MIMO communication Stability analysis System identification Trajectory |
Title | Non-Asymptotic Identification of Linear Dynamical Systems Using Multiple Trajectories |
URI | https://ieeexplore.ieee.org/document/9284539 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxYeKojykgc2SNvYjhuPVaGqEO3SVipT5NiXgUdTQTrAr-fspOUhhNgi6xJZdxfffed7EHLBs9TGsYUgUjEgQFE80FmaBYxBl0k0iMZ31x-N5XAmbufRvEauNrUwAOCTz6DlHv1dvs3NyoXK2grP0oirLbKFwK2s1fqMp8Suskqt62I6qn3Xn9xPEAEyBKbu2GXim-35MkzF25LBLhmtd1GmkDy2VkXaMu8_GjT-d5t7ZKdyKmmv1IJ9UoNFg8zG-SLovb49L4sc12lZkptVMTqaZxRxKOo5vS6H0uMHqvbl1OcR0FGVa0jRnj344D6i6gMyHdxM-8OgGqIQGCa7RcC0RYwCqeRChRAqQCOdxczyDDL8F20acR1BB2KrtJFKgAALOpKWGTcsjB-S-iJfwBGhQklru1pqo4UAHqZIKsGgBySk5SptknDN3cRUDcbdnIunxAONjkq8RBInkaSSSJNcbt5Zlu01_qRuOG5vKCtGH_--fEK2mUtA8YWDp6RevKzgDD2IIj33qvMBOaDF5g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWDhoYIoTw9skD5sx43HqlAVaLu0lcoUJfZl4NFUkA7w6zk7aXkIIbbIukTW3cV33_kehJzzJDZBYMDzVQAIUBT3oiROPMagxSQaRO266w-GsjcRt1N_WiKXq1oYAHDJZ1Czj-4u36R6YUNldYVnqc_VGllHu--zvFrrM6IS2NoqtayMaah6vzO6HyEGZAhN7cHLxDfr82WcirMm3W0yWO4jTyJ5rC2yuKbff7Ro_O9Gd8hW4VbSdq4Hu6QEswqZDNOZ1359e55nKa7TvCg3KaJ0NE0oIlHUdHqVj6XHDxQNzKnLJKCDItuQokV7cOF9xNV7ZNy9Hnd6XjFGwdNMtjKPRQZRCsSSC9WEpgI000nADE8gwb_RxD6PfGhAYFSkpRIgwEDkS8O0HRfG90l5ls7ggFChpDGtSEY6EgJ4M0ZSCRp9ICENV3GVNJfcDXXRYtxOungKHdRoqNBJJLQSCQuJVMnF6p153mDjT-qK5faKsmD04e_LZ2SjNx70w_7N8O6IbDKbjuLKCI9JOXtZwAn6E1l86tToA7khyTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Asymptotic+Identification+of+Linear+Dynamical+Systems+Using+Multiple+Trajectories&rft.jtitle=IEEE+control+systems+letters&rft.au=Zheng%2C+Yang&rft.au=Li%2C+Na&rft.date=2021-11-01&rft.pub=IEEE&rft.eissn=2475-1456&rft.volume=5&rft.issue=5&rft.spage=1693&rft.epage=1698&rft_id=info:doi/10.1109%2FLCSYS.2020.3042924&rft.externalDocID=9284539 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon |