Non-Asymptotic Identification of Linear Dynamical Systems Using Multiple Trajectories

This letter considers the problem of linear time-invariant (LTI) system identification using input/output data. Recent work has provided non-asymptotic results on partially observed LTI system identification using a single trajectory but is only suitable for stable systems. We provide finite-time an...

Full description

Saved in:
Bibliographic Details
Published inIEEE control systems letters Vol. 5; no. 5; pp. 1693 - 1698
Main Authors Zheng, Yang, Li, Na
Format Journal Article
LanguageEnglish
Published IEEE 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This letter considers the problem of linear time-invariant (LTI) system identification using input/output data. Recent work has provided non-asymptotic results on partially observed LTI system identification using a single trajectory but is only suitable for stable systems. We provide finite-time analysis for learning Markov parameters based on the ordinary least-squares (OLS) estimator using multiple trajectories, which covers both stable and unstable systems. For unstable systems, our results suggest that the Markov parameters are harder to estimate in the presence of process noise. Without process noise, our upper bound on the estimation error is independent of the spectral radius of system dynamics with high probability. These two features are different from fully observed LTI systems for which recent work has shown that unstable systems with a bigger spectral radius are easier to estimate. Extensive numerical experiments demonstrate the performance of our OLS estimator.
AbstractList This letter considers the problem of linear time-invariant (LTI) system identification using input/output data. Recent work has provided non-asymptotic results on partially observed LTI system identification using a single trajectory but is only suitable for stable systems. We provide finite-time analysis for learning Markov parameters based on the ordinary least-squares (OLS) estimator using multiple trajectories, which covers both stable and unstable systems. For unstable systems, our results suggest that the Markov parameters are harder to estimate in the presence of process noise. Without process noise, our upper bound on the estimation error is independent of the spectral radius of system dynamics with high probability. These two features are different from fully observed LTI systems for which recent work has shown that unstable systems with a bigger spectral radius are easier to estimate. Extensive numerical experiments demonstrate the performance of our OLS estimator.
Author Zheng, Yang
Li, Na
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0001-6500-8423
  surname: Zheng
  fullname: Zheng, Yang
  email: zhengy@g.harvard.edu
  organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
– sequence: 2
  givenname: Na
  orcidid: 0000-0001-9545-3050
  surname: Li
  fullname: Li, Na
  email: nali@seas.harvard.edu
  organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
BookMark eNp9kMlOwzAURS1UJErpD8DGP5DiKU68rMpUKcAi7YJV5DovyFXiVLZZ5O_pJIRYsHpXTzpXV-cajVzvAKFbSmaUEnVfLMqPcsYIIzNOBFNMXKAxE1maUJHK0a98haYhbAkhNGcZYWqM1m-9S-Zh6Haxj9bgZQ0u2sYaHW3vcN_gwjrQHj8MTnf7d4vLIUToAl4H6z7x61cb7a4FvPJ6Cyb23kK4QZeNbgNMz3eCVk-Pq8VLUrw_LxfzIjFMZjFhupZEwkZyoShQBYTxJmc1b6DJlKg3KdcpEMhrpY1UAgTUoFNZMyMNMD5B-anW-D4ED01lbDwOj17btqKkOgiqjoKqg6DqLGiPsj_ozttO--F_6O4EWQD4ARTLRcoV_wYeLnXA
CODEN ICSLBO
CitedBy_id crossref_primary_10_1007_s10107_023_01938_4
crossref_primary_10_1016_j_automatica_2022_110486
crossref_primary_10_1016_j_automatica_2023_111332
crossref_primary_10_1016_j_heliyon_2024_e26949
crossref_primary_10_1016_j_ifacol_2025_01_007
crossref_primary_10_1109_TAC_2023_3303816
crossref_primary_10_1109_TAC_2024_3469392
crossref_primary_10_1109_OJCSYS_2022_3200015
crossref_primary_10_1109_TAC_2022_3180692
crossref_primary_10_1016_j_physd_2024_134146
crossref_primary_10_1016_j_ifacol_2024_08_523
crossref_primary_10_1109_TAC_2024_3455508
crossref_primary_10_1016_j_ifacol_2023_10_1874
crossref_primary_10_1016_j_sysconle_2023_105565
crossref_primary_10_1049_cth2_12761
crossref_primary_10_1109_JSEN_2024_3374058
crossref_primary_10_1109_LRA_2024_3464368
crossref_primary_10_1109_TIT_2024_3413534
Cites_doi 10.1016/j.automatica.2014.01.001
10.1007/s10208-019-09426-y
10.1109/LCSYS.2019.2920205
10.1016/0005-1098(71)90059-8
10.1016/j.arcontrol.2019.03.006
10.1109/CDC40024.2019.9029499
10.1002/047134608X.W1046
10.1109/TAC.2020.2979785
10.1524/auto.1966.14.112.545
10.23919/ACC.2019.8814438
10.1016/j.compchemeng.2006.05.045
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LCSYS.2020.3042924
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2475-1456
EndPage 1698
ExternalDocumentID 10_1109_LCSYS_2020_3042924
9284539
Genre orig-research
GrantInformation_xml – fundername: NSF career
  grantid: 1553407
  funderid: 10.13039/100000001
– fundername: Air Force Office of Scientific Research Young Investigator Program
  funderid: 10.13039/100000181
– fundername: Office of Naval Research Young Investigator Program
  funderid: 10.13039/100000006
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c267t-2ad606eb63491e19e023f82d3fef794db53a5e0e8d9ac694e4edea56d2c6ce23
IEDL.DBID RIE
ISSN 2475-1456
IngestDate Tue Jul 01 04:06:35 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Wed Aug 27 05:47:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-2ad606eb63491e19e023f82d3fef794db53a5e0e8d9ac694e4edea56d2c6ce23
ORCID 0000-0001-6500-8423
0000-0001-9545-3050
PageCount 6
ParticipantIDs crossref_citationtrail_10_1109_LCSYS_2020_3042924
crossref_primary_10_1109_LCSYS_2020_3042924
ieee_primary_9284539
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Nov.
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-Nov.
PublicationDecade 2020
PublicationTitle IEEE control systems letters
PublicationTitleAbbrev LCSYS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
References ref12
sarkar (ref9) 2018
ref15
ref20
sarkar (ref13) 2019
hardt (ref16) 2018; 19
ref21
van overschee (ref2) 2012
ref1
sun (ref17) 2020
zheng (ref18) 2020
tu (ref7) 2017
ref19
åström (ref3) 1971; 7
ho (ref11) 1966; 14
ref4
zhou (ref8) 1996; 40
ref6
ref5
simchowitz (ref10) 2018
simchowitz (ref14) 2019
References_xml – ident: ref4
  doi: 10.1016/j.automatica.2014.01.001
– volume: 19
  start-page: 1025
  year: 2018
  ident: ref16
  article-title: Gradient descent learns linear dynamical systems
  publication-title: J Mach Learn Res
– year: 2012
  ident: ref2
  publication-title: Subspace Identification for Linear Systems Theory Implementation Applications
– ident: ref6
  doi: 10.1007/s10208-019-09426-y
– ident: ref20
  doi: 10.1109/LCSYS.2019.2920205
– year: 2018
  ident: ref10
  publication-title: Learning without mixing Towards a sharp analysis of linear system identification
– year: 2019
  ident: ref13
  publication-title: Finite-time system identification for partially observed LTI systems of unknown order
– year: 2017
  ident: ref7
  publication-title: Non-Asymptotic Analysis of Robust Control from Coarse-Grained Identification
– volume: 7
  start-page: 123
  year: 1971
  ident: ref3
  article-title: System identification-A survey
  publication-title: Automatica
  doi: 10.1016/0005-1098(71)90059-8
– ident: ref21
  doi: 10.1016/j.arcontrol.2019.03.006
– volume: 40
  year: 1996
  ident: ref8
  publication-title: Robust and Optimal Control
– ident: ref15
  doi: 10.1109/CDC40024.2019.9029499
– year: 2020
  ident: ref18
  publication-title: Non-asymptotic identification of linear dynamical systems using multiple trajectories
– ident: ref1
  doi: 10.1002/047134608X.W1046
– year: 2018
  ident: ref9
  publication-title: Near optimal finite time identification of arbitrary linear dynamical systems
– year: 2019
  ident: ref14
  publication-title: Learning linear dynamical systems with semi-parametric least squares
– ident: ref19
  doi: 10.1109/TAC.2020.2979785
– volume: 14
  start-page: 545
  year: 1966
  ident: ref11
  article-title: Effective construction of linear state-variable models from input/output functions
  publication-title: Automatisierungstechnik
  doi: 10.1524/auto.1966.14.112.545
– start-page: 16
  year: 2020
  ident: ref17
  article-title: Finite sample system identification: Optimal rates and the role of regularization
  publication-title: Proc Learn Dyn Control
– ident: ref12
  doi: 10.23919/ACC.2019.8814438
– ident: ref5
  doi: 10.1016/j.compchemeng.2006.05.045
SSID ssj0001827029
Score 2.5024621
Snippet This letter considers the problem of linear time-invariant (LTI) system identification using input/output data. Recent work has provided non-asymptotic results...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1693
SubjectTerms Asymptotic stability
Estimation error
finite-time analysis
Linear systems
Markov processes
MIMO communication
Stability analysis
System identification
Trajectory
Title Non-Asymptotic Identification of Linear Dynamical Systems Using Multiple Trajectories
URI https://ieeexplore.ieee.org/document/9284539
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxYeKojykgc2SNvYjhuPVaGqEO3SVipT5NiXgUdTQTrAr-fspOUhhNgi6xJZdxfffed7EHLBs9TGsYUgUjEgQFE80FmaBYxBl0k0iMZ31x-N5XAmbufRvEauNrUwAOCTz6DlHv1dvs3NyoXK2grP0oirLbKFwK2s1fqMp8Suskqt62I6qn3Xn9xPEAEyBKbu2GXim-35MkzF25LBLhmtd1GmkDy2VkXaMu8_GjT-d5t7ZKdyKmmv1IJ9UoNFg8zG-SLovb49L4sc12lZkptVMTqaZxRxKOo5vS6H0uMHqvbl1OcR0FGVa0jRnj344D6i6gMyHdxM-8OgGqIQGCa7RcC0RYwCqeRChRAqQCOdxczyDDL8F20acR1BB2KrtJFKgAALOpKWGTcsjB-S-iJfwBGhQklru1pqo4UAHqZIKsGgBySk5SptknDN3cRUDcbdnIunxAONjkq8RBInkaSSSJNcbt5Zlu01_qRuOG5vKCtGH_--fEK2mUtA8YWDp6RevKzgDD2IIj33qvMBOaDF5g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWDhoYIoTw9skD5sx43HqlAVaLu0lcoUJfZl4NFUkA7w6zk7aXkIIbbIukTW3cV33_kehJzzJDZBYMDzVQAIUBT3oiROPMagxSQaRO266w-GsjcRt1N_WiKXq1oYAHDJZ1Czj-4u36R6YUNldYVnqc_VGllHu--zvFrrM6IS2NoqtayMaah6vzO6HyEGZAhN7cHLxDfr82WcirMm3W0yWO4jTyJ5rC2yuKbff7Ro_O9Gd8hW4VbSdq4Hu6QEswqZDNOZ1359e55nKa7TvCg3KaJ0NE0oIlHUdHqVj6XHDxQNzKnLJKCDItuQokV7cOF9xNV7ZNy9Hnd6XjFGwdNMtjKPRQZRCsSSC9WEpgI000nADE8gwb_RxD6PfGhAYFSkpRIgwEDkS8O0HRfG90l5ls7ggFChpDGtSEY6EgJ4M0ZSCRp9ICENV3GVNJfcDXXRYtxOungKHdRoqNBJJLQSCQuJVMnF6p153mDjT-qK5faKsmD04e_LZ2SjNx70w_7N8O6IbDKbjuLKCI9JOXtZwAn6E1l86tToA7khyTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Asymptotic+Identification+of+Linear+Dynamical+Systems+Using+Multiple+Trajectories&rft.jtitle=IEEE+control+systems+letters&rft.au=Zheng%2C+Yang&rft.au=Li%2C+Na&rft.date=2021-11-01&rft.pub=IEEE&rft.eissn=2475-1456&rft.volume=5&rft.issue=5&rft.spage=1693&rft.epage=1698&rft_id=info:doi/10.1109%2FLCSYS.2020.3042924&rft.externalDocID=9284539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon