Evaluation of ductile fracture toughness for Mode I cracks subject to three-dimensional constraint conditions

•Propose a model for 3D-constrained cracks to capture J-integral–load relations.•Present models to depict stress, stress triaxiality distribution at crack tips.•Offer a critical fracture criterion for ductile materials under high constraint.•Develop a new method to quantitatively evaluate fracture t...

Full description

Saved in:
Bibliographic Details
Published inEngineering fracture mechanics Vol. 322; p. 111157
Main Authors Yu, Simiao, Cai, Lixun, Chen, Hui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 12.06.2025
Subjects
Online AccessGet full text
ISSN0013-7944
DOI10.1016/j.engfracmech.2025.111157

Cover

Loading…
Abstract •Propose a model for 3D-constrained cracks to capture J-integral–load relations.•Present models to depict stress, stress triaxiality distribution at crack tips.•Offer a critical fracture criterion for ductile materials under high constraint.•Develop a new method to quantitatively evaluate fracture toughness. Evaluating the properties related to the fracture mechanics and behavior of cracked structures is pivotal in structural integrity analysis. Accurate theoretical predictions and experimental methods for determining fracture toughness are significant in advancing the fracture strength theory of ductile materials and addressing fracture-related issues in such structures. This study developed models that reflect the dimensionless relationships among load, J-integral, maximum principal stress, and stress triaxiality for Mode I cracked specimens under three-dimensional constraints. These models are developed for ductile materials conforming to the Ramberg–Osgood law based on energy density equivalence and finite element analysis. Combined with the critical fracture criterion under high constraints, an effective method for quantitatively evaluating the fracture toughness of Mode I cracks under three-dimensional constraints was established. Notably, the trends observed in the derived critical J-integral vs. thickness relations align with conventional fracture test results. This research can aid in the accurate predictions of the fracture behavior for ductile structural materials under differing levels of crack tip constraint.
AbstractList •Propose a model for 3D-constrained cracks to capture J-integral–load relations.•Present models to depict stress, stress triaxiality distribution at crack tips.•Offer a critical fracture criterion for ductile materials under high constraint.•Develop a new method to quantitatively evaluate fracture toughness. Evaluating the properties related to the fracture mechanics and behavior of cracked structures is pivotal in structural integrity analysis. Accurate theoretical predictions and experimental methods for determining fracture toughness are significant in advancing the fracture strength theory of ductile materials and addressing fracture-related issues in such structures. This study developed models that reflect the dimensionless relationships among load, J-integral, maximum principal stress, and stress triaxiality for Mode I cracked specimens under three-dimensional constraints. These models are developed for ductile materials conforming to the Ramberg–Osgood law based on energy density equivalence and finite element analysis. Combined with the critical fracture criterion under high constraints, an effective method for quantitatively evaluating the fracture toughness of Mode I cracks under three-dimensional constraints was established. Notably, the trends observed in the derived critical J-integral vs. thickness relations align with conventional fracture test results. This research can aid in the accurate predictions of the fracture behavior for ductile structural materials under differing levels of crack tip constraint.
ArticleNumber 111157
Author Cai, Lixun
Chen, Hui
Yu, Simiao
Author_xml – sequence: 1
  givenname: Simiao
  orcidid: 0000-0002-3129-2400
  surname: Yu
  fullname: Yu, Simiao
  organization: School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
– sequence: 2
  givenname: Lixun
  surname: Cai
  fullname: Cai, Lixun
  email: lix_cai@263.net
  organization: Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
– sequence: 3
  givenname: Hui
  surname: Chen
  fullname: Chen, Hui
  organization: School of Civil and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
BookMark eNqNkM1OwzAMx3MYEtvgHcIDtCRp-nVE04BJQ1zgHGWJu6W0CUrSSbw9qcZhR3yx5Y-_7d8KLayzgNADJTkltHrsc7DHzks1gjrljLAyp8nKeoGWhNAiq1vOb9EqhJ4QUlcNWaJxe5bDJKNxFrsO60lFMwCeVeLkAUc3HU8WQsCd8_jNacA7rFL1K-AwHXpQMfXgePIAmTYj2JCk5ICVsyF6aWycQ23mDeEO3XRyCHD_59fo83n7sXnN9u8vu83TPlOsqmNGlVYcSqAHRTrJeSEZl0Ar3sqSMCgKTbpGa9Iyrlhd6-oga6bbqmlSmnNarFF70VXeheChE9_ejNL_CErEzEr04oqVmFmJC6s0u7nMQjrwbMCLoAxYBdr49K3QzvxD5RfXin8q
Cites_doi 10.1016/j.tafmec.2020.102696
10.1016/0021-8928(67)90034-2
10.1016/j.ijmecsci.2004.02.006
10.1016/j.tafmec.2022.103531
10.1016/j.cja.2016.10.011
10.1016/j.engfracmech.2015.11.004
10.1016/j.engfailanal.2020.104915
10.1016/j.ijfatigue.2022.107311
10.1007/s10409-019-00846-1
10.1016/j.engfracmech.2021.107907
10.1016/0013-7944(85)90052-9
10.1016/0022-5096(68)90013-6
10.1115/1.4011547
10.1016/j.apm.2022.04.026
10.1115/1.3601206
10.1016/S0308-0161(98)00069-6
10.1016/0013-7944(93)90002-A
10.1115/1.3443380
10.1111/j.1460-2695.2010.01519.x
10.1016/0022-5096(68)90014-8
10.1111/j.1460-2695.1995.tb00855.x
10.1016/j.engfracmech.2021.108106
10.1016/0022-5096(91)90049-T
10.1016/j.jmps.2020.103955
10.1016/j.engfracmech.2015.03.022
10.1016/0022-5096(92)90057-9
10.1016/0022-5096(94)90055-8
10.1016/j.engfracmech.2012.02.001
10.1016/j.apm.2017.07.042
10.1016/j.apm.2018.11.024
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engfracmech.2025.111157
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_engfracmech_2025_111157
S0013794425003583
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAQXK
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADIYS
ADMUD
ADNMO
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
VH1
WUQ
ZY4
ID FETCH-LOGICAL-c267t-1cdc4e5e1bc0fa443a24ae1649a502e33d0f8dd0924c277d6ba72d9688f8d4413
IEDL.DBID .~1
ISSN 0013-7944
IngestDate Tue Jul 01 04:56:29 EDT 2025
Sat Jun 14 16:51:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Ductile fracture criterion
Mode I cracks
Maximum principal stress
Three-dimensional constraints
Critical fracture toughness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-1cdc4e5e1bc0fa443a24ae1649a502e33d0f8dd0924c277d6ba72d9688f8d4413
ORCID 0000-0002-3129-2400
ParticipantIDs crossref_primary_10_1016_j_engfracmech_2025_111157
elsevier_sciencedirect_doi_10_1016_j_engfracmech_2025_111157
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-12
PublicationDateYYYYMMDD 2025-06-12
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-12
  day: 12
PublicationDecade 2020
PublicationTitle Engineering fracture mechanics
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Roy, Zhou (b0135) 2020; 142
Rice, Rosengren (b0020) 1968; 16
Cherepanov (b0005) 1967; 31
Nikishkov (b0095) 2015; 138
Begley, Landes (b0025) 1972; 514
Nikishkov (b0100) 2016; 152
Mortazavi, Ince (b0155) 2023; 167
Yang, Zhang (b0065) 2003; 25
Ductile (b0115) 1978
Ji, Zhu (b0175) 2019; 35
Chao, Yang, Sutton (b0090) 1994; 42
Zhu, Joyce (b0035) 2012; 85
Chen, Cai (b0195) 2019; 68
Wang, Yang, Li (b0130) 2020; 118
Jia, Huang, Yu (b0150) 2022; 121
GB/T 21143-2014. Uniform test method for quasi-static fracture toughness of metallic materials. Beijing: Standards Press of China 2014.
Hutchinson (b0015) 1968; 16
Rice (b0010) 1968; 35
Lu, Liu, Zhuang (b0145) 2022; 259
Bao, Wierzbicki (b0165) 2004; 46
Shih, Hutchinson (b0105) 1976; 98
ASTM E1820. Standard Test Method for Measurement of Fracture Toughness 2011.
Kumar, German (b0110) 1984
Timofeev, Blumin, Anikovsky (b0060) 1998; 75
Johnson, Cook (b0160) 1985; 21
Irwin (b0030) 1957; 24
ISO 12135. Metallic materials—unified method of test for the determination of quasistatic fracture toughness. International Standard Organization 2016.
Landes (b0055) 1995; 18
O'Dowd, Shih (b0080) 1992; 40
Ramberg, Osgood (b0185) 1943
Yang, Chao, Sutton (b0085) 1993; 45
Ductile (b0120) 1980
Huang, Cai, Han (b0180) 2022; 108
Chen, Cai (b0190) 2017; 52
Qian, Yang (b0125) 2011; 34
Yu, Cai, Yao, Bao (b0170) 2020; 109
Yao, Cai, Bao (b0200) 2016; 29
O'Dowd, Shih (b0075) 1991; 39
Zhang (b0070) 2009
Lu, Liu, Zhuang (b0140) 2021; 254
Lu (10.1016/j.engfracmech.2025.111157_b0145) 2022; 259
Huang (10.1016/j.engfracmech.2025.111157_b0180) 2022; 108
Ductile (10.1016/j.engfracmech.2025.111157_b0120) 1980
Yang (10.1016/j.engfracmech.2025.111157_b0085) 1993; 45
Jia (10.1016/j.engfracmech.2025.111157_b0150) 2022; 121
10.1016/j.engfracmech.2025.111157_b0040
Zhang (10.1016/j.engfracmech.2025.111157_b0070) 2009
Ramberg (10.1016/j.engfracmech.2025.111157_b0185) 1943
Nikishkov (10.1016/j.engfracmech.2025.111157_b0095) 2015; 138
Kumar (10.1016/j.engfracmech.2025.111157_b0110) 1984
Irwin (10.1016/j.engfracmech.2025.111157_b0030) 1957; 24
10.1016/j.engfracmech.2025.111157_b0045
Bao (10.1016/j.engfracmech.2025.111157_b0165) 2004; 46
Yang (10.1016/j.engfracmech.2025.111157_b0065) 2003; 25
O'Dowd (10.1016/j.engfracmech.2025.111157_b0080) 1992; 40
Yu (10.1016/j.engfracmech.2025.111157_b0170) 2020; 109
Wang (10.1016/j.engfracmech.2025.111157_b0130) 2020; 118
Rice (10.1016/j.engfracmech.2025.111157_b0020) 1968; 16
Chen (10.1016/j.engfracmech.2025.111157_b0195) 2019; 68
Ductile (10.1016/j.engfracmech.2025.111157_b0115) 1978
Chen (10.1016/j.engfracmech.2025.111157_b0190) 2017; 52
Johnson (10.1016/j.engfracmech.2025.111157_b0160) 1985; 21
Landes (10.1016/j.engfracmech.2025.111157_b0055) 1995; 18
Mortazavi (10.1016/j.engfracmech.2025.111157_b0155) 2023; 167
Begley (10.1016/j.engfracmech.2025.111157_b0025) 1972; 514
O'Dowd (10.1016/j.engfracmech.2025.111157_b0075) 1991; 39
Timofeev (10.1016/j.engfracmech.2025.111157_b0060) 1998; 75
Chao (10.1016/j.engfracmech.2025.111157_b0090) 1994; 42
Rice (10.1016/j.engfracmech.2025.111157_b0010) 1968; 35
Cherepanov (10.1016/j.engfracmech.2025.111157_b0005) 1967; 31
Ji (10.1016/j.engfracmech.2025.111157_b0175) 2019; 35
10.1016/j.engfracmech.2025.111157_b0050
Roy (10.1016/j.engfracmech.2025.111157_b0135) 2020; 142
Lu (10.1016/j.engfracmech.2025.111157_b0140) 2021; 254
Shih (10.1016/j.engfracmech.2025.111157_b0105) 1976; 98
Zhu (10.1016/j.engfracmech.2025.111157_b0035) 2012; 85
Qian (10.1016/j.engfracmech.2025.111157_b0125) 2011; 34
Hutchinson (10.1016/j.engfracmech.2025.111157_b0015) 1968; 16
Yao (10.1016/j.engfracmech.2025.111157_b0200) 2016; 29
Nikishkov (10.1016/j.engfracmech.2025.111157_b0100) 2016; 152
References_xml – year: 1978
  ident: b0115
  publication-title: Fracture Research Review Document
– volume: 108
  start-page: 724
  year: 2022
  end-page: 747
  ident: b0180
  article-title: Semi-analytical expressions to describe stress fields near the tip of Mode I crack under plane-strain conditions[J]
  publication-title: Appl Math Model
– volume: 138
  start-page: 92
  year: 2015
  end-page: 99
  ident: b0095
  article-title: Estimate of conservativity of elastic approach to elastic–plastic crack problems using two-parameter
  publication-title: Eng Fract Mech
– volume: 98
  start-page: 289
  year: 1976
  end-page: 295
  ident: b0105
  article-title: Fully plastic solutions and large scale yielding estimates for plane stress crack problems
  publication-title: J Eng Mater Tech
– volume: 109
  year: 2020
  ident: b0170
  article-title: Critical Ductile Fracture Criterion Based on First Principal Stress and Stress Triaxiality
  publication-title: Theor Appl Fract Mec
– volume: 118
  year: 2020
  ident: b0130
  article-title: A new method to determine elasto-plastic
  publication-title: Eng Fail Anal
– volume: 31
  start-page: 503
  year: 1967
  end-page: 512
  ident: b0005
  article-title: Crack propagation in continuous media
  publication-title: J Appl Math Mech
– volume: 45
  start-page: 1
  year: 1993
  end-page: 20
  ident: b0085
  article-title: Higher order asymptotic crack tip fields in a power-law hardening material
  publication-title: Eng Fract Mech
– volume: 21
  start-page: 31
  year: 1985
  end-page: 48
  ident: b0160
  article-title: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures
  publication-title: Eng Fract Mech
– year: 1984
  ident: b0110
  article-title: Development on elastic-plastic fracture analysis (EPRI NP-3607)
– year: 2009
  ident: b0070
  article-title: Mechanics of fracture and damage (Version 2)
– volume: 85
  start-page: 1
  year: 2012
  end-page: 46
  ident: b0035
  article-title: Review of fracture toughness (
  publication-title: Eng Fract Mech
– volume: 16
  start-page: 13
  year: 1968
  end-page: 31
  ident: b0015
  article-title: Singular behaviour at the end of a tensile crack in a hardening material
  publication-title: J Mech Phys Solids
– reference: ASTM E1820. Standard Test Method for Measurement of Fracture Toughness 2011.
– volume: 254
  year: 2021
  ident: b0140
  article-title: A unified perspective of incremental
  publication-title: Eng Fract Mech
– volume: 152
  start-page: 193
  year: 2016
  end-page: 200
  ident: b0100
  article-title: Prediction of fracture toughness dependence on constraint parameter A using the weakest link model
  publication-title: Eng Fract Mech
– volume: 18
  start-page: 1289
  year: 1995
  end-page: 1297
  ident: b0055
  article-title: The blunting line in elastic–plastic fracture[J]
  publication-title: Fatigue Fract Eng M
– reference: GB/T 21143-2014. Uniform test method for quasi-static fracture toughness of metallic materials. Beijing: Standards Press of China 2014.
– volume: 35
  start-page: 379
  year: 1968
  end-page: 386
  ident: b0010
  article-title: A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
  publication-title: J Appl Mech
– volume: 167
  year: 2023
  ident: b0155
  article-title: Artificial neural networks-based
  publication-title: Int J Fatigue
– volume: 29
  start-page: 1626
  year: 2016
  end-page: 1634
  ident: b0200
  article-title: A new approach on necking constitutive relationships of ductile materials at elevated temperatures[J]
  publication-title: Chinese J Aeronaut
– volume: 40
  start-page: 939
  year: 1992
  end-page: 963
  ident: b0080
  article-title: Family of crack-tip fields characterized by a triaxiality parameter-II
  publication-title: Fracture applications J Mech Phys Solids
– volume: 34
  start-page: 305
  year: 2011
  end-page: 320
  ident: b0125
  article-title: A hybrid approach to determine fracture resistance for Mode I and mixed-Mode I and II fracture specimens
  publication-title: Fatigue Fract Eng M
– volume: 514
  start-page: 1
  year: 1972
  end-page: 20
  ident: b0025
  article-title: The
  publication-title: ASTM STP
– volume: 121
  year: 2022
  ident: b0150
  article-title: A novel atomic
  publication-title: Theor Appl Fract Mec
– volume: 35
  start-page: 828
  year: 2019
  end-page: 838
  ident: b0175
  article-title: Finite element simulation of elastoplastic field near crack tips and results for a central cracked plate of LE-LHP material under tension
  publication-title: Acta Mech Sinica-Prc
– volume: 68
  start-page: 405
  year: 2019
  end-page: 421
  ident: b0195
  article-title: An elastoplastic energy model for predicting the deformation behaviors of various structure components
  publication-title: Appl Math Model
– volume: 52
  start-page: 664
  year: 2017
  end-page: 671
  ident: b0190
  article-title: Unified elastoplastic model based on a strain energy equivalence principle
  publication-title: Appl Math Model
– volume: 42
  start-page: 629
  year: 1994
  end-page: 647
  ident: b0090
  article-title: On the fracture of solids characterized by one or two parameters: theory and practice
  publication-title: J Mech Phys Solids
– volume: 39
  start-page: 989
  year: 1991
  end-page: 1015
  ident: b0075
  article-title: Family of crack-tip fields characterized by a triaxiality parameter-I. Structure of fields
  publication-title: J Mech Phys Solids
– volume: 75
  start-page: 945
  year: 1998
  end-page: 950
  ident: b0060
  article-title: Fracture toughness of low carbon steels and their weldments
  publication-title: Int J Pres Ves Pip
– volume: 259
  year: 2022
  ident: b0145
  article-title: The physical meanings of two incremental
  publication-title: Eng Fract Mech
– volume: 16
  start-page: 1
  year: 1968
  end-page: 12
  ident: b0020
  article-title: Plane strain deformation near a crack tip in a power-law hardening material
  publication-title: J Mech Phys Solids
– year: 1943
  ident: b0185
  article-title: Description of stress-Strain curves by three parameters
– year: 1980
  ident: b0120
  publication-title: Fracture Research Review Document
– volume: 24
  start-page: 361
  year: 1957
  end-page: 364
  ident: b0030
  article-title: Analysis of stresses and strains near the end of a crack traversing a plate
  publication-title: J Appl Mech
– reference: ISO 12135. Metallic materials—unified method of test for the determination of quasistatic fracture toughness. International Standard Organization 2016.
– volume: 25
  start-page: 6
  year: 2003
  end-page: 80
  ident: b0065
  article-title: Research on the relation between fracture toughness and sample thickness
  publication-title: J Mechl Strength
– volume: 142
  year: 2020
  ident: b0135
  article-title: A computational framework for predicting the fracture toughness of metals as function of microstructure
  publication-title: J Mech Phys Solids
– volume: 46
  start-page: 81
  year: 2004
  end-page: 98
  ident: b0165
  article-title: On fracture locus in the equivalent strain and stress triaxiality space
  publication-title: Int J Mech Sci
– volume: 109
  year: 2020
  ident: 10.1016/j.engfracmech.2025.111157_b0170
  article-title: Critical Ductile Fracture Criterion Based on First Principal Stress and Stress Triaxiality
  publication-title: Theor Appl Fract Mec
  doi: 10.1016/j.tafmec.2020.102696
– volume: 31
  start-page: 503
  issue: 31
  year: 1967
  ident: 10.1016/j.engfracmech.2025.111157_b0005
  article-title: Crack propagation in continuous media
  publication-title: J Appl Math Mech
  doi: 10.1016/0021-8928(67)90034-2
– volume: 46
  start-page: 81
  issue: 1
  year: 2004
  ident: 10.1016/j.engfracmech.2025.111157_b0165
  article-title: On fracture locus in the equivalent strain and stress triaxiality space
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2004.02.006
– year: 1978
  ident: 10.1016/j.engfracmech.2025.111157_b0115
  publication-title: Fracture Research Review Document
– volume: 121
  year: 2022
  ident: 10.1016/j.engfracmech.2025.111157_b0150
  article-title: A novel atomic J-integral concept beyond conventional fracture mechanics
  publication-title: Theor Appl Fract Mec
  doi: 10.1016/j.tafmec.2022.103531
– volume: 29
  start-page: 1626
  issue: 6
  year: 2016
  ident: 10.1016/j.engfracmech.2025.111157_b0200
  article-title: A new approach on necking constitutive relationships of ductile materials at elevated temperatures[J]
  publication-title: Chinese J Aeronaut
  doi: 10.1016/j.cja.2016.10.011
– ident: 10.1016/j.engfracmech.2025.111157_b0040
– volume: 152
  start-page: 193
  year: 2016
  ident: 10.1016/j.engfracmech.2025.111157_b0100
  article-title: Prediction of fracture toughness dependence on constraint parameter A using the weakest link model
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2015.11.004
– year: 2009
  ident: 10.1016/j.engfracmech.2025.111157_b0070
– volume: 118
  year: 2020
  ident: 10.1016/j.engfracmech.2025.111157_b0130
  article-title: A new method to determine elasto-plastic J-integral for steel pipes with longitudinal semi-elliptical surface cracks
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2020.104915
– volume: 167
  year: 2023
  ident: 10.1016/j.engfracmech.2025.111157_b0155
  article-title: Artificial neural networks-based J-integral prediction for cracked bodies under elasto-plastic deformation state-monotonic loading
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2022.107311
– volume: 35
  start-page: 828
  issue: 004
  year: 2019
  ident: 10.1016/j.engfracmech.2025.111157_b0175
  article-title: Finite element simulation of elastoplastic field near crack tips and results for a central cracked plate of LE-LHP material under tension
  publication-title: Acta Mech Sinica-Prc
  doi: 10.1007/s10409-019-00846-1
– volume: 254
  year: 2021
  ident: 10.1016/j.engfracmech.2025.111157_b0140
  article-title: A unified perspective of incremental J-integrals by the generalized Griffith framework
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2021.107907
– volume: 21
  start-page: 31
  issue: 1
  year: 1985
  ident: 10.1016/j.engfracmech.2025.111157_b0160
  article-title: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(85)90052-9
– volume: 16
  start-page: 1
  issue: 1
  year: 1968
  ident: 10.1016/j.engfracmech.2025.111157_b0020
  article-title: Plane strain deformation near a crack tip in a power-law hardening material
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(68)90013-6
– volume: 24
  start-page: 361
  year: 1957
  ident: 10.1016/j.engfracmech.2025.111157_b0030
  article-title: Analysis of stresses and strains near the end of a crack traversing a plate
  publication-title: J Appl Mech
  doi: 10.1115/1.4011547
– volume: 108
  start-page: 724
  year: 2022
  ident: 10.1016/j.engfracmech.2025.111157_b0180
  article-title: Semi-analytical expressions to describe stress fields near the tip of Mode I crack under plane-strain conditions[J]
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2022.04.026
– volume: 35
  start-page: 379
  issue: 2
  year: 1968
  ident: 10.1016/j.engfracmech.2025.111157_b0010
  article-title: A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
  publication-title: J Appl Mech
  doi: 10.1115/1.3601206
– ident: 10.1016/j.engfracmech.2025.111157_b0050
– volume: 75
  start-page: 945
  issue: 13
  year: 1998
  ident: 10.1016/j.engfracmech.2025.111157_b0060
  article-title: Fracture toughness of low carbon steels and their weldments
  publication-title: Int J Pres Ves Pip
  doi: 10.1016/S0308-0161(98)00069-6
– volume: 45
  start-page: 1
  issue: 1
  year: 1993
  ident: 10.1016/j.engfracmech.2025.111157_b0085
  article-title: Higher order asymptotic crack tip fields in a power-law hardening material
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(93)90002-A
– year: 1984
  ident: 10.1016/j.engfracmech.2025.111157_b0110
– ident: 10.1016/j.engfracmech.2025.111157_b0045
– volume: 98
  start-page: 289
  issue: 4
  year: 1976
  ident: 10.1016/j.engfracmech.2025.111157_b0105
  article-title: Fully plastic solutions and large scale yielding estimates for plane stress crack problems
  publication-title: J Eng Mater Tech
  doi: 10.1115/1.3443380
– volume: 34
  start-page: 305
  issue: 5
  year: 2011
  ident: 10.1016/j.engfracmech.2025.111157_b0125
  article-title: A hybrid approach to determine fracture resistance for Mode I and mixed-Mode I and II fracture specimens
  publication-title: Fatigue Fract Eng M
  doi: 10.1111/j.1460-2695.2010.01519.x
– year: 1943
  ident: 10.1016/j.engfracmech.2025.111157_b0185
– volume: 16
  start-page: 13
  issue: 1
  year: 1968
  ident: 10.1016/j.engfracmech.2025.111157_b0015
  article-title: Singular behaviour at the end of a tensile crack in a hardening material
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(68)90014-8
– volume: 18
  start-page: 1289
  issue: 11
  year: 1995
  ident: 10.1016/j.engfracmech.2025.111157_b0055
  article-title: The blunting line in elastic–plastic fracture[J]
  publication-title: Fatigue Fract Eng M
  doi: 10.1111/j.1460-2695.1995.tb00855.x
– volume: 514
  start-page: 1
  year: 1972
  ident: 10.1016/j.engfracmech.2025.111157_b0025
  article-title: The J-integral as a fracture criterion
  publication-title: ASTM STP
– volume: 25
  start-page: 6
  year: 2003
  ident: 10.1016/j.engfracmech.2025.111157_b0065
  article-title: Research on the relation between fracture toughness and sample thickness
  publication-title: J Mechl Strength
– volume: 259
  year: 2022
  ident: 10.1016/j.engfracmech.2025.111157_b0145
  article-title: The physical meanings of two incremental J-integral-based fracture criteria for crack growth in elastic-plastic materials
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2021.108106
– volume: 39
  start-page: 989
  year: 1991
  ident: 10.1016/j.engfracmech.2025.111157_b0075
  article-title: Family of crack-tip fields characterized by a triaxiality parameter-I. Structure of fields
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(91)90049-T
– year: 1980
  ident: 10.1016/j.engfracmech.2025.111157_b0120
  publication-title: Fracture Research Review Document
– volume: 142
  year: 2020
  ident: 10.1016/j.engfracmech.2025.111157_b0135
  article-title: A computational framework for predicting the fracture toughness of metals as function of microstructure
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2020.103955
– volume: 138
  start-page: 92
  year: 2015
  ident: 10.1016/j.engfracmech.2025.111157_b0095
  article-title: Estimate of conservativity of elastic approach to elastic–plastic crack problems using two-parameter J-A fracture criterion
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2015.03.022
– volume: 40
  start-page: 939
  year: 1992
  ident: 10.1016/j.engfracmech.2025.111157_b0080
  article-title: Family of crack-tip fields characterized by a triaxiality parameter-II
  publication-title: Fracture applications J Mech Phys Solids
  doi: 10.1016/0022-5096(92)90057-9
– volume: 42
  start-page: 629
  issue: 4
  year: 1994
  ident: 10.1016/j.engfracmech.2025.111157_b0090
  article-title: On the fracture of solids characterized by one or two parameters: theory and practice
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(94)90055-8
– volume: 85
  start-page: 1
  year: 2012
  ident: 10.1016/j.engfracmech.2025.111157_b0035
  article-title: Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2012.02.001
– volume: 52
  start-page: 664
  year: 2017
  ident: 10.1016/j.engfracmech.2025.111157_b0190
  article-title: Unified elastoplastic model based on a strain energy equivalence principle
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2017.07.042
– volume: 68
  start-page: 405
  year: 2019
  ident: 10.1016/j.engfracmech.2025.111157_b0195
  article-title: An elastoplastic energy model for predicting the deformation behaviors of various structure components
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2018.11.024
SSID ssj0007680
Score 2.4418046
Snippet •Propose a model for 3D-constrained cracks to capture J-integral–load relations.•Present models to depict stress, stress triaxiality distribution at crack...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111157
SubjectTerms Critical fracture toughness
Ductile fracture criterion
Maximum principal stress
Mode I cracks
Three-dimensional constraints
Title Evaluation of ductile fracture toughness for Mode I cracks subject to three-dimensional constraint conditions
URI https://dx.doi.org/10.1016/j.engfracmech.2025.111157
Volume 322
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5KBdGD-MT6KBG8rs1msy_wUkpLq9iThd6WzWOlQh_U7dXf7sw-bAXBg7fdkLDLZDL5JjP5BuCec43ev7WOrzx0UDKh6KAJnZU0MiqIM18VXHov42A4kU9Tf9qAXn0XhtIqK9tf2vTCWlctnUqandVsRnd8XQ-1CZWOwmERMX5KGZKWP3xu0zwQTvO6igH13oe7bY6XXbxl61TPbRGXEH5hQGin-m2P2tl3BsdwVAFG1i3_6QQadnEKhzs0gmcw739TdrNlxojBFdc6o29SfIDlVImHTBpDhMqo-hkbMb2m2_XsY6PoJAb7sByn1TqG6P5Lqg6mCTxSDYmcHk2Z3XUOk0H_tTd0qjIKjhZBmDuuNlpa37pK8yyV0kuFTC26SXHqc2E9z_AsMoajJ6ZFGJpApaEwcRBF2IxoybuA5mK5sJfATOQFkZspLi2XMlYIdqWysfVDHnuoCy0QteCSVcmWkdRpZO_JjrQTknZSSrsFj7WIkx9Tn6BV_3v41f-GX8MBvTlFOaIbaObrjb1FnJGrdqFIbdjrjp6H4y8cD9Vw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60go-D-MT6XMFr6Da7eYEXKS2ptj214C1kH5EKTaXG_-9MHlpB8OAtbLIkzE6-_WZ39huAO841Rv_WOp4SGKBkrqKFJgxW0tAoP8o8VWrpjSd-PJOPz97zBvSaszCUVlljf4XpJVrXLZ3amp23-ZzO-HYFehM6HW2HhWITtkidymvB1sPwKZ58ATIyat4UMqAO23D7neZl85dsleqFLbcmXK_EEJqsfpum1qaewQHs15yRPVSfdQgbNj-CvTUlwWNY9L9Uu9kyYyTiir87o3fSFgErqBgPoRpDksqoABobMr2iA_bs_UPRYgw-wwocWesYUvyv1DqYJv5IZSQKujRVgtcJzAb9aS926koKjnb9oHC62mhpPdtVmmeplCJ1ZWoxUopSj7tWCMOz0BiOwZh2g8D4Kg1cE_lhiM1ImMQptPJlbs-AmVD4YTdTXFouZaSQ70plI-sFPBLoDm1wG8Mlb5VgRtJkkr0ma9ZOyNpJZe023DcmTn6MfoLA_nf38_91v4GdeDoeJaPh5OkCdumOU1YnuoRWsfqwV0g7CnVdu9UnconYIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+ductile+fracture+toughness+for+Mode+I+cracks+subject+to+three-dimensional+constraint+conditions&rft.jtitle=Engineering+fracture+mechanics&rft.au=Yu%2C+Simiao&rft.au=Cai%2C+Lixun&rft.au=Chen%2C+Hui&rft.date=2025-06-12&rft.issn=0013-7944&rft.volume=322&rft.spage=111157&rft_id=info:doi/10.1016%2Fj.engfracmech.2025.111157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engfracmech_2025_111157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon