Evaluation of ductile fracture toughness for Mode I cracks subject to three-dimensional constraint conditions
•Propose a model for 3D-constrained cracks to capture J-integral–load relations.•Present models to depict stress, stress triaxiality distribution at crack tips.•Offer a critical fracture criterion for ductile materials under high constraint.•Develop a new method to quantitatively evaluate fracture t...
Saved in:
Published in | Engineering fracture mechanics Vol. 322; p. 111157 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
12.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-7944 |
DOI | 10.1016/j.engfracmech.2025.111157 |
Cover
Loading…
Abstract | •Propose a model for 3D-constrained cracks to capture J-integral–load relations.•Present models to depict stress, stress triaxiality distribution at crack tips.•Offer a critical fracture criterion for ductile materials under high constraint.•Develop a new method to quantitatively evaluate fracture toughness.
Evaluating the properties related to the fracture mechanics and behavior of cracked structures is pivotal in structural integrity analysis. Accurate theoretical predictions and experimental methods for determining fracture toughness are significant in advancing the fracture strength theory of ductile materials and addressing fracture-related issues in such structures. This study developed models that reflect the dimensionless relationships among load, J-integral, maximum principal stress, and stress triaxiality for Mode I cracked specimens under three-dimensional constraints. These models are developed for ductile materials conforming to the Ramberg–Osgood law based on energy density equivalence and finite element analysis. Combined with the critical fracture criterion under high constraints, an effective method for quantitatively evaluating the fracture toughness of Mode I cracks under three-dimensional constraints was established. Notably, the trends observed in the derived critical J-integral vs. thickness relations align with conventional fracture test results. This research can aid in the accurate predictions of the fracture behavior for ductile structural materials under differing levels of crack tip constraint. |
---|---|
AbstractList | •Propose a model for 3D-constrained cracks to capture J-integral–load relations.•Present models to depict stress, stress triaxiality distribution at crack tips.•Offer a critical fracture criterion for ductile materials under high constraint.•Develop a new method to quantitatively evaluate fracture toughness.
Evaluating the properties related to the fracture mechanics and behavior of cracked structures is pivotal in structural integrity analysis. Accurate theoretical predictions and experimental methods for determining fracture toughness are significant in advancing the fracture strength theory of ductile materials and addressing fracture-related issues in such structures. This study developed models that reflect the dimensionless relationships among load, J-integral, maximum principal stress, and stress triaxiality for Mode I cracked specimens under three-dimensional constraints. These models are developed for ductile materials conforming to the Ramberg–Osgood law based on energy density equivalence and finite element analysis. Combined with the critical fracture criterion under high constraints, an effective method for quantitatively evaluating the fracture toughness of Mode I cracks under three-dimensional constraints was established. Notably, the trends observed in the derived critical J-integral vs. thickness relations align with conventional fracture test results. This research can aid in the accurate predictions of the fracture behavior for ductile structural materials under differing levels of crack tip constraint. |
ArticleNumber | 111157 |
Author | Cai, Lixun Chen, Hui Yu, Simiao |
Author_xml | – sequence: 1 givenname: Simiao orcidid: 0000-0002-3129-2400 surname: Yu fullname: Yu, Simiao organization: School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China – sequence: 2 givenname: Lixun surname: Cai fullname: Cai, Lixun email: lix_cai@263.net organization: Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 610031, PR China – sequence: 3 givenname: Hui surname: Chen fullname: Chen, Hui organization: School of Civil and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China |
BookMark | eNqNkM1OwzAMx3MYEtvgHcIDtCRp-nVE04BJQ1zgHGWJu6W0CUrSSbw9qcZhR3yx5Y-_7d8KLayzgNADJTkltHrsc7DHzks1gjrljLAyp8nKeoGWhNAiq1vOb9EqhJ4QUlcNWaJxe5bDJKNxFrsO60lFMwCeVeLkAUc3HU8WQsCd8_jNacA7rFL1K-AwHXpQMfXgePIAmTYj2JCk5ICVsyF6aWycQ23mDeEO3XRyCHD_59fo83n7sXnN9u8vu83TPlOsqmNGlVYcSqAHRTrJeSEZl0Ar3sqSMCgKTbpGa9Iyrlhd6-oga6bbqmlSmnNarFF70VXeheChE9_ejNL_CErEzEr04oqVmFmJC6s0u7nMQjrwbMCLoAxYBdr49K3QzvxD5RfXin8q |
Cites_doi | 10.1016/j.tafmec.2020.102696 10.1016/0021-8928(67)90034-2 10.1016/j.ijmecsci.2004.02.006 10.1016/j.tafmec.2022.103531 10.1016/j.cja.2016.10.011 10.1016/j.engfracmech.2015.11.004 10.1016/j.engfailanal.2020.104915 10.1016/j.ijfatigue.2022.107311 10.1007/s10409-019-00846-1 10.1016/j.engfracmech.2021.107907 10.1016/0013-7944(85)90052-9 10.1016/0022-5096(68)90013-6 10.1115/1.4011547 10.1016/j.apm.2022.04.026 10.1115/1.3601206 10.1016/S0308-0161(98)00069-6 10.1016/0013-7944(93)90002-A 10.1115/1.3443380 10.1111/j.1460-2695.2010.01519.x 10.1016/0022-5096(68)90014-8 10.1111/j.1460-2695.1995.tb00855.x 10.1016/j.engfracmech.2021.108106 10.1016/0022-5096(91)90049-T 10.1016/j.jmps.2020.103955 10.1016/j.engfracmech.2015.03.022 10.1016/0022-5096(92)90057-9 10.1016/0022-5096(94)90055-8 10.1016/j.engfracmech.2012.02.001 10.1016/j.apm.2017.07.042 10.1016/j.apm.2018.11.024 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engfracmech.2025.111157 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_engfracmech_2025_111157 S0013794425003583 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAQXK AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ADIYS ADMUD ADNMO AGQPQ AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET VH1 WUQ ZY4 |
ID | FETCH-LOGICAL-c267t-1cdc4e5e1bc0fa443a24ae1649a502e33d0f8dd0924c277d6ba72d9688f8d4413 |
IEDL.DBID | .~1 |
ISSN | 0013-7944 |
IngestDate | Tue Jul 01 04:56:29 EDT 2025 Sat Jun 14 16:51:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ductile fracture criterion Mode I cracks Maximum principal stress Three-dimensional constraints Critical fracture toughness |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c267t-1cdc4e5e1bc0fa443a24ae1649a502e33d0f8dd0924c277d6ba72d9688f8d4413 |
ORCID | 0000-0002-3129-2400 |
ParticipantIDs | crossref_primary_10_1016_j_engfracmech_2025_111157 elsevier_sciencedirect_doi_10_1016_j_engfracmech_2025_111157 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-06-12 |
PublicationDateYYYYMMDD | 2025-06-12 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-12 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | Engineering fracture mechanics |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Roy, Zhou (b0135) 2020; 142 Rice, Rosengren (b0020) 1968; 16 Cherepanov (b0005) 1967; 31 Nikishkov (b0095) 2015; 138 Begley, Landes (b0025) 1972; 514 Nikishkov (b0100) 2016; 152 Mortazavi, Ince (b0155) 2023; 167 Yang, Zhang (b0065) 2003; 25 Ductile (b0115) 1978 Ji, Zhu (b0175) 2019; 35 Chao, Yang, Sutton (b0090) 1994; 42 Zhu, Joyce (b0035) 2012; 85 Chen, Cai (b0195) 2019; 68 Wang, Yang, Li (b0130) 2020; 118 Jia, Huang, Yu (b0150) 2022; 121 GB/T 21143-2014. Uniform test method for quasi-static fracture toughness of metallic materials. Beijing: Standards Press of China 2014. Hutchinson (b0015) 1968; 16 Rice (b0010) 1968; 35 Lu, Liu, Zhuang (b0145) 2022; 259 Bao, Wierzbicki (b0165) 2004; 46 Shih, Hutchinson (b0105) 1976; 98 ASTM E1820. Standard Test Method for Measurement of Fracture Toughness 2011. Kumar, German (b0110) 1984 Timofeev, Blumin, Anikovsky (b0060) 1998; 75 Johnson, Cook (b0160) 1985; 21 Irwin (b0030) 1957; 24 ISO 12135. Metallic materials—unified method of test for the determination of quasistatic fracture toughness. International Standard Organization 2016. Landes (b0055) 1995; 18 O'Dowd, Shih (b0080) 1992; 40 Ramberg, Osgood (b0185) 1943 Yang, Chao, Sutton (b0085) 1993; 45 Ductile (b0120) 1980 Huang, Cai, Han (b0180) 2022; 108 Chen, Cai (b0190) 2017; 52 Qian, Yang (b0125) 2011; 34 Yu, Cai, Yao, Bao (b0170) 2020; 109 Yao, Cai, Bao (b0200) 2016; 29 O'Dowd, Shih (b0075) 1991; 39 Zhang (b0070) 2009 Lu, Liu, Zhuang (b0140) 2021; 254 Lu (10.1016/j.engfracmech.2025.111157_b0145) 2022; 259 Huang (10.1016/j.engfracmech.2025.111157_b0180) 2022; 108 Ductile (10.1016/j.engfracmech.2025.111157_b0120) 1980 Yang (10.1016/j.engfracmech.2025.111157_b0085) 1993; 45 Jia (10.1016/j.engfracmech.2025.111157_b0150) 2022; 121 10.1016/j.engfracmech.2025.111157_b0040 Zhang (10.1016/j.engfracmech.2025.111157_b0070) 2009 Ramberg (10.1016/j.engfracmech.2025.111157_b0185) 1943 Nikishkov (10.1016/j.engfracmech.2025.111157_b0095) 2015; 138 Kumar (10.1016/j.engfracmech.2025.111157_b0110) 1984 Irwin (10.1016/j.engfracmech.2025.111157_b0030) 1957; 24 10.1016/j.engfracmech.2025.111157_b0045 Bao (10.1016/j.engfracmech.2025.111157_b0165) 2004; 46 Yang (10.1016/j.engfracmech.2025.111157_b0065) 2003; 25 O'Dowd (10.1016/j.engfracmech.2025.111157_b0080) 1992; 40 Yu (10.1016/j.engfracmech.2025.111157_b0170) 2020; 109 Wang (10.1016/j.engfracmech.2025.111157_b0130) 2020; 118 Rice (10.1016/j.engfracmech.2025.111157_b0020) 1968; 16 Chen (10.1016/j.engfracmech.2025.111157_b0195) 2019; 68 Ductile (10.1016/j.engfracmech.2025.111157_b0115) 1978 Chen (10.1016/j.engfracmech.2025.111157_b0190) 2017; 52 Johnson (10.1016/j.engfracmech.2025.111157_b0160) 1985; 21 Landes (10.1016/j.engfracmech.2025.111157_b0055) 1995; 18 Mortazavi (10.1016/j.engfracmech.2025.111157_b0155) 2023; 167 Begley (10.1016/j.engfracmech.2025.111157_b0025) 1972; 514 O'Dowd (10.1016/j.engfracmech.2025.111157_b0075) 1991; 39 Timofeev (10.1016/j.engfracmech.2025.111157_b0060) 1998; 75 Chao (10.1016/j.engfracmech.2025.111157_b0090) 1994; 42 Rice (10.1016/j.engfracmech.2025.111157_b0010) 1968; 35 Cherepanov (10.1016/j.engfracmech.2025.111157_b0005) 1967; 31 Ji (10.1016/j.engfracmech.2025.111157_b0175) 2019; 35 10.1016/j.engfracmech.2025.111157_b0050 Roy (10.1016/j.engfracmech.2025.111157_b0135) 2020; 142 Lu (10.1016/j.engfracmech.2025.111157_b0140) 2021; 254 Shih (10.1016/j.engfracmech.2025.111157_b0105) 1976; 98 Zhu (10.1016/j.engfracmech.2025.111157_b0035) 2012; 85 Qian (10.1016/j.engfracmech.2025.111157_b0125) 2011; 34 Hutchinson (10.1016/j.engfracmech.2025.111157_b0015) 1968; 16 Yao (10.1016/j.engfracmech.2025.111157_b0200) 2016; 29 Nikishkov (10.1016/j.engfracmech.2025.111157_b0100) 2016; 152 |
References_xml | – year: 1978 ident: b0115 publication-title: Fracture Research Review Document – volume: 108 start-page: 724 year: 2022 end-page: 747 ident: b0180 article-title: Semi-analytical expressions to describe stress fields near the tip of Mode I crack under plane-strain conditions[J] publication-title: Appl Math Model – volume: 138 start-page: 92 year: 2015 end-page: 99 ident: b0095 article-title: Estimate of conservativity of elastic approach to elastic–plastic crack problems using two-parameter publication-title: Eng Fract Mech – volume: 98 start-page: 289 year: 1976 end-page: 295 ident: b0105 article-title: Fully plastic solutions and large scale yielding estimates for plane stress crack problems publication-title: J Eng Mater Tech – volume: 109 year: 2020 ident: b0170 article-title: Critical Ductile Fracture Criterion Based on First Principal Stress and Stress Triaxiality publication-title: Theor Appl Fract Mec – volume: 118 year: 2020 ident: b0130 article-title: A new method to determine elasto-plastic publication-title: Eng Fail Anal – volume: 31 start-page: 503 year: 1967 end-page: 512 ident: b0005 article-title: Crack propagation in continuous media publication-title: J Appl Math Mech – volume: 45 start-page: 1 year: 1993 end-page: 20 ident: b0085 article-title: Higher order asymptotic crack tip fields in a power-law hardening material publication-title: Eng Fract Mech – volume: 21 start-page: 31 year: 1985 end-page: 48 ident: b0160 article-title: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures publication-title: Eng Fract Mech – year: 1984 ident: b0110 article-title: Development on elastic-plastic fracture analysis (EPRI NP-3607) – year: 2009 ident: b0070 article-title: Mechanics of fracture and damage (Version 2) – volume: 85 start-page: 1 year: 2012 end-page: 46 ident: b0035 article-title: Review of fracture toughness ( publication-title: Eng Fract Mech – volume: 16 start-page: 13 year: 1968 end-page: 31 ident: b0015 article-title: Singular behaviour at the end of a tensile crack in a hardening material publication-title: J Mech Phys Solids – reference: ASTM E1820. Standard Test Method for Measurement of Fracture Toughness 2011. – volume: 254 year: 2021 ident: b0140 article-title: A unified perspective of incremental publication-title: Eng Fract Mech – volume: 152 start-page: 193 year: 2016 end-page: 200 ident: b0100 article-title: Prediction of fracture toughness dependence on constraint parameter A using the weakest link model publication-title: Eng Fract Mech – volume: 18 start-page: 1289 year: 1995 end-page: 1297 ident: b0055 article-title: The blunting line in elastic–plastic fracture[J] publication-title: Fatigue Fract Eng M – reference: GB/T 21143-2014. Uniform test method for quasi-static fracture toughness of metallic materials. Beijing: Standards Press of China 2014. – volume: 35 start-page: 379 year: 1968 end-page: 386 ident: b0010 article-title: A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks publication-title: J Appl Mech – volume: 167 year: 2023 ident: b0155 article-title: Artificial neural networks-based publication-title: Int J Fatigue – volume: 29 start-page: 1626 year: 2016 end-page: 1634 ident: b0200 article-title: A new approach on necking constitutive relationships of ductile materials at elevated temperatures[J] publication-title: Chinese J Aeronaut – volume: 40 start-page: 939 year: 1992 end-page: 963 ident: b0080 article-title: Family of crack-tip fields characterized by a triaxiality parameter-II publication-title: Fracture applications J Mech Phys Solids – volume: 34 start-page: 305 year: 2011 end-page: 320 ident: b0125 article-title: A hybrid approach to determine fracture resistance for Mode I and mixed-Mode I and II fracture specimens publication-title: Fatigue Fract Eng M – volume: 514 start-page: 1 year: 1972 end-page: 20 ident: b0025 article-title: The publication-title: ASTM STP – volume: 121 year: 2022 ident: b0150 article-title: A novel atomic publication-title: Theor Appl Fract Mec – volume: 35 start-page: 828 year: 2019 end-page: 838 ident: b0175 article-title: Finite element simulation of elastoplastic field near crack tips and results for a central cracked plate of LE-LHP material under tension publication-title: Acta Mech Sinica-Prc – volume: 68 start-page: 405 year: 2019 end-page: 421 ident: b0195 article-title: An elastoplastic energy model for predicting the deformation behaviors of various structure components publication-title: Appl Math Model – volume: 52 start-page: 664 year: 2017 end-page: 671 ident: b0190 article-title: Unified elastoplastic model based on a strain energy equivalence principle publication-title: Appl Math Model – volume: 42 start-page: 629 year: 1994 end-page: 647 ident: b0090 article-title: On the fracture of solids characterized by one or two parameters: theory and practice publication-title: J Mech Phys Solids – volume: 39 start-page: 989 year: 1991 end-page: 1015 ident: b0075 article-title: Family of crack-tip fields characterized by a triaxiality parameter-I. Structure of fields publication-title: J Mech Phys Solids – volume: 75 start-page: 945 year: 1998 end-page: 950 ident: b0060 article-title: Fracture toughness of low carbon steels and their weldments publication-title: Int J Pres Ves Pip – volume: 259 year: 2022 ident: b0145 article-title: The physical meanings of two incremental publication-title: Eng Fract Mech – volume: 16 start-page: 1 year: 1968 end-page: 12 ident: b0020 article-title: Plane strain deformation near a crack tip in a power-law hardening material publication-title: J Mech Phys Solids – year: 1943 ident: b0185 article-title: Description of stress-Strain curves by three parameters – year: 1980 ident: b0120 publication-title: Fracture Research Review Document – volume: 24 start-page: 361 year: 1957 end-page: 364 ident: b0030 article-title: Analysis of stresses and strains near the end of a crack traversing a plate publication-title: J Appl Mech – reference: ISO 12135. Metallic materials—unified method of test for the determination of quasistatic fracture toughness. International Standard Organization 2016. – volume: 25 start-page: 6 year: 2003 end-page: 80 ident: b0065 article-title: Research on the relation between fracture toughness and sample thickness publication-title: J Mechl Strength – volume: 142 year: 2020 ident: b0135 article-title: A computational framework for predicting the fracture toughness of metals as function of microstructure publication-title: J Mech Phys Solids – volume: 46 start-page: 81 year: 2004 end-page: 98 ident: b0165 article-title: On fracture locus in the equivalent strain and stress triaxiality space publication-title: Int J Mech Sci – volume: 109 year: 2020 ident: 10.1016/j.engfracmech.2025.111157_b0170 article-title: Critical Ductile Fracture Criterion Based on First Principal Stress and Stress Triaxiality publication-title: Theor Appl Fract Mec doi: 10.1016/j.tafmec.2020.102696 – volume: 31 start-page: 503 issue: 31 year: 1967 ident: 10.1016/j.engfracmech.2025.111157_b0005 article-title: Crack propagation in continuous media publication-title: J Appl Math Mech doi: 10.1016/0021-8928(67)90034-2 – volume: 46 start-page: 81 issue: 1 year: 2004 ident: 10.1016/j.engfracmech.2025.111157_b0165 article-title: On fracture locus in the equivalent strain and stress triaxiality space publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2004.02.006 – year: 1978 ident: 10.1016/j.engfracmech.2025.111157_b0115 publication-title: Fracture Research Review Document – volume: 121 year: 2022 ident: 10.1016/j.engfracmech.2025.111157_b0150 article-title: A novel atomic J-integral concept beyond conventional fracture mechanics publication-title: Theor Appl Fract Mec doi: 10.1016/j.tafmec.2022.103531 – volume: 29 start-page: 1626 issue: 6 year: 2016 ident: 10.1016/j.engfracmech.2025.111157_b0200 article-title: A new approach on necking constitutive relationships of ductile materials at elevated temperatures[J] publication-title: Chinese J Aeronaut doi: 10.1016/j.cja.2016.10.011 – ident: 10.1016/j.engfracmech.2025.111157_b0040 – volume: 152 start-page: 193 year: 2016 ident: 10.1016/j.engfracmech.2025.111157_b0100 article-title: Prediction of fracture toughness dependence on constraint parameter A using the weakest link model publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2015.11.004 – year: 2009 ident: 10.1016/j.engfracmech.2025.111157_b0070 – volume: 118 year: 2020 ident: 10.1016/j.engfracmech.2025.111157_b0130 article-title: A new method to determine elasto-plastic J-integral for steel pipes with longitudinal semi-elliptical surface cracks publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2020.104915 – volume: 167 year: 2023 ident: 10.1016/j.engfracmech.2025.111157_b0155 article-title: Artificial neural networks-based J-integral prediction for cracked bodies under elasto-plastic deformation state-monotonic loading publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2022.107311 – volume: 35 start-page: 828 issue: 004 year: 2019 ident: 10.1016/j.engfracmech.2025.111157_b0175 article-title: Finite element simulation of elastoplastic field near crack tips and results for a central cracked plate of LE-LHP material under tension publication-title: Acta Mech Sinica-Prc doi: 10.1007/s10409-019-00846-1 – volume: 254 year: 2021 ident: 10.1016/j.engfracmech.2025.111157_b0140 article-title: A unified perspective of incremental J-integrals by the generalized Griffith framework publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2021.107907 – volume: 21 start-page: 31 issue: 1 year: 1985 ident: 10.1016/j.engfracmech.2025.111157_b0160 article-title: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures publication-title: Eng Fract Mech doi: 10.1016/0013-7944(85)90052-9 – volume: 16 start-page: 1 issue: 1 year: 1968 ident: 10.1016/j.engfracmech.2025.111157_b0020 article-title: Plane strain deformation near a crack tip in a power-law hardening material publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(68)90013-6 – volume: 24 start-page: 361 year: 1957 ident: 10.1016/j.engfracmech.2025.111157_b0030 article-title: Analysis of stresses and strains near the end of a crack traversing a plate publication-title: J Appl Mech doi: 10.1115/1.4011547 – volume: 108 start-page: 724 year: 2022 ident: 10.1016/j.engfracmech.2025.111157_b0180 article-title: Semi-analytical expressions to describe stress fields near the tip of Mode I crack under plane-strain conditions[J] publication-title: Appl Math Model doi: 10.1016/j.apm.2022.04.026 – volume: 35 start-page: 379 issue: 2 year: 1968 ident: 10.1016/j.engfracmech.2025.111157_b0010 article-title: A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks publication-title: J Appl Mech doi: 10.1115/1.3601206 – ident: 10.1016/j.engfracmech.2025.111157_b0050 – volume: 75 start-page: 945 issue: 13 year: 1998 ident: 10.1016/j.engfracmech.2025.111157_b0060 article-title: Fracture toughness of low carbon steels and their weldments publication-title: Int J Pres Ves Pip doi: 10.1016/S0308-0161(98)00069-6 – volume: 45 start-page: 1 issue: 1 year: 1993 ident: 10.1016/j.engfracmech.2025.111157_b0085 article-title: Higher order asymptotic crack tip fields in a power-law hardening material publication-title: Eng Fract Mech doi: 10.1016/0013-7944(93)90002-A – year: 1984 ident: 10.1016/j.engfracmech.2025.111157_b0110 – ident: 10.1016/j.engfracmech.2025.111157_b0045 – volume: 98 start-page: 289 issue: 4 year: 1976 ident: 10.1016/j.engfracmech.2025.111157_b0105 article-title: Fully plastic solutions and large scale yielding estimates for plane stress crack problems publication-title: J Eng Mater Tech doi: 10.1115/1.3443380 – volume: 34 start-page: 305 issue: 5 year: 2011 ident: 10.1016/j.engfracmech.2025.111157_b0125 article-title: A hybrid approach to determine fracture resistance for Mode I and mixed-Mode I and II fracture specimens publication-title: Fatigue Fract Eng M doi: 10.1111/j.1460-2695.2010.01519.x – year: 1943 ident: 10.1016/j.engfracmech.2025.111157_b0185 – volume: 16 start-page: 13 issue: 1 year: 1968 ident: 10.1016/j.engfracmech.2025.111157_b0015 article-title: Singular behaviour at the end of a tensile crack in a hardening material publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(68)90014-8 – volume: 18 start-page: 1289 issue: 11 year: 1995 ident: 10.1016/j.engfracmech.2025.111157_b0055 article-title: The blunting line in elastic–plastic fracture[J] publication-title: Fatigue Fract Eng M doi: 10.1111/j.1460-2695.1995.tb00855.x – volume: 514 start-page: 1 year: 1972 ident: 10.1016/j.engfracmech.2025.111157_b0025 article-title: The J-integral as a fracture criterion publication-title: ASTM STP – volume: 25 start-page: 6 year: 2003 ident: 10.1016/j.engfracmech.2025.111157_b0065 article-title: Research on the relation between fracture toughness and sample thickness publication-title: J Mechl Strength – volume: 259 year: 2022 ident: 10.1016/j.engfracmech.2025.111157_b0145 article-title: The physical meanings of two incremental J-integral-based fracture criteria for crack growth in elastic-plastic materials publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2021.108106 – volume: 39 start-page: 989 year: 1991 ident: 10.1016/j.engfracmech.2025.111157_b0075 article-title: Family of crack-tip fields characterized by a triaxiality parameter-I. Structure of fields publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(91)90049-T – year: 1980 ident: 10.1016/j.engfracmech.2025.111157_b0120 publication-title: Fracture Research Review Document – volume: 142 year: 2020 ident: 10.1016/j.engfracmech.2025.111157_b0135 article-title: A computational framework for predicting the fracture toughness of metals as function of microstructure publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2020.103955 – volume: 138 start-page: 92 year: 2015 ident: 10.1016/j.engfracmech.2025.111157_b0095 article-title: Estimate of conservativity of elastic approach to elastic–plastic crack problems using two-parameter J-A fracture criterion publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2015.03.022 – volume: 40 start-page: 939 year: 1992 ident: 10.1016/j.engfracmech.2025.111157_b0080 article-title: Family of crack-tip fields characterized by a triaxiality parameter-II publication-title: Fracture applications J Mech Phys Solids doi: 10.1016/0022-5096(92)90057-9 – volume: 42 start-page: 629 issue: 4 year: 1994 ident: 10.1016/j.engfracmech.2025.111157_b0090 article-title: On the fracture of solids characterized by one or two parameters: theory and practice publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(94)90055-8 – volume: 85 start-page: 1 year: 2012 ident: 10.1016/j.engfracmech.2025.111157_b0035 article-title: Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2012.02.001 – volume: 52 start-page: 664 year: 2017 ident: 10.1016/j.engfracmech.2025.111157_b0190 article-title: Unified elastoplastic model based on a strain energy equivalence principle publication-title: Appl Math Model doi: 10.1016/j.apm.2017.07.042 – volume: 68 start-page: 405 year: 2019 ident: 10.1016/j.engfracmech.2025.111157_b0195 article-title: An elastoplastic energy model for predicting the deformation behaviors of various structure components publication-title: Appl Math Model doi: 10.1016/j.apm.2018.11.024 |
SSID | ssj0007680 |
Score | 2.4418046 |
Snippet | •Propose a model for 3D-constrained cracks to capture J-integral–load relations.•Present models to depict stress, stress triaxiality distribution at crack... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 111157 |
SubjectTerms | Critical fracture toughness Ductile fracture criterion Maximum principal stress Mode I cracks Three-dimensional constraints |
Title | Evaluation of ductile fracture toughness for Mode I cracks subject to three-dimensional constraint conditions |
URI | https://dx.doi.org/10.1016/j.engfracmech.2025.111157 |
Volume | 322 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5KBdGD-MT6KBG8rs1msy_wUkpLq9iThd6WzWOlQh_U7dXf7sw-bAXBg7fdkLDLZDL5JjP5BuCec43ev7WOrzx0UDKh6KAJnZU0MiqIM18VXHov42A4kU9Tf9qAXn0XhtIqK9tf2vTCWlctnUqandVsRnd8XQ-1CZWOwmERMX5KGZKWP3xu0zwQTvO6igH13oe7bY6XXbxl61TPbRGXEH5hQGin-m2P2tl3BsdwVAFG1i3_6QQadnEKhzs0gmcw739TdrNlxojBFdc6o29SfIDlVImHTBpDhMqo-hkbMb2m2_XsY6PoJAb7sByn1TqG6P5Lqg6mCTxSDYmcHk2Z3XUOk0H_tTd0qjIKjhZBmDuuNlpa37pK8yyV0kuFTC26SXHqc2E9z_AsMoajJ6ZFGJpApaEwcRBF2IxoybuA5mK5sJfATOQFkZspLi2XMlYIdqWysfVDHnuoCy0QteCSVcmWkdRpZO_JjrQTknZSSrsFj7WIkx9Tn6BV_3v41f-GX8MBvTlFOaIbaObrjb1FnJGrdqFIbdjrjp6H4y8cD9Vw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60go-D-MT6XMFr6Da7eYEXKS2ptj214C1kH5EKTaXG_-9MHlpB8OAtbLIkzE6-_WZ39huAO841Rv_WOp4SGKBkrqKFJgxW0tAoP8o8VWrpjSd-PJOPz97zBvSaszCUVlljf4XpJVrXLZ3amp23-ZzO-HYFehM6HW2HhWITtkidymvB1sPwKZ58ATIyat4UMqAO23D7neZl85dsleqFLbcmXK_EEJqsfpum1qaewQHs15yRPVSfdQgbNj-CvTUlwWNY9L9Uu9kyYyTiir87o3fSFgErqBgPoRpDksqoABobMr2iA_bs_UPRYgw-wwocWesYUvyv1DqYJv5IZSQKujRVgtcJzAb9aS926koKjnb9oHC62mhpPdtVmmeplCJ1ZWoxUopSj7tWCMOz0BiOwZh2g8D4Kg1cE_lhiM1ImMQptPJlbs-AmVD4YTdTXFouZaSQ70plI-sFPBLoDm1wG8Mlb5VgRtJkkr0ma9ZOyNpJZe023DcmTn6MfoLA_nf38_91v4GdeDoeJaPh5OkCdumOU1YnuoRWsfqwV0g7CnVdu9UnconYIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+ductile+fracture+toughness+for+Mode+I+cracks+subject+to+three-dimensional+constraint+conditions&rft.jtitle=Engineering+fracture+mechanics&rft.au=Yu%2C+Simiao&rft.au=Cai%2C+Lixun&rft.au=Chen%2C+Hui&rft.date=2025-06-12&rft.issn=0013-7944&rft.volume=322&rft.spage=111157&rft_id=info:doi/10.1016%2Fj.engfracmech.2025.111157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engfracmech_2025_111157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon |