Enhancing pressure consistency and transferability of structure-based coarse-graining

Coarse-graining, which models molecules with coarse-grained (CG) beads, allows molecular dynamics simulations to be applied to systems with large length and time scales while preserving the essential molecular structure. However, CG models generally have insufficient representability and transferabi...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 25; no. 3; pp. 2256 - 2264
Main Authors Tang, Jiahao, Kobayashi, Takayuki, Zhang, Hedong, Fukuzawa, Kenji, Itoh, Shintaro
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 18.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coarse-graining, which models molecules with coarse-grained (CG) beads, allows molecular dynamics simulations to be applied to systems with large length and time scales while preserving the essential molecular structure. However, CG models generally have insufficient representability and transferability. A commonly used method to resolve this problem is multi-state iterative Boltzmann inversion (MS-IBI) with pressure correction, which matches both the structural properties and pressures at different thermodynamic states between CG and all-atom (AA) simulations. Nevertheless, this method is usually effective only in a narrow pressure range. In this paper, we propose a modified CG scheme to overcome this limitation. We find that the fundamental reason for this limitation is that CG beads at close distances are ellipsoids rather than isotropically compressed spheres, as described in conventional CG models. Hence, we propose a method to compensate for such differences by slightly modifying the radial distribution functions (RDFs) derived from AA simulations and using the modified RDFs as references for pressure-corrected MS-IBI. We also propose a method to determine the initial non-bonded potential using both the target RDF and pressure. Using n -dodecane as a case study, we demonstrate that the CG model developed using our scheme reproduces the RDFs and pressures over a wide range of pressure states, including three reference low-pressure states and two test high-pressure states. The proposed scheme allows for accurate CG simulations of systems in which pressure or density varies with time and/or position. A modified coarse-graining scheme, which compensates for the compression of coarse-grained beads at close distances in conventional models, enhances pressure consistency and transferability.
AbstractList Coarse-graining, which models molecules with coarse-grained (CG) beads, allows molecular dynamics simulations to be applied to systems with large length and time scales while preserving the essential molecular structure. However, CG models generally have insufficient representability and transferability. A commonly used method to resolve this problem is multi-state iterative Boltzmann inversion (MS-IBI) with pressure correction, which matches both the structural properties and pressures at different thermodynamic states between CG and all-atom (AA) simulations. Nevertheless, this method is usually effective only in a narrow pressure range. In this paper, we propose a modified CG scheme to overcome this limitation. We find that the fundamental reason for this limitation is that CG beads at close distances are ellipsoids rather than isotropically compressed spheres, as described in conventional CG models. Hence, we propose a method to compensate for such differences by slightly modifying the radial distribution functions (RDFs) derived from AA simulations and using the modified RDFs as references for pressure-corrected MS-IBI. We also propose a method to determine the initial non-bonded potential using both the target RDF and pressure. Using -dodecane as a case study, we demonstrate that the CG model developed using our scheme reproduces the RDFs and pressures over a wide range of pressure states, including three reference low-pressure states and two test high-pressure states. The proposed scheme allows for accurate CG simulations of systems in which pressure or density varies with time and/or position.
Coarse-graining, which models molecules with coarse-grained (CG) beads, allows molecular dynamics simulations to be applied to systems with large length and time scales while preserving the essential molecular structure. However, CG models generally have insufficient representability and transferability. A commonly used method to resolve this problem is multi-state iterative Boltzmann inversion (MS-IBI) with pressure correction, which matches both the structural properties and pressures at different thermodynamic states between CG and all-atom (AA) simulations. Nevertheless, this method is usually effective only in a narrow pressure range. In this paper, we propose a modified CG scheme to overcome this limitation. We find that the fundamental reason for this limitation is that CG beads at close distances are ellipsoids rather than isotropically compressed spheres, as described in conventional CG models. Hence, we propose a method to compensate for such differences by slightly modifying the radial distribution functions (RDFs) derived from AA simulations and using the modified RDFs as references for pressure-corrected MS-IBI. We also propose a method to determine the initial non-bonded potential using both the target RDF and pressure. Using n -dodecane as a case study, we demonstrate that the CG model developed using our scheme reproduces the RDFs and pressures over a wide range of pressure states, including three reference low-pressure states and two test high-pressure states. The proposed scheme allows for accurate CG simulations of systems in which pressure or density varies with time and/or position.
Coarse-graining, which models molecules with coarse-grained (CG) beads, allows molecular dynamics simulations to be applied to systems with large length and time scales while preserving the essential molecular structure. However, CG models generally have insufficient representability and transferability. A commonly used method to resolve this problem is multi-state iterative Boltzmann inversion (MS-IBI) with pressure correction, which matches both the structural properties and pressures at different thermodynamic states between CG and all-atom (AA) simulations. Nevertheless, this method is usually effective only in a narrow pressure range. In this paper, we propose a modified CG scheme to overcome this limitation. We find that the fundamental reason for this limitation is that CG beads at close distances are ellipsoids rather than isotropically compressed spheres, as described in conventional CG models. Hence, we propose a method to compensate for such differences by slightly modifying the radial distribution functions (RDFs) derived from AA simulations and using the modified RDFs as references for pressure-corrected MS-IBI. We also propose a method to determine the initial non-bonded potential using both the target RDF and pressure. Using n -dodecane as a case study, we demonstrate that the CG model developed using our scheme reproduces the RDFs and pressures over a wide range of pressure states, including three reference low-pressure states and two test high-pressure states. The proposed scheme allows for accurate CG simulations of systems in which pressure or density varies with time and/or position. A modified coarse-graining scheme, which compensates for the compression of coarse-grained beads at close distances in conventional models, enhances pressure consistency and transferability.
Coarse-graining, which models molecules with coarse-grained (CG) beads, allows molecular dynamics simulations to be applied to systems with large length and time scales while preserving the essential molecular structure. However, CG models generally have insufficient representability and transferability. A commonly used method to resolve this problem is multi-state iterative Boltzmann inversion (MS-IBI) with pressure correction, which matches both the structural properties and pressures at different thermodynamic states between CG and all-atom (AA) simulations. Nevertheless, this method is usually effective only in a narrow pressure range. In this paper, we propose a modified CG scheme to overcome this limitation. We find that the fundamental reason for this limitation is that CG beads at close distances are ellipsoids rather than isotropically compressed spheres, as described in conventional CG models. Hence, we propose a method to compensate for such differences by slightly modifying the radial distribution functions (RDFs) derived from AA simulations and using the modified RDFs as references for pressure-corrected MS-IBI. We also propose a method to determine the initial non-bonded potential using both the target RDF and pressure. Using n-dodecane as a case study, we demonstrate that the CG model developed using our scheme reproduces the RDFs and pressures over a wide range of pressure states, including three reference low-pressure states and two test high-pressure states. The proposed scheme allows for accurate CG simulations of systems in which pressure or density varies with time and/or position.
Author Itoh, Shintaro
Zhang, Hedong
Fukuzawa, Kenji
Tang, Jiahao
Kobayashi, Takayuki
AuthorAffiliation Graduate School of Informatics
Department of Complex Systems Science
Nagoya University
Furo-cho
Department of Micro-Nano Systems Engineering
Graduate School of Engineering
Chikusa-ku
AuthorAffiliation_xml – name: Graduate School of Engineering
– name: Department of Complex Systems Science
– name: Department of Micro-Nano Systems Engineering
– name: Nagoya University
– name: Chikusa-ku
– name: Furo-cho
– name: Graduate School of Informatics
Author_xml – sequence: 1
  givenname: Jiahao
  surname: Tang
  fullname: Tang, Jiahao
– sequence: 2
  givenname: Takayuki
  surname: Kobayashi
  fullname: Kobayashi, Takayuki
– sequence: 3
  givenname: Hedong
  surname: Zhang
  fullname: Zhang, Hedong
– sequence: 4
  givenname: Kenji
  surname: Fukuzawa
  fullname: Fukuzawa, Kenji
– sequence: 5
  givenname: Shintaro
  surname: Itoh
  fullname: Itoh, Shintaro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36594875$$D View this record in MEDLINE/PubMed
BookMark eNpd0c9LwzAUB_AgE-emF-9KwYsI1SRN0vYoc_6AgR7cuWTJy-zY0pnXHvbfm7k5wVMe5JMvj28GpOcbD4RcMHrHaFbeW27WVBSiNEfklAmVpSUtRO8w56pPBogLSimTLDsh_UzJUhS5PCXTsf_U3tR-nqwDIHYBEtN4rLEFbzaJ9jZpg_boIOhZvazbTdK4BNvQmTbidKYRbHyiA0I6D7r2MeuMHDu9RDjfn0MyfRp_jF7Sydvz6-hhkhqu8jZl0kkGlFGXK1EozpRldGZdUXCeSw6MAwhOtWWMOSlVaUruMl3K3HJtrcuG5GaXuw7NVwfYVqsaDSyX2kPTYcVzRWVMlnmk1__ooumCj9ttlRJUUFZGdbtTJjSIAVy1DvVKh03FaLUtu3rko_efskcRX-0ju9kK7IH-thvB5Q4ENIfbv9_KvgG-oIVu
CitedBy_id crossref_primary_10_3390_lubricants12020030
Cites_doi 10.1039/B713568H
10.1016/S0031-8914(37)80203-7
10.1021/ct400974z
10.1016/j.triboint.2015.09.002
10.1063/1.2829409
10.1021/jp044629q
10.1038/nmat1035
10.1146/annurev.physchem.59.032607.093707
10.1039/C9CP04120F
10.1063/5.0031249
10.1063/5.0085006
10.1109/TMAG.2015.2435023
10.1063/1.4962255
10.1021/acs.chemrev.6b00163
10.1063/1.3557038
10.1021/acs.accounts.6b00498
10.1063/1.4937383
10.1038/nsb0902-646
10.1006/jcph.1995.1039
10.1063/1.2102897
10.1021/acs.jpcb.7b12446
10.1063/1.4817192
10.1063/1.3055594
10.1063/1.2953694
10.1063/1.2715953
10.1063/1.3394862
10.1021/acs.jctc.6b01081
10.1021/jp980939v
10.1063/1.4995946
10.1063/1.441483
10.1080/08927022.2020.1820004
10.1103/PhysRevLett.94.126103
10.1016/j.apsusc.2014.08.031
10.1039/C2SM27201F
10.1016/j.cpc.2021.108171
10.1021/acs.jctc.2c00643
10.1002/jcc.10307
10.1063/1.4880555
10.1039/C8CP05889J
10.1063/1.1385162
10.1063/5.0022808
10.1063/1.1674820
10.1063/1.2992060
10.1063/1.4958629
10.1039/C4CP05837B
10.1007/s11249-013-0183-1
10.1063/1.5116027
10.1063/1.5128665
10.1063/1.4959168
10.1063/1.4999633
10.1103/PhysRevE.52.3730
10.1140/epje/i2008-10413-5
10.1063/1.2244553
10.1063/1.3651626
10.1021/acs.jctc.7b01173
10.1063/1.5143245
10.1063/1.4759463
10.1002/1439-7641(20020916)3:9<754::AID-CPHC754>3.0.CO;2-U
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d2cp04849c
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 2264
ExternalDocumentID 10_1039_D2CP04849C
36594875
d2cp04849c
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
1TJ
29O
4.4
705
70J
70~
7~J
87K
8W4
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFOGI
AFVBQ
AGKEF
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
YNT
53G
AAJAE
AAMEH
AAWGC
AAXHV
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AGEGJ
AHGCF
APEMP
GGIMP
M4U
NPM
RIG
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c267t-15f51e010f76486216d10bdf8822752e12ee420ad111f5569c92f3a957d2addf3
ISSN 1463-9076
IngestDate Sat Oct 05 05:21:16 EDT 2024
Thu Oct 10 16:17:22 EDT 2024
Thu Sep 12 19:40:04 EDT 2024
Sat Sep 28 08:18:06 EDT 2024
Thu Jan 19 04:11:35 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-15f51e010f76486216d10bdf8822752e12ee420ad111f5569c92f3a957d2addf3
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d2cp04849c
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6753-8564
PMID 36594875
PQID 2766404019
PQPubID 2047499
PageCount 9
ParticipantIDs proquest_journals_2766404019
rsc_primary_d2cp04849c
proquest_miscellaneous_2760548657
crossref_primary_10_1039_D2CP04849C
pubmed_primary_36594875
PublicationCentury 2000
PublicationDate 2023-01-18
PublicationDateYYYYMMDD 2023-01-18
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Fu (D2CP04849C/cit30/1) 2012; 137
Kobayashi (D2CP04849C/cit58/1) 2020; 46
Thompson (D2CP04849C/cit59/1) 2022; 271
Fukuda (D2CP04849C/cit18/1) 2013; 139
Paramonov (D2CP04849C/cit47/1) 2005; 123
Nguyen (D2CP04849C/cit46/1) 2022; 156
Johnson (D2CP04849C/cit17/1) 2007; 126
Dannenhoffer-Lafage (D2CP04849C/cit26/1) 2019; 151
Golubkov (D2CP04849C/cit42/1) 2006; 125
Potter (D2CP04849C/cit48/1) 2019; 21
Chaimovich (D2CP04849C/cit12/1) 2011; 134
Reith (D2CP04849C/cit13/1) 2003; 24
Agrawal (D2CP04849C/cit32/1) 2016; 145
Israelachvili (D2CP04849C/cit49/1) 2011
Izvekov (D2CP04849C/cit15/1) 2005; 109
Karplus (D2CP04849C/cit1/1) 2002; 9
Gay (D2CP04849C/cit41/1) 1981; 74
Fukuda (D2CP04849C/cit6/1) 2013; 51
Doig (D2CP04849C/cit51/1) 2015; 17
Carbone (D2CP04849C/cit34/1) 2008; 128
Week (D2CP04849C/cit31/1) 1971; 54
Lyubartsev (D2CP04849C/cit14/1) 1995; 52
Jin (D2CP04849C/cit38/1) 2018; 14
Kmiecik (D2CP04849C/cit9/1) 2016; 116
Shen (D2CP04849C/cit23/1) 2020; 153
DeLyser (D2CP04849C/cit28/1) 2017; 147
Plimpton (D2CP04849C/cit57/1) 1995; 117
Liu (D2CP04849C/cit54/1) 2008; 129
Wagner (D2CP04849C/cit20/1) 2016; 145
Sun (D2CP04849C/cit55/1) 1998; 102
Zhang (D2CP04849C/cit7/1) 2016; 93
Shell (D2CP04849C/cit11/1) 2008; 129
Hamaker (D2CP04849C/cit50/1) 1937; 4
Rudzinski (D2CP04849C/cit25/1) 2020; 153
Jin (D2CP04849C/cit10/1) 2022; 18
Allen (D2CP04849C/cit21/1) 2009; 130
DeLyser (D2CP04849C/cit39/1) 2019; 151
Brini (D2CP04849C/cit5/1) 2013; 9
Yamakov (D2CP04849C/cit3/1) 2004; 3
Ricci (D2CP04849C/cit45/1) 2019; 21
Dunn (D2CP04849C/cit27/1) 2015; 143
Wu (D2CP04849C/cit44/1) 2011; 135
Shen (D2CP04849C/cit43/1) 2014; 10
Wagner (D2CP04849C/cit36/1) 2017; 147
Moore (D2CP04849C/cit22/1) 2014; 140
Sanyal (D2CP04849C/cit35/1) 2016; 145
Dama (D2CP04849C/cit24/1) 2017; 13
Shahidi (D2CP04849C/cit40/1) 2020; 152
Padding (D2CP04849C/cit53/1) 2001; 115
Wang (D2CP04849C/cit16/1) 2009; 28
Müller-Plathe (D2CP04849C/cit33/1) 2002; 3
Jabbarzadeh (D2CP04849C/cit52/1) 2005; 94
Dunn (D2CP04849C/cit19/1) 2016; 49
Praprotnik (D2CP04849C/cit4/1) 2008; 59
Das (D2CP04849C/cit29/1) 2010; 132
Kobayashi (D2CP04849C/cit8/1) 2015; 51
Junghans (D2CP04849C/cit56/1) 2008; 4
Sanyal (D2CP04849C/cit37/1) 2018; 122
Zhu (D2CP04849C/cit2/1) 2014; 317
References_xml – issn: 2011
  end-page: p 253-289
  publication-title: Intermolecular and surface forces
  doi: Israelachvili
– volume: 4
  start-page: 156
  year: 2008
  ident: D2CP04849C/cit56/1
  publication-title: Soft Matter
  doi: 10.1039/B713568H
  contributor:
    fullname: Junghans
– volume: 4
  start-page: 1058
  year: 1937
  ident: D2CP04849C/cit50/1
  publication-title: Physica
  doi: 10.1016/S0031-8914(37)80203-7
  contributor:
    fullname: Hamaker
– volume: 10
  start-page: 731
  year: 2014
  ident: D2CP04849C/cit43/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400974z
  contributor:
    fullname: Shen
– volume: 93
  start-page: 163
  year: 2016
  ident: D2CP04849C/cit7/1
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2015.09.002
  contributor:
    fullname: Zhang
– volume: 128
  start-page: 064904
  year: 2008
  ident: D2CP04849C/cit34/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2829409
  contributor:
    fullname: Carbone
– volume: 109
  start-page: 2469
  year: 2005
  ident: D2CP04849C/cit15/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp044629q
  contributor:
    fullname: Izvekov
– volume: 3
  start-page: 43
  year: 2004
  ident: D2CP04849C/cit3/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1035
  contributor:
    fullname: Yamakov
– volume: 59
  start-page: 545
  year: 2008
  ident: D2CP04849C/cit4/1
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.59.032607.093707
  contributor:
    fullname: Praprotnik
– volume: 21
  start-page: 26195
  year: 2019
  ident: D2CP04849C/cit45/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP04120F
  contributor:
    fullname: Ricci
– volume: 153
  start-page: 214110
  year: 2020
  ident: D2CP04849C/cit25/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0031249
  contributor:
    fullname: Rudzinski
– volume: 156
  start-page: 184118
  year: 2022
  ident: D2CP04849C/cit46/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0085006
  contributor:
    fullname: Nguyen
– volume: 51
  start-page: 3300704
  year: 2015
  ident: D2CP04849C/cit8/1
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2015.2435023
  contributor:
    fullname: Kobayashi
– volume: 145
  start-page: 104903
  year: 2016
  ident: D2CP04849C/cit32/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4962255
  contributor:
    fullname: Agrawal
– volume: 116
  start-page: 7898
  year: 2016
  ident: D2CP04849C/cit9/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00163
  contributor:
    fullname: Kmiecik
– volume: 134
  start-page: 094112
  year: 2011
  ident: D2CP04849C/cit12/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3557038
  contributor:
    fullname: Chaimovich
– start-page: 253
  volume-title: Intermolecular and surface forces
  year: 2011
  ident: D2CP04849C/cit49/1
  contributor:
    fullname: Israelachvili
– volume: 49
  start-page: 2832
  year: 2016
  ident: D2CP04849C/cit19/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00498
  contributor:
    fullname: Dunn
– volume: 143
  start-page: 243148
  year: 2015
  ident: D2CP04849C/cit27/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4937383
  contributor:
    fullname: Dunn
– volume: 9
  start-page: 646
  year: 2002
  ident: D2CP04849C/cit1/1
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb0902-646
  contributor:
    fullname: Karplus
– volume: 117
  start-page: 1
  year: 1995
  ident: D2CP04849C/cit57/1
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
  contributor:
    fullname: Plimpton
– volume: 123
  start-page: 194111
  year: 2005
  ident: D2CP04849C/cit47/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2102897
  contributor:
    fullname: Paramonov
– volume: 122
  start-page: 5678
  year: 2018
  ident: D2CP04849C/cit37/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b12446
  contributor:
    fullname: Sanyal
– volume: 139
  start-page: 054901
  year: 2013
  ident: D2CP04849C/cit18/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4817192
  contributor:
    fullname: Fukuda
– volume: 130
  start-page: 034904
  year: 2009
  ident: D2CP04849C/cit21/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3055594
  contributor:
    fullname: Allen
– volume: 129
  start-page: 024902
  year: 2008
  ident: D2CP04849C/cit54/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2953694
  contributor:
    fullname: Liu
– volume: 126
  start-page: 144509
  year: 2007
  ident: D2CP04849C/cit17/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2715953
  contributor:
    fullname: Johnson
– volume: 132
  start-page: 164106
  year: 2010
  ident: D2CP04849C/cit29/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3394862
  contributor:
    fullname: Das
– volume: 13
  start-page: 1010
  year: 2017
  ident: D2CP04849C/cit24/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b01081
  contributor:
    fullname: Dama
– volume: 102
  start-page: 7338
  year: 1998
  ident: D2CP04849C/cit55/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp980939v
  contributor:
    fullname: Sun
– volume: 147
  start-page: 044113
  year: 2017
  ident: D2CP04849C/cit36/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4995946
  contributor:
    fullname: Wagner
– volume: 74
  start-page: 3316
  year: 1981
  ident: D2CP04849C/cit41/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.441483
  contributor:
    fullname: Gay
– volume: 46
  start-page: 1281
  year: 2020
  ident: D2CP04849C/cit58/1
  publication-title: Mol. Simul.
  doi: 10.1080/08927022.2020.1820004
  contributor:
    fullname: Kobayashi
– volume: 94
  start-page: 126103
  year: 2005
  ident: D2CP04849C/cit52/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.126103
  contributor:
    fullname: Jabbarzadeh
– volume: 317
  start-page: 432
  year: 2014
  ident: D2CP04849C/cit2/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.08.031
  contributor:
    fullname: Zhu
– volume: 9
  start-page: 2108
  year: 2013
  ident: D2CP04849C/cit5/1
  publication-title: Soft Matter
  doi: 10.1039/C2SM27201F
  contributor:
    fullname: Brini
– volume: 271
  start-page: 108171
  year: 2022
  ident: D2CP04849C/cit59/1
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108171
  contributor:
    fullname: Thompson
– volume: 18
  start-page: 5759
  year: 2022
  ident: D2CP04849C/cit10/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00643
  contributor:
    fullname: Jin
– volume: 24
  start-page: 1624
  year: 2003
  ident: D2CP04849C/cit13/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10307
  contributor:
    fullname: Reith
– volume: 140
  start-page: 224104
  year: 2014
  ident: D2CP04849C/cit22/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4880555
  contributor:
    fullname: Moore
– volume: 21
  start-page: 1912
  year: 2019
  ident: D2CP04849C/cit48/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP05889J
  contributor:
    fullname: Potter
– volume: 115
  start-page: 2846
  year: 2001
  ident: D2CP04849C/cit53/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1385162
  contributor:
    fullname: Padding
– volume: 153
  start-page: 154116
  year: 2020
  ident: D2CP04849C/cit23/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0022808
  contributor:
    fullname: Shen
– volume: 54
  start-page: 5237
  year: 1971
  ident: D2CP04849C/cit31/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1674820
  contributor:
    fullname: Week
– volume: 129
  start-page: 144108
  year: 2008
  ident: D2CP04849C/cit11/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2992060
  contributor:
    fullname: Shell
– volume: 145
  start-page: 034109
  year: 2016
  ident: D2CP04849C/cit35/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4958629
  contributor:
    fullname: Sanyal
– volume: 17
  start-page: 5248
  year: 2015
  ident: D2CP04849C/cit51/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05837B
  contributor:
    fullname: Doig
– volume: 51
  start-page: 479
  year: 2013
  ident: D2CP04849C/cit6/1
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-013-0183-1
  contributor:
    fullname: Fukuda
– volume: 151
  start-page: 134115
  year: 2019
  ident: D2CP04849C/cit26/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5116027
  contributor:
    fullname: Dannenhoffer-Lafage
– volume: 151
  start-page: 224106
  year: 2019
  ident: D2CP04849C/cit39/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5128665
  contributor:
    fullname: DeLyser
– volume: 145
  start-page: 044108
  year: 2016
  ident: D2CP04849C/cit20/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4959168
  contributor:
    fullname: Wagner
– volume: 147
  start-page: 134111
  year: 2017
  ident: D2CP04849C/cit28/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4999633
  contributor:
    fullname: DeLyser
– volume: 52
  start-page: 3730
  year: 1995
  ident: D2CP04849C/cit14/1
  publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
  doi: 10.1103/PhysRevE.52.3730
  contributor:
    fullname: Lyubartsev
– volume: 28
  start-page: 221
  year: 2009
  ident: D2CP04849C/cit16/1
  publication-title: Eur. Phys. J. E: Soft Matter Biol. Phys.
  doi: 10.1140/epje/i2008-10413-5
  contributor:
    fullname: Wang
– volume: 125
  start-page: 064103
  year: 2006
  ident: D2CP04849C/cit42/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2244553
  contributor:
    fullname: Golubkov
– volume: 135
  start-page: 155104
  year: 2011
  ident: D2CP04849C/cit44/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3651626
  contributor:
    fullname: Wu
– volume: 14
  start-page: 2180
  year: 2018
  ident: D2CP04849C/cit38/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b01173
  contributor:
    fullname: Jin
– volume: 152
  start-page: 124902
  year: 2020
  ident: D2CP04849C/cit40/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5143245
  contributor:
    fullname: Shahidi
– volume: 137
  start-page: 164106
  year: 2012
  ident: D2CP04849C/cit30/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4759463
  contributor:
    fullname: Fu
– volume: 3
  start-page: 754
  year: 2002
  ident: D2CP04849C/cit33/1
  publication-title: ChemPhysChem
  doi: 10.1002/1439-7641(20020916)3:9<754::AID-CPHC754>3.0.CO;2-U
  contributor:
    fullname: Müller-Plathe
SSID ssj0001513
Score 2.4609458
Snippet Coarse-graining, which models molecules with coarse-grained (CG) beads, allows molecular dynamics simulations to be applied to systems with large length and...
SourceID proquest
crossref
pubmed
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 2256
SubjectTerms Beads
Distribution functions
Dodecane
Ellipsoids
Granulation
Iterative methods
Low pressure
Molecular dynamics
Molecular structure
Radial distribution
Simulation
Title Enhancing pressure consistency and transferability of structure-based coarse-graining
URI https://www.ncbi.nlm.nih.gov/pubmed/36594875
https://www.proquest.com/docview/2766404019
https://search.proquest.com/docview/2760548657
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gAviNugY6AgeDUkTuzUj1PoVKYy-pBKfYucxGGlUjK1jdD2S_ZzOb6loZsQ8BJFThRb53w5F_tcEPogwfEpRE4wjwnDkQB3ZySpjyNQJhXxi6DQvQG_XrDJPDpf0MVgcNuLWmq3-cfi5t68kv_hKowBX1WW7D9wtvsoDMA98BeuwGG4_hWPx_WlKpeh88mV17zWoecbxTmVUKmDI7VhKtemHLc-TjclY-FlrFSYymoD51bi77ZZRN9cnTkuFq4vnLlTQ2ZPZKP3FGZJ0uWJpXYH-nwpLkXTCXSQG9eqcZMGiFiJ63a1vLNrPZFlY1egMNWu2hvxU9j8oR_L_hYFUQFa2EpVE9ukNkJcFKqOMrFr7gneiIUYHHVbFrs_ZlrIOWlt0qQtKsO-6CWU9dS4ShC-V0X4oaqwWpLiCoRXxIudInSH_xffsrP5dJql40X6AB0SEGEgOw9Px-mXaaflwVIKTeaaWbcrfRvyT7tv_27s3PFgwJ5Zuz4z2p5Jn6DH1hHxTg2qnqKBrJ-hhx3NnqN5hy7PocvrocsDdHl76PKayttDl7eHrhdofjZOkwm2TThwQVi8xQGtaCDBa69iFoH7G7Ay8POyAs-MxJTIgEgZEV-UoDQrShkvOKlCwWlcEtCdVXiEDuqmlq-QVzH485WBO4qIcoNzn49kAcQTOTgOPB6i945a2ZWptZLpGImQZ59JMtM0TYboxBEys__iJiMxYxHoo4AP0bvuMRBMHX-JWjatfgemGTEKE700DOimCZkqWxTTIToCjnTDO04e_3nW1-jRDvgn6ABILd-AtbrN31rg_AKZt5j2
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+pressure+consistency+and+transferability+of+structure-based+coarse-graining&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Tang%2C+Jiahao&rft.au=Kobayashi%2C+Takayuki&rft.au=Zhang%2C+Hedong&rft.au=Fukuzawa%2C+Kenji&rft.date=2023-01-18&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=25&rft.issue=3&rft.spage=2256&rft.epage=2264&rft_id=info:doi/10.1039%2Fd2cp04849c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon