Subcritical Water Hydrolysis of Cotton Fibers to Nanocellulose for Producing Poly(vinyl alcohol)/Cellulose Biocomposite

Abstract Cellulose nanofibers (CNs) are isolated from cotton wool using subcritical water in a semiflow hydrothermal reactor to achieve green hydrolysis. The yield and crystallinity index (CI) of nanocellulose is optimized via varying temperatures and hydrolysis time while maintaining the pressure a...

Full description

Saved in:
Bibliographic Details
Published inStarch Vol. 75; no. 9-10
Main Authors Rafeny, Nur Husnina Bazilah, Bahruji, Hasliza, Abdullah, Rosnah, Mahadi, Abdul Hanif, Prasetyoko, Didik
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Cellulose nanofibers (CNs) are isolated from cotton wool using subcritical water in a semiflow hydrothermal reactor to achieve green hydrolysis. The yield and crystallinity index (CI) of nanocellulose is optimized via varying temperatures and hydrolysis time while maintaining the pressure at 10 MPa. Under the subcritical condition, water dissociates into H 3 O + and OH − , allowing protonation of the β‐glycosidic bond to hydrolyze cellulose strands into short chain fibers. Hydrolysis rates enhance with increasing temperatures, further disintegrating cellulose into smaller nanofibrils. At 180 °C, amorphous cellulose dissolution occurs, increasing the crystallinity without disintegrating the crystalline fibrous network. The concentration of H 3 O + increases at 230 °C, further hydrolyzes cotton wool into uniform nanofibril cellulose with 14.3 ± 1.2 nm diameter. The tensile strength and elongation at break enhance using cellulose nanofibers obtained at 220 and 230 °C due to the small nanocellulose sizes that allow efficient dispersion in the poly(vinyl alcohol) (PVA) matrix.
AbstractList Abstract Cellulose nanofibers (CNs) are isolated from cotton wool using subcritical water in a semiflow hydrothermal reactor to achieve green hydrolysis. The yield and crystallinity index (CI) of nanocellulose is optimized via varying temperatures and hydrolysis time while maintaining the pressure at 10 MPa. Under the subcritical condition, water dissociates into H 3 O + and OH − , allowing protonation of the β‐glycosidic bond to hydrolyze cellulose strands into short chain fibers. Hydrolysis rates enhance with increasing temperatures, further disintegrating cellulose into smaller nanofibrils. At 180 °C, amorphous cellulose dissolution occurs, increasing the crystallinity without disintegrating the crystalline fibrous network. The concentration of H 3 O + increases at 230 °C, further hydrolyzes cotton wool into uniform nanofibril cellulose with 14.3 ± 1.2 nm diameter. The tensile strength and elongation at break enhance using cellulose nanofibers obtained at 220 and 230 °C due to the small nanocellulose sizes that allow efficient dispersion in the poly(vinyl alcohol) (PVA) matrix.
Cellulose nanofibers (CNs) are isolated from cotton wool using subcritical water in a semiflow hydrothermal reactor to achieve green hydrolysis. The yield and crystallinity index (CI) of nanocellulose is optimized via varying temperatures and hydrolysis time while maintaining the pressure at 10 MPa. Under the subcritical condition, water dissociates into H3O+ and OH−, allowing protonation of the β‐glycosidic bond to hydrolyze cellulose strands into short chain fibers. Hydrolysis rates enhance with increasing temperatures, further disintegrating cellulose into smaller nanofibrils. At 180 °C, amorphous cellulose dissolution occurs, increasing the crystallinity without disintegrating the crystalline fibrous network. The concentration of H3O+ increases at 230 °C, further hydrolyzes cotton wool into uniform nanofibril cellulose with 14.3 ± 1.2 nm diameter. The tensile strength and elongation at break enhance using cellulose nanofibers obtained at 220 and 230 °C due to the small nanocellulose sizes that allow efficient dispersion in the poly(vinyl alcohol) (PVA) matrix.
Author Abdullah, Rosnah
Prasetyoko, Didik
Rafeny, Nur Husnina Bazilah
Bahruji, Hasliza
Mahadi, Abdul Hanif
Author_xml – sequence: 1
  givenname: Nur Husnina Bazilah
  surname: Rafeny
  fullname: Rafeny, Nur Husnina Bazilah
  organization: Centre of Advanced Material and Energy Sciences Universiti Brunei Darussalam Jalan Tungku Link BE 1410 Brunei
– sequence: 2
  givenname: Hasliza
  surname: Bahruji
  fullname: Bahruji, Hasliza
  organization: Centre of Advanced Material and Energy Sciences Universiti Brunei Darussalam Jalan Tungku Link BE 1410 Brunei
– sequence: 3
  givenname: Rosnah
  surname: Abdullah
  fullname: Abdullah, Rosnah
  organization: Centre of Advanced Material and Energy Sciences Universiti Brunei Darussalam Jalan Tungku Link BE 1410 Brunei
– sequence: 4
  givenname: Abdul Hanif
  surname: Mahadi
  fullname: Mahadi, Abdul Hanif
  organization: Centre of Advanced Material and Energy Sciences Universiti Brunei Darussalam Jalan Tungku Link BE 1410 Brunei
– sequence: 5
  givenname: Didik
  surname: Prasetyoko
  fullname: Prasetyoko, Didik
  organization: Department of Chemistry Faculty of Science and Data Analytical Sepuluh Nopember Institute of Technology Keputih Sukolilo Surabaya 60111 Indonesia
BookMark eNo9kEFLwzAYhoNMcJtePQe86KFb2qRpe9TinDB0oKK3kiapZmT9ZpIq_fd2THb6Ls_3vi_PBI1aaDVClzGZxYQkcx-EmyUkoYQQnp6gcZwmcUSz4mOExoTQPCpIys_QxPvNnshYPEa_L10tnQlGCovfRdAOL3vlwPbeeAwNLiEEaPHC1Np5HAA_iRaktraz4DVuwOG1A9VJ037i9fB3_WPa3mJhJXyBvZmXR_bOgITtDrwJ-hydNsJ6ffF_p-htcf9aLqPV88NjebuKZMKzEMW0yPJGDLtVSpROdMGKRIlMCcY1lWnNmWSSKkFqqqguGsF0Q_KGsUEC0YRO0dUhd-fgu9M-VBvoXDtUVknOKc94nGYDNTtQ0oH3TjfVzpmtcH0Vk2ovt9rLrY5y6R_OFXGR
CitedBy_id crossref_primary_10_1016_j_jmrt_2023_11_084
crossref_primary_10_1007_s13399_024_05463_y
Cites_doi 10.1186/1754-6834-3-10
10.1007/s10570-017-1339-1
10.1016/j.supflu.2006.03.016
10.3390/molecules26134004
10.1016/j.jclepro.2021.127229
10.1016/j.fuel.2006.12.013
10.1021/acsanm.1c01244
10.1002/cssc.201000341
10.1007/s11051-016-3355-8
10.1016/j.carbpol.2015.05.032
10.1021/acs.langmuir.7b04127
10.1039/C4RA04063E
10.1016/j.biteb.2020.100478
10.1007/s10924-020-02017-x
10.1016/B978-0-12-817880-5.00005-0
10.1016/j.jcomc.2021.100164
10.1007/s10570-012-9833-y
10.1016/j.foodhyd.2022.107484
10.4236/ajac.2018.96023
10.1016/j.crcon.2018.05.004
10.1590/1980‐5373‐MR‐2016‐0058
10.1016/j.carbpol.2020.116612
10.1039/C8NA00238J
10.1016/j.compositesa.2014.06.014
10.1039/C8RA07143H
10.1016/B978-0-444-63475-7.00011-X
10.1007/s10570-020-03674-w
10.1016/j.mtcomm.2018.05.002
10.1007/s00542-013-1882-0
10.3390/molecules26072008
10.1016/j.indcrop.2016.01.012
10.1021/bm101240z
10.1016/j.biortech.2019.01.137
10.1016/j.biortech.2017.10.024
10.1021/ie990690j
10.1177/004051755902901003
10.3390/ma13204573
10.1016/j.carbpol.2013.08.061
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/star.202300065
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-379X
ExternalDocumentID 10_1002_star_202300065
GroupedDBID .GA
1L6
1OC
3WU
51W
51X
52N
52O
52P
52T
52W
52X
66C
7PT
930
A03
AAYXX
ACBWZ
ACGFO
ALMA_UNASSIGNED_HOLDINGS
BDRZF
BY8
CITATION
FEDTE
HHY
HVGLF
JPC
LP6
LP7
P4D
Q11
QRW
RWI
WIH
WQJ
XV2
ID FETCH-LOGICAL-c267t-13978fa056d50de2e9492da7da46e3c5b64c4c3da0b3d3e9fa4ef08f440000e03
ISSN 0038-9056
IngestDate Thu Oct 10 18:29:35 EDT 2024
Fri Aug 23 02:15:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9-10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-13978fa056d50de2e9492da7da46e3c5b64c4c3da0b3d3e9fa4ef08f440000e03
PQID 2863676157
PQPubID 1046346
ParticipantIDs proquest_journals_2863676157
crossref_primary_10_1002_star_202300065
PublicationCentury 2000
PublicationDate 2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-00
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Starch
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
Kord B. (e_1_2_9_38_1) 2016; 18
Yeng L. C. (e_1_2_9_33_1) 2015; 75
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
Brigham C. (e_1_2_9_9_1) 2017
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Arthur J. C. (e_1_2_9_22_1) 1989
e_1_2_9_29_1
References_xml – ident: e_1_2_9_24_1
  doi: 10.1186/1754-6834-3-10
– ident: e_1_2_9_17_1
  doi: 10.1007/s10570-017-1339-1
– ident: e_1_2_9_1_1
  doi: 10.1016/j.supflu.2006.03.016
– ident: e_1_2_9_8_1
  doi: 10.3390/molecules26134004
– ident: e_1_2_9_30_1
  doi: 10.1016/j.jclepro.2021.127229
– ident: e_1_2_9_29_1
  doi: 10.1016/j.fuel.2006.12.013
– ident: e_1_2_9_36_1
  doi: 10.1021/acsanm.1c01244
– ident: e_1_2_9_2_1
  doi: 10.1002/cssc.201000341
– ident: e_1_2_9_18_1
  doi: 10.1007/s11051-016-3355-8
– ident: e_1_2_9_35_1
  doi: 10.1016/j.carbpol.2015.05.032
– ident: e_1_2_9_16_1
  doi: 10.1021/acs.langmuir.7b04127
– ident: e_1_2_9_31_1
  doi: 10.1039/C4RA04063E
– ident: e_1_2_9_5_1
  doi: 10.1016/j.biteb.2020.100478
– ident: e_1_2_9_14_1
  doi: 10.1007/s10924-020-02017-x
– ident: e_1_2_9_32_1
  doi: 10.1016/B978-0-12-817880-5.00005-0
– ident: e_1_2_9_12_1
  doi: 10.1016/j.jcomc.2021.100164
– ident: e_1_2_9_23_1
  doi: 10.1007/s10570-012-9833-y
– volume: 75
  start-page: 107
  year: 2015
  ident: e_1_2_9_33_1
  publication-title: J. Teknol.
  contributor:
    fullname: Yeng L. C.
– volume: 18
  start-page: 743
  year: 2016
  ident: e_1_2_9_38_1
  publication-title: Maderas: Cienc. Tecnol.
  contributor:
    fullname: Kord B.
– ident: e_1_2_9_10_1
  doi: 10.1016/j.foodhyd.2022.107484
– ident: e_1_2_9_27_1
  doi: 10.4236/ajac.2018.96023
– ident: e_1_2_9_15_1
  doi: 10.1016/j.crcon.2018.05.004
– ident: e_1_2_9_25_1
  doi: 10.1590/1980‐5373‐MR‐2016‐0058
– ident: e_1_2_9_20_1
  doi: 10.1016/j.carbpol.2020.116612
– volume-title: Comprehensive Polymer Science and SupplementsCompr. Polym. Sci. Suppl.
  year: 1989
  ident: e_1_2_9_22_1
  contributor:
    fullname: Arthur J. C.
– volume-title: Biopolymers: Biodegradable Alternatives to Traditional Plastics
  year: 2017
  ident: e_1_2_9_9_1
  contributor:
    fullname: Brigham C.
– ident: e_1_2_9_19_1
  doi: 10.1039/C8NA00238J
– ident: e_1_2_9_39_1
  doi: 10.1016/j.compositesa.2014.06.014
– ident: e_1_2_9_37_1
  doi: 10.1039/C8RA07143H
– ident: e_1_2_9_3_1
  doi: 10.1016/B978-0-444-63475-7.00011-X
– ident: e_1_2_9_11_1
  doi: 10.1007/s10570-020-03674-w
– ident: e_1_2_9_41_1
  doi: 10.1016/j.mtcomm.2018.05.002
– ident: e_1_2_9_34_1
  doi: 10.1007/s00542-013-1882-0
– ident: e_1_2_9_13_1
  doi: 10.3390/molecules26072008
– ident: e_1_2_9_7_1
  doi: 10.1016/j.indcrop.2016.01.012
– ident: e_1_2_9_21_1
  doi: 10.1021/bm101240z
– ident: e_1_2_9_28_1
  doi: 10.1016/j.biortech.2019.01.137
– ident: e_1_2_9_6_1
  doi: 10.1016/j.biortech.2017.10.024
– ident: e_1_2_9_4_1
  doi: 10.1021/ie990690j
– ident: e_1_2_9_42_1
  doi: 10.1177/004051755902901003
– ident: e_1_2_9_26_1
  doi: 10.3390/ma13204573
– ident: e_1_2_9_40_1
  doi: 10.1016/j.carbpol.2013.08.061
SSID ssj0065741
ssj0005453
Score 2.421406
Snippet Abstract Cellulose nanofibers (CNs) are isolated from cotton wool using subcritical water in a semiflow hydrothermal reactor to achieve green hydrolysis. The...
Cellulose nanofibers (CNs) are isolated from cotton wool using subcritical water in a semiflow hydrothermal reactor to achieve green hydrolysis. The yield and...
SourceID proquest
crossref
SourceType Aggregation Database
SubjectTerms Cellulose
Cellulose fibers
Composite materials
Cotton
Cotton fibers
Crystallinity
Disintegration
Elongation
Fibers
Hydrolysis
Nanofibers
Polyvinyl alcohol
Protonation
Tensile strength
Wool
Title Subcritical Water Hydrolysis of Cotton Fibers to Nanocellulose for Producing Poly(vinyl alcohol)/Cellulose Biocomposite
URI https://www.proquest.com/docview/2863676157
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeIAXxKcYG8gPIEBTWOo4SfPIyqoKbWOaWtG3yI4dNWhKUJsMbX-FP8u9dj4FQoOXKErjJPU9ub6-OT6XkNdSap5EQjnSY9qBXc-Rrhg7kuswVYmOEoV5yNOzYL7kn1f-ajT62WMtVaX8kNz8cV3J_1gVjoFdcZXsP1i2vSgcgH2wL2zBwrC9lY3hrU-aUgVfBcodzq_VpmhVRqZFiaoZM2SFGCUH8KUFpuqrS6SpI8Pw3Ci-Yr7gvMCi05OrLL9G1rKpnPuGoU7otG1xlBXIQUei14BCBCFrkxLDxHIFD1Jt8ywXB0fiJrsU64MLkeq8Wzwh1pvqmy2YLbbILOs-QymYFIu1ZX1v8y5dfSrWQpkm5hxomGdpP2nBvJaVdVvX2PfZ6JJdvxbMrt00G4NrNEV4Wz9uK7DUeI0cy5b9bYSwirMQeaMYLMy_MAbrxsLm-__Zl3i2PDmJF8erxR1yl4EXQ77gp4tOmwxCz3bMD_yQ29qM9bM28qAuOxzeahj-DEd_E9IsHpIH9VyEfrTAekRGOn9M7k2bEoBPyI8ewKgBGO0ARouUWoBRCzBaFnQAMAoAoy3AKALsnYEXreH1_rCFFu1D6ylZzo4X07lTV-pwEhaEpYPTiEkq4I8r31Wa6YhHTIlQCR5oL_FlwBOeeEq40lOejlLBdepOUs4xXtKu94zs5EWunxOqQzg9ibgep5rD5QT3tZTMg8BfTVQU7ZK3TQfG360gS2ylt1mMXR23Xb1L9pv-jeuXdhuzSYAahWM_fPH3n_fI_Q64-2Sn3FT6JcSfpXxlcPAL_veNNA
link.rule.ids 315,783,787,27938,27939
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subcritical+Water+Hydrolysis+of+Cotton+Fibers+to+Nanocellulose+for+Producing+Poly%28vinyl+alcohol%29%2FCellulose+Biocomposite&rft.jtitle=Starch&rft.au=Nur+Husnina+Bazilah+Rafeny&rft.au=Bahruji%2C+Hasliza&rft.au=Abdullah%2C+Rosnah&rft.au=Mahadi%2C+Abdul+Hanif&rft.date=2023-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0038-9056&rft.eissn=1521-379X&rft.volume=75&rft.issue=9-10&rft_id=info:doi/10.1002%2Fstar.202300065&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-9056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-9056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-9056&client=summon