Subcritical Water Hydrolysis of Cotton Fibers to Nanocellulose for Producing Poly(vinyl alcohol)/Cellulose Biocomposite
Abstract Cellulose nanofibers (CNs) are isolated from cotton wool using subcritical water in a semiflow hydrothermal reactor to achieve green hydrolysis. The yield and crystallinity index (CI) of nanocellulose is optimized via varying temperatures and hydrolysis time while maintaining the pressure a...
Saved in:
Published in | Starch Vol. 75; no. 9-10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Cellulose nanofibers (CNs) are isolated from cotton wool using subcritical water in a semiflow hydrothermal reactor to achieve green hydrolysis. The yield and crystallinity index (CI) of nanocellulose is optimized via varying temperatures and hydrolysis time while maintaining the pressure at 10 MPa. Under the subcritical condition, water dissociates into H
3
O
+
and OH
−
, allowing protonation of the β‐glycosidic bond to hydrolyze cellulose strands into short chain fibers. Hydrolysis rates enhance with increasing temperatures, further disintegrating cellulose into smaller nanofibrils. At 180 °C, amorphous cellulose dissolution occurs, increasing the crystallinity without disintegrating the crystalline fibrous network. The concentration of H
3
O
+
increases at 230 °C, further hydrolyzes cotton wool into uniform nanofibril cellulose with 14.3 ± 1.2 nm diameter. The tensile strength and elongation at break enhance using cellulose nanofibers obtained at 220 and 230 °C due to the small nanocellulose sizes that allow efficient dispersion in the poly(vinyl alcohol) (PVA) matrix. |
---|---|
AbstractList | Abstract
Cellulose nanofibers (CNs) are isolated from cotton wool using subcritical water in a semiflow hydrothermal reactor to achieve green hydrolysis. The yield and crystallinity index (CI) of nanocellulose is optimized via varying temperatures and hydrolysis time while maintaining the pressure at 10 MPa. Under the subcritical condition, water dissociates into H
3
O
+
and OH
−
, allowing protonation of the β‐glycosidic bond to hydrolyze cellulose strands into short chain fibers. Hydrolysis rates enhance with increasing temperatures, further disintegrating cellulose into smaller nanofibrils. At 180 °C, amorphous cellulose dissolution occurs, increasing the crystallinity without disintegrating the crystalline fibrous network. The concentration of H
3
O
+
increases at 230 °C, further hydrolyzes cotton wool into uniform nanofibril cellulose with 14.3 ± 1.2 nm diameter. The tensile strength and elongation at break enhance using cellulose nanofibers obtained at 220 and 230 °C due to the small nanocellulose sizes that allow efficient dispersion in the poly(vinyl alcohol) (PVA) matrix. Cellulose nanofibers (CNs) are isolated from cotton wool using subcritical water in a semiflow hydrothermal reactor to achieve green hydrolysis. The yield and crystallinity index (CI) of nanocellulose is optimized via varying temperatures and hydrolysis time while maintaining the pressure at 10 MPa. Under the subcritical condition, water dissociates into H3O+ and OH−, allowing protonation of the β‐glycosidic bond to hydrolyze cellulose strands into short chain fibers. Hydrolysis rates enhance with increasing temperatures, further disintegrating cellulose into smaller nanofibrils. At 180 °C, amorphous cellulose dissolution occurs, increasing the crystallinity without disintegrating the crystalline fibrous network. The concentration of H3O+ increases at 230 °C, further hydrolyzes cotton wool into uniform nanofibril cellulose with 14.3 ± 1.2 nm diameter. The tensile strength and elongation at break enhance using cellulose nanofibers obtained at 220 and 230 °C due to the small nanocellulose sizes that allow efficient dispersion in the poly(vinyl alcohol) (PVA) matrix. |
Author | Abdullah, Rosnah Prasetyoko, Didik Rafeny, Nur Husnina Bazilah Bahruji, Hasliza Mahadi, Abdul Hanif |
Author_xml | – sequence: 1 givenname: Nur Husnina Bazilah surname: Rafeny fullname: Rafeny, Nur Husnina Bazilah organization: Centre of Advanced Material and Energy Sciences Universiti Brunei Darussalam Jalan Tungku Link BE 1410 Brunei – sequence: 2 givenname: Hasliza surname: Bahruji fullname: Bahruji, Hasliza organization: Centre of Advanced Material and Energy Sciences Universiti Brunei Darussalam Jalan Tungku Link BE 1410 Brunei – sequence: 3 givenname: Rosnah surname: Abdullah fullname: Abdullah, Rosnah organization: Centre of Advanced Material and Energy Sciences Universiti Brunei Darussalam Jalan Tungku Link BE 1410 Brunei – sequence: 4 givenname: Abdul Hanif surname: Mahadi fullname: Mahadi, Abdul Hanif organization: Centre of Advanced Material and Energy Sciences Universiti Brunei Darussalam Jalan Tungku Link BE 1410 Brunei – sequence: 5 givenname: Didik surname: Prasetyoko fullname: Prasetyoko, Didik organization: Department of Chemistry Faculty of Science and Data Analytical Sepuluh Nopember Institute of Technology Keputih Sukolilo Surabaya 60111 Indonesia |
BookMark | eNo9kEFLwzAYhoNMcJtePQe86KFb2qRpe9TinDB0oKK3kiapZmT9ZpIq_fd2THb6Ls_3vi_PBI1aaDVClzGZxYQkcx-EmyUkoYQQnp6gcZwmcUSz4mOExoTQPCpIys_QxPvNnshYPEa_L10tnQlGCovfRdAOL3vlwPbeeAwNLiEEaPHC1Np5HAA_iRaktraz4DVuwOG1A9VJ037i9fB3_WPa3mJhJXyBvZmXR_bOgITtDrwJ-hydNsJ6ffF_p-htcf9aLqPV88NjebuKZMKzEMW0yPJGDLtVSpROdMGKRIlMCcY1lWnNmWSSKkFqqqguGsF0Q_KGsUEC0YRO0dUhd-fgu9M-VBvoXDtUVknOKc94nGYDNTtQ0oH3TjfVzpmtcH0Vk2ovt9rLrY5y6R_OFXGR |
CitedBy_id | crossref_primary_10_1016_j_jmrt_2023_11_084 crossref_primary_10_1007_s13399_024_05463_y |
Cites_doi | 10.1186/1754-6834-3-10 10.1007/s10570-017-1339-1 10.1016/j.supflu.2006.03.016 10.3390/molecules26134004 10.1016/j.jclepro.2021.127229 10.1016/j.fuel.2006.12.013 10.1021/acsanm.1c01244 10.1002/cssc.201000341 10.1007/s11051-016-3355-8 10.1016/j.carbpol.2015.05.032 10.1021/acs.langmuir.7b04127 10.1039/C4RA04063E 10.1016/j.biteb.2020.100478 10.1007/s10924-020-02017-x 10.1016/B978-0-12-817880-5.00005-0 10.1016/j.jcomc.2021.100164 10.1007/s10570-012-9833-y 10.1016/j.foodhyd.2022.107484 10.4236/ajac.2018.96023 10.1016/j.crcon.2018.05.004 10.1590/1980‐5373‐MR‐2016‐0058 10.1016/j.carbpol.2020.116612 10.1039/C8NA00238J 10.1016/j.compositesa.2014.06.014 10.1039/C8RA07143H 10.1016/B978-0-444-63475-7.00011-X 10.1007/s10570-020-03674-w 10.1016/j.mtcomm.2018.05.002 10.1007/s00542-013-1882-0 10.3390/molecules26072008 10.1016/j.indcrop.2016.01.012 10.1021/bm101240z 10.1016/j.biortech.2019.01.137 10.1016/j.biortech.2017.10.024 10.1021/ie990690j 10.1177/004051755902901003 10.3390/ma13204573 10.1016/j.carbpol.2013.08.061 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/star.202300065 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-379X |
ExternalDocumentID | 10_1002_star_202300065 |
GroupedDBID | .GA 1L6 1OC 3WU 51W 51X 52N 52O 52P 52T 52W 52X 66C 7PT 930 A03 AAYXX ACBWZ ACGFO ALMA_UNASSIGNED_HOLDINGS BDRZF BY8 CITATION FEDTE HHY HVGLF JPC LP6 LP7 P4D Q11 QRW RWI WIH WQJ XV2 |
ID | FETCH-LOGICAL-c267t-13978fa056d50de2e9492da7da46e3c5b64c4c3da0b3d3e9fa4ef08f440000e03 |
ISSN | 0038-9056 |
IngestDate | Thu Oct 10 18:29:35 EDT 2024 Fri Aug 23 02:15:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9-10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c267t-13978fa056d50de2e9492da7da46e3c5b64c4c3da0b3d3e9fa4ef08f440000e03 |
PQID | 2863676157 |
PQPubID | 1046346 |
ParticipantIDs | proquest_journals_2863676157 crossref_primary_10_1002_star_202300065 |
PublicationCentury | 2000 |
PublicationDate | 2023-09-00 20230901 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-00 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Starch |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 Kord B. (e_1_2_9_38_1) 2016; 18 Yeng L. C. (e_1_2_9_33_1) 2015; 75 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 Brigham C. (e_1_2_9_9_1) 2017 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 Arthur J. C. (e_1_2_9_22_1) 1989 e_1_2_9_29_1 |
References_xml | – ident: e_1_2_9_24_1 doi: 10.1186/1754-6834-3-10 – ident: e_1_2_9_17_1 doi: 10.1007/s10570-017-1339-1 – ident: e_1_2_9_1_1 doi: 10.1016/j.supflu.2006.03.016 – ident: e_1_2_9_8_1 doi: 10.3390/molecules26134004 – ident: e_1_2_9_30_1 doi: 10.1016/j.jclepro.2021.127229 – ident: e_1_2_9_29_1 doi: 10.1016/j.fuel.2006.12.013 – ident: e_1_2_9_36_1 doi: 10.1021/acsanm.1c01244 – ident: e_1_2_9_2_1 doi: 10.1002/cssc.201000341 – ident: e_1_2_9_18_1 doi: 10.1007/s11051-016-3355-8 – ident: e_1_2_9_35_1 doi: 10.1016/j.carbpol.2015.05.032 – ident: e_1_2_9_16_1 doi: 10.1021/acs.langmuir.7b04127 – ident: e_1_2_9_31_1 doi: 10.1039/C4RA04063E – ident: e_1_2_9_5_1 doi: 10.1016/j.biteb.2020.100478 – ident: e_1_2_9_14_1 doi: 10.1007/s10924-020-02017-x – ident: e_1_2_9_32_1 doi: 10.1016/B978-0-12-817880-5.00005-0 – ident: e_1_2_9_12_1 doi: 10.1016/j.jcomc.2021.100164 – ident: e_1_2_9_23_1 doi: 10.1007/s10570-012-9833-y – volume: 75 start-page: 107 year: 2015 ident: e_1_2_9_33_1 publication-title: J. Teknol. contributor: fullname: Yeng L. C. – volume: 18 start-page: 743 year: 2016 ident: e_1_2_9_38_1 publication-title: Maderas: Cienc. Tecnol. contributor: fullname: Kord B. – ident: e_1_2_9_10_1 doi: 10.1016/j.foodhyd.2022.107484 – ident: e_1_2_9_27_1 doi: 10.4236/ajac.2018.96023 – ident: e_1_2_9_15_1 doi: 10.1016/j.crcon.2018.05.004 – ident: e_1_2_9_25_1 doi: 10.1590/1980‐5373‐MR‐2016‐0058 – ident: e_1_2_9_20_1 doi: 10.1016/j.carbpol.2020.116612 – volume-title: Comprehensive Polymer Science and SupplementsCompr. Polym. Sci. Suppl. year: 1989 ident: e_1_2_9_22_1 contributor: fullname: Arthur J. C. – volume-title: Biopolymers: Biodegradable Alternatives to Traditional Plastics year: 2017 ident: e_1_2_9_9_1 contributor: fullname: Brigham C. – ident: e_1_2_9_19_1 doi: 10.1039/C8NA00238J – ident: e_1_2_9_39_1 doi: 10.1016/j.compositesa.2014.06.014 – ident: e_1_2_9_37_1 doi: 10.1039/C8RA07143H – ident: e_1_2_9_3_1 doi: 10.1016/B978-0-444-63475-7.00011-X – ident: e_1_2_9_11_1 doi: 10.1007/s10570-020-03674-w – ident: e_1_2_9_41_1 doi: 10.1016/j.mtcomm.2018.05.002 – ident: e_1_2_9_34_1 doi: 10.1007/s00542-013-1882-0 – ident: e_1_2_9_13_1 doi: 10.3390/molecules26072008 – ident: e_1_2_9_7_1 doi: 10.1016/j.indcrop.2016.01.012 – ident: e_1_2_9_21_1 doi: 10.1021/bm101240z – ident: e_1_2_9_28_1 doi: 10.1016/j.biortech.2019.01.137 – ident: e_1_2_9_6_1 doi: 10.1016/j.biortech.2017.10.024 – ident: e_1_2_9_4_1 doi: 10.1021/ie990690j – ident: e_1_2_9_42_1 doi: 10.1177/004051755902901003 – ident: e_1_2_9_26_1 doi: 10.3390/ma13204573 – ident: e_1_2_9_40_1 doi: 10.1016/j.carbpol.2013.08.061 |
SSID | ssj0065741 ssj0005453 |
Score | 2.421406 |
Snippet | Abstract
Cellulose nanofibers (CNs) are isolated from cotton wool using subcritical water in a semiflow hydrothermal reactor to achieve green hydrolysis. The... Cellulose nanofibers (CNs) are isolated from cotton wool using subcritical water in a semiflow hydrothermal reactor to achieve green hydrolysis. The yield and... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
SubjectTerms | Cellulose Cellulose fibers Composite materials Cotton Cotton fibers Crystallinity Disintegration Elongation Fibers Hydrolysis Nanofibers Polyvinyl alcohol Protonation Tensile strength Wool |
Title | Subcritical Water Hydrolysis of Cotton Fibers to Nanocellulose for Producing Poly(vinyl alcohol)/Cellulose Biocomposite |
URI | https://www.proquest.com/docview/2863676157 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeIAXxKcYG8gPIEBTWOo4SfPIyqoKbWOaWtG3yI4dNWhKUJsMbX-FP8u9dj4FQoOXKErjJPU9ub6-OT6XkNdSap5EQjnSY9qBXc-Rrhg7kuswVYmOEoV5yNOzYL7kn1f-ajT62WMtVaX8kNz8cV3J_1gVjoFdcZXsP1i2vSgcgH2wL2zBwrC9lY3hrU-aUgVfBcodzq_VpmhVRqZFiaoZM2SFGCUH8KUFpuqrS6SpI8Pw3Ci-Yr7gvMCi05OrLL9G1rKpnPuGoU7otG1xlBXIQUei14BCBCFrkxLDxHIFD1Jt8ywXB0fiJrsU64MLkeq8Wzwh1pvqmy2YLbbILOs-QymYFIu1ZX1v8y5dfSrWQpkm5hxomGdpP2nBvJaVdVvX2PfZ6JJdvxbMrt00G4NrNEV4Wz9uK7DUeI0cy5b9bYSwirMQeaMYLMy_MAbrxsLm-__Zl3i2PDmJF8erxR1yl4EXQ77gp4tOmwxCz3bMD_yQ29qM9bM28qAuOxzeahj-DEd_E9IsHpIH9VyEfrTAekRGOn9M7k2bEoBPyI8ewKgBGO0ARouUWoBRCzBaFnQAMAoAoy3AKALsnYEXreH1_rCFFu1D6ylZzo4X07lTV-pwEhaEpYPTiEkq4I8r31Wa6YhHTIlQCR5oL_FlwBOeeEq40lOejlLBdepOUs4xXtKu94zs5EWunxOqQzg9ibgep5rD5QT3tZTMg8BfTVQU7ZK3TQfG360gS2ylt1mMXR23Xb1L9pv-jeuXdhuzSYAahWM_fPH3n_fI_Q64-2Sn3FT6JcSfpXxlcPAL_veNNA |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subcritical+Water+Hydrolysis+of+Cotton+Fibers+to+Nanocellulose+for+Producing+Poly%28vinyl+alcohol%29%2FCellulose+Biocomposite&rft.jtitle=Starch&rft.au=Nur+Husnina+Bazilah+Rafeny&rft.au=Bahruji%2C+Hasliza&rft.au=Abdullah%2C+Rosnah&rft.au=Mahadi%2C+Abdul+Hanif&rft.date=2023-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0038-9056&rft.eissn=1521-379X&rft.volume=75&rft.issue=9-10&rft_id=info:doi/10.1002%2Fstar.202300065&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-9056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-9056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-9056&client=summon |