Recent advances in 3D printing sacrificial templates for fabricating engineered vasculature
Fabricating engineered vasculature within biological scaffolds is one of the most common strategies to maintain high cell viability before implantation. Many studies have been conducted from the aspects of the manufacturing process, materials science, and cell biology to fabricate engineered vascula...
Saved in:
Published in | MedComm - Biomaterials and applications Vol. 2; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
John Wiley & Sons, Inc
01.09.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fabricating engineered vasculature within biological scaffolds is one of the most common strategies to maintain high cell viability before implantation. Many studies have been conducted from the aspects of the manufacturing process, materials science, and cell biology to fabricate engineered vasculature with the aim of enhancing the integration between scaffold and host. Among them, the method of combining three‐dimensional (3D) printing and sacrifice‐based technique has attracted extensive attention. Taking advantage of 3D printing, the method of separating the printed sacrificial template from the biological scaffold to form a 3D channel has become a widely used approach to advance the engineered vasculature. With the development of 3D printing techniques and material science, numerous sacrificial materials have shown their potential in fabricating engineered vasculature. However, several issues remain in this multimethod design, including, but not limited to, the printing process, removal method of sacrificial material, and cell seeding method. This review aims to summarize recent strategies for 3D printing sacrificial templates for fabricating engineered vasculature. The pros and cons of sacrificial materials used in these studies are analyzed. Future perspectives are proposed to fabricate biomimetic‐engineered vasculature. Flexible fabrication processes and materials should be advanced to support the 3D printing of sacrificial templates. |
---|---|
AbstractList | Fabricating engineered vasculature within biological scaffolds is one of the most common strategies to maintain high cell viability before implantation. Many studies have been conducted from the aspects of the manufacturing process, materials science, and cell biology to fabricate engineered vasculature with the aim of enhancing the integration between scaffold and host. Among them, the method of combining three‐dimensional (3D) printing and sacrifice‐based technique has attracted extensive attention. Taking advantage of 3D printing, the method of separating the printed sacrificial template from the biological scaffold to form a 3D channel has become a widely used approach to advance the engineered vasculature. With the development of 3D printing techniques and material science, numerous sacrificial materials have shown their potential in fabricating engineered vasculature. However, several issues remain in this multimethod design, including, but not limited to, the printing process, removal method of sacrificial material, and cell seeding method. This review aims to summarize recent strategies for 3D printing sacrificial templates for fabricating engineered vasculature. The pros and cons of sacrificial materials used in these studies are analyzed. Future perspectives are proposed to fabricate biomimetic‐engineered vasculature. Flexible fabrication processes and materials should be advanced to support the 3D printing of sacrificial templates. Fabricating engineered vasculature within biological scaffolds is one of the most common strategies to maintain high cell viability before implantation. Many studies have been conducted from the aspects of the manufacturing process, materials science, and cell biology to fabricate engineered vasculature with the aim of enhancing the integration between scaffold and host. Among them, the method of combining three‐dimensional (3D) printing and sacrifice‐based technique has attracted extensive attention. Taking advantage of 3D printing, the method of separating the printed sacrificial template from the biological scaffold to form a 3D channel has become a widely used approach to advance the engineered vasculature. With the development of 3D printing techniques and material science, numerous sacrificial materials have shown their potential in fabricating engineered vasculature. However, several issues remain in this multimethod design, including, but not limited to, the printing process, removal method of sacrificial material, and cell seeding method. This review aims to summarize recent strategies for 3D printing sacrificial templates for fabricating engineered vasculature. The pros and cons of sacrificial materials used in these studies are analyzed. Future perspectives are proposed to fabricate biomimetic‐engineered vasculature. Flexible fabrication processes and materials should be advanced to support the 3D printing of sacrificial templates. Abstract Fabricating engineered vasculature within biological scaffolds is one of the most common strategies to maintain high cell viability before implantation. Many studies have been conducted from the aspects of the manufacturing process, materials science, and cell biology to fabricate engineered vasculature with the aim of enhancing the integration between scaffold and host. Among them, the method of combining three‐dimensional (3D) printing and sacrifice‐based technique has attracted extensive attention. Taking advantage of 3D printing, the method of separating the printed sacrificial template from the biological scaffold to form a 3D channel has become a widely used approach to advance the engineered vasculature. With the development of 3D printing techniques and material science, numerous sacrificial materials have shown their potential in fabricating engineered vasculature. However, several issues remain in this multimethod design, including, but not limited to, the printing process, removal method of sacrificial material, and cell seeding method. This review aims to summarize recent strategies for 3D printing sacrificial templates for fabricating engineered vasculature. The pros and cons of sacrificial materials used in these studies are analyzed. Future perspectives are proposed to fabricate biomimetic‐engineered vasculature. Flexible fabrication processes and materials should be advanced to support the 3D printing of sacrificial templates. |
Author | Hu, Yihe Li, Shuai He, Jiayan Shang, Xiushuai Li, Hangyu |
Author_xml | – sequence: 1 givenname: Shuai orcidid: 0000-0001-6722-017X surname: Li fullname: Li, Shuai organization: Department of Orthopedics, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China – sequence: 2 givenname: Hangyu surname: Li fullname: Li, Hangyu organization: Department of Orthopedics, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China – sequence: 3 givenname: Xiushuai surname: Shang fullname: Shang, Xiushuai organization: Department of Orthopedics, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China – sequence: 4 givenname: Jiayan surname: He fullname: He, Jiayan organization: Department of Orthopedics, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China – sequence: 5 givenname: Yihe surname: Hu fullname: Hu, Yihe organization: Department of Orthopedics, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China |
BookMark | eNplkU1rGzEQhkVJoa5r-hcWcshpHa2klVbH4DQfYCiUFgo9iFntyMisJVdaB_LvK9shlOQ0w_DwzMvMZ3IRYkBCvjZ02VDKrnc9sKWQH8iMKalrKfjvi__6T2SR85YWUjMqWjkjf36gxTBVMDxBsJgrHyp-W-2TD5MPmyqDTd5562GsJtztR5gK5GKqHPTJWzhRGDY-ICYcqifI9lCoQ8Iv5KODMePipc7Jr7tvP1cP9fr7_ePqZl1bJpWsOWILionBMgdtx1WjcOBCDGhZwzXqBjRzlNMeQEnedoPm0imUUnY9bRyfk8ezd4iwNSX6DtKzieDNaRDTxkCavB3RME7BCdEqoE5opnrdMCqhoyVEL5gsrsuza5_i3wPmyWzjIYUS33CqGW9pp9pCXZ0pm2LOCd3r1oaa4yPM8RFGHH31G9L6qRwthimBH9_x_wDvgouG |
CitedBy_id | crossref_primary_10_1186_s13046_023_02926_4 crossref_primary_10_1021_acsbiomaterials_4c01824 crossref_primary_10_1557_s43579_024_00544_5 crossref_primary_10_1016_j_cobme_2024_100531 crossref_primary_10_1080_17452759_2024_2395470 crossref_primary_10_1063_5_0220840 crossref_primary_10_3390_organoids3030014 crossref_primary_10_3390_ma17194792 crossref_primary_10_3390_polym16081055 crossref_primary_10_1089_ten_tea_2023_0204 crossref_primary_10_1002_adtp_202300410 crossref_primary_10_3390_mi15081054 |
Cites_doi | 10.1016/j.colsurfb.2021.111991 10.1002/jbm.b.33876 10.1016/j.msec.2010.01.006 10.1021/acsami.2c09221 10.1016/j.actbio.2021.07.011 10.1002/adhm.201500792 10.1016/j.tibtech.2008.04.009 10.1126/science.aav9750 10.1016/j.msec.2019.110530 10.1021/acsami.6b07725 10.1016/j.bioactmat.2022.01.030 10.1364/BIOMED.2012.BTu4A.6 10.1039/D2MH00314G 10.1016/j.matpr.2021.11.046 10.1002/(SICI)1097-0290(19960520)50:4<374::AID-BIT4>3.0.CO;2-I 10.1039/C4LC00030G 10.1088/1758-5090/abbd27 10.1016/j.actbio.2018.12.039 10.1007/s10856-020-06440-3 10.1016/j.biomaterials.2015.03.053 10.1002/adhm.202102123 10.1002/adma.202205082 10.1002/adfm.202102685 10.1002/adhm.201900742 10.1126/sciadv.aaw5111 10.1016/j.apmt.2022.101721 10.1016/j.eng.2021.06.020 10.1021/acsami.7b19537 10.1016/j.cclet.2021.03.073 10.1016/j.carbpol.2020.115970 10.1016/j.apmt.2021.101227 10.1007/s10853-019-03447-2 10.1155/2020/3863428 10.1021/acsbiomaterials.9b01834 10.1016/j.biomaterials.2014.12.031 10.1016/j.bprint.2018.02.001 10.1016/j.cej.2021.132926 10.1016/j.ijbiomac.2019.05.207 10.1113/JP270033 10.1002/adfm.201900075 10.1016/j.actbio.2019.01.018 10.1038/nmat3357 10.1007/s10544-016-0042-6 10.1002/jbm.a.36291 10.1016/j.talanta.2017.07.092 10.3390/ma11122529 10.1021/acsami.9b23063 10.1038/ncomms2406 10.1016/j.addma.2015.09.006 10.1016/j.drudis.2018.09.012 10.1007/978-981-10-2293-7_3 10.1016/j.msec.2016.04.068 10.1186/s40824-019-0168-8 10.1002/polb.10420 10.1126/sciadv.aaw2459 10.1002/adfm.202200011 10.1002/adhm.201800845 10.1021/acsami.8b14088 10.1016/j.actbio.2019.06.040 10.1021/bm0501656 10.1088/1758-5090/ab0fd3 10.1088/1758-5090/ab57d8 10.1016/j.compositesb.2022.110264 10.1002/adfm.202109864 10.1111/j.1748-1716.1994.tb09813.x 10.1039/C9GC00559E 10.1088/1758-5090/ab7e74 10.1088/1748-605X/ac6ea9 10.1021/ma9921347 10.1021/acsami.9b15451 10.1016/j.eurpolymj.2015.09.027 10.1126/sciadv.1500758 10.1021/acs.nanolett.9b00583 10.3390/polym10050555 10.1002/smll.202000546 10.1126/sciadv.abi9119 10.1016/j.apmt.2022.101478 10.1016/j.jmbbm.2018.12.020 10.1063/1.4967456 10.1002/adhm.202101405 10.1016/j.actbio.2014.04.031 10.1016/j.jddst.2019.05.037 10.1039/C7LC00694B 10.1002/jbm.a.30182 10.1088/1748-605X/abe55e 10.1021/acsbiomaterials.6b00499 10.1021/la0531502 10.1016/j.molstruc.2004.04.035 10.1016/j.jds.2022.07.014 10.1126/sciadv.abb3308 10.1039/C8BM00618K 10.1016/j.biomaterials.2018.11.011 10.1038/s41551-020-0566-1 10.1002/admt.202000103 10.1016/j.bioactmat.2022.08.021 10.1073/pnas.89.17.7919 10.1089/3dp.2021.0147 10.1038/s41467-020-14480-0 10.1039/D1LC00288K 10.1016/j.apmt.2020.100778 10.1021/la902587p 10.1002/adfm.202208325 10.1088/1758-5090/ac5fb7 10.4161/cc.7.13.6240 10.1016/j.compstruct.2005.10.016 10.1016/j.actbio.2019.02.038 10.1088/1758-5090/ab10ae 10.1002/adfm.201908349 10.1016/j.msea.2007.01.104 10.1016/j.biomaterials.2008.11.011 10.1016/j.apmt.2019.100479 10.1002/adma.202102661 10.1039/C6LC00193A 10.1016/j.apmt.2022.101729 10.1016/j.actbio.2020.06.012 10.1016/j.matdes.2019.108324 10.1073/pnas.1814238116 10.1016/j.ymeth.2020.04.003 10.1177/0271678X221135658 10.1002/smll.202203426 10.1002/adma.201200810 10.1016/j.biomaterials.2021.121286 10.1002/adma.202200653 10.1021/acsami.7b00849 10.1002/adfm.201910811 10.1016/j.carbpol.2021.118222 10.1002/adhm.202100238 10.1002/biot.201700703 10.1039/C9MH00174C 10.1016/j.msec.2016.09.081 10.1088/1758-5090/abb11e 10.1002/adfm.202008878 10.1039/C9MH01283D 10.1002/adfm.201801331 10.1016/j.jss.2015.06.051 10.1002/marc.202200271 10.1016/j.stemcr.2021.08.003 10.1002/dvdy.385 10.1002/adma.202005652 10.1016/j.apmt.2019.100549 |
ContentType | Journal Article |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1002/mba2.46 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2769-643X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_230af4457a0f4927b91206a803eeb426 10_1002_mba2_46 |
GroupedDBID | 0R~ 24P AAYXX ABJCF ACCMX AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ CCPQU CITATION EBS GROUPED_DOAJ HCIFZ KB. M~E OVD PDBOC PHGZM PHGZT PIMPY 8FE 8FG AAMMB ABUWG ADPDF AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS TEORI WIN PUEGO |
ID | FETCH-LOGICAL-c2676-3ee5a724dc2fa583717ed344dec2139e91a92f030baa76358d936f7e6668b01f3 |
IEDL.DBID | BENPR |
ISSN | 2769-643X |
IngestDate | Wed Aug 27 01:31:31 EDT 2025 Wed Aug 13 04:14:29 EDT 2025 Tue Jul 01 00:46:49 EDT 2025 Thu Apr 24 22:56:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2676-3ee5a724dc2fa583717ed344dec2139e91a92f030baa76358d936f7e6668b01f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6722-017X |
OpenAccessLink | https://www.proquest.com/docview/3092350875?pq-origsite=%requestingapplication% |
PQID | 3092350875 |
PQPubID | 6853473 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_230af4457a0f4927b91206a803eeb426 proquest_journals_3092350875 crossref_primary_10_1002_mba2_46 crossref_citationtrail_10_1002_mba2_46 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-00 20230901 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-00 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | MedComm - Biomaterials and applications |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_10_21_1 e_1_2_10_44_1 Luo W (e_1_2_10_68_1) 2020; 2020 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_130_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – ident: e_1_2_10_33_1 doi: 10.1016/j.colsurfb.2021.111991 – ident: e_1_2_10_74_1 doi: 10.1002/jbm.b.33876 – ident: e_1_2_10_110_1 doi: 10.1016/j.msec.2010.01.006 – ident: e_1_2_10_85_1 doi: 10.1021/acsami.2c09221 – ident: e_1_2_10_39_1 doi: 10.1016/j.actbio.2021.07.011 – ident: e_1_2_10_82_1 doi: 10.1002/adhm.201500792 – ident: e_1_2_10_8_1 doi: 10.1016/j.tibtech.2008.04.009 – ident: e_1_2_10_27_1 doi: 10.1126/science.aav9750 – ident: e_1_2_10_46_1 doi: 10.1016/j.msec.2019.110530 – ident: e_1_2_10_114_1 doi: 10.1021/acsami.6b07725 – ident: e_1_2_10_101_1 doi: 10.1016/j.bioactmat.2022.01.030 – ident: e_1_2_10_5_1 doi: 10.1364/BIOMED.2012.BTu4A.6 – ident: e_1_2_10_54_1 doi: 10.1039/D2MH00314G – ident: e_1_2_10_109_1 doi: 10.1016/j.matpr.2021.11.046 – ident: e_1_2_10_38_1 doi: 10.1002/(SICI)1097-0290(19960520)50:4<374::AID-BIT4>3.0.CO;2-I – ident: e_1_2_10_56_1 doi: 10.1039/C4LC00030G – ident: e_1_2_10_90_1 doi: 10.1088/1758-5090/abbd27 – ident: e_1_2_10_125_1 doi: 10.1016/j.actbio.2018.12.039 – ident: e_1_2_10_67_1 doi: 10.1007/s10856-020-06440-3 – ident: e_1_2_10_6_1 doi: 10.1016/j.biomaterials.2015.03.053 – ident: e_1_2_10_76_1 doi: 10.1002/adhm.202102123 – ident: e_1_2_10_141_1 doi: 10.1002/adma.202205082 – ident: e_1_2_10_119_1 doi: 10.1002/adfm.202102685 – ident: e_1_2_10_132_1 doi: 10.1002/adhm.201900742 – ident: e_1_2_10_23_1 doi: 10.1126/sciadv.aaw5111 – ident: e_1_2_10_29_1 doi: 10.1016/j.apmt.2022.101721 – ident: e_1_2_10_2_1 doi: 10.1016/j.eng.2021.06.020 – ident: e_1_2_10_50_1 doi: 10.1021/acsami.7b19537 – ident: e_1_2_10_79_1 doi: 10.1016/j.cclet.2021.03.073 – ident: e_1_2_10_28_1 doi: 10.1016/j.carbpol.2020.115970 – ident: e_1_2_10_122_1 doi: 10.1016/j.apmt.2021.101227 – ident: e_1_2_10_44_1 doi: 10.1007/s10853-019-03447-2 – volume: 2020 start-page: 1 year: 2020 ident: e_1_2_10_68_1 article-title: Printability optimization of gelatin‐alginate bioinks by cellulose nanofiber modification for potential meniscus bioprinting publication-title: J Nanomater doi: 10.1155/2020/3863428 – ident: e_1_2_10_18_1 doi: 10.1021/acsbiomaterials.9b01834 – ident: e_1_2_10_115_1 doi: 10.1016/j.biomaterials.2014.12.031 – ident: e_1_2_10_55_1 doi: 10.1016/j.bprint.2018.02.001 – ident: e_1_2_10_40_1 doi: 10.1016/j.cej.2021.132926 – ident: e_1_2_10_66_1 doi: 10.1016/j.ijbiomac.2019.05.207 – ident: e_1_2_10_137_1 doi: 10.1113/JP270033 – ident: e_1_2_10_84_1 doi: 10.1002/adfm.201900075 – ident: e_1_2_10_43_1 doi: 10.1016/j.actbio.2019.01.018 – ident: e_1_2_10_14_1 doi: 10.1038/nmat3357 – ident: e_1_2_10_19_1 doi: 10.1007/s10544-016-0042-6 – ident: e_1_2_10_127_1 doi: 10.1002/jbm.a.36291 – ident: e_1_2_10_64_1 doi: 10.1016/j.talanta.2017.07.092 – ident: e_1_2_10_60_1 doi: 10.3390/ma11122529 – ident: e_1_2_10_11_1 doi: 10.1021/acsami.9b23063 – ident: e_1_2_10_7_1 doi: 10.1038/ncomms2406 – ident: e_1_2_10_116_1 doi: 10.1016/j.addma.2015.09.006 – ident: e_1_2_10_25_1 doi: 10.1016/j.drudis.2018.09.012 – ident: e_1_2_10_34_1 doi: 10.1007/978-981-10-2293-7_3 – ident: e_1_2_10_70_1 doi: 10.1016/j.msec.2016.04.068 – ident: e_1_2_10_24_1 doi: 10.1186/s40824-019-0168-8 – ident: e_1_2_10_118_1 doi: 10.1002/polb.10420 – ident: e_1_2_10_51_1 doi: 10.1126/sciadv.aaw2459 – ident: e_1_2_10_95_1 doi: 10.1002/adfm.202200011 – ident: e_1_2_10_75_1 doi: 10.1002/adhm.201800845 – ident: e_1_2_10_121_1 doi: 10.1021/acsami.8b14088 – ident: e_1_2_10_78_1 doi: 10.1016/j.actbio.2019.06.040 – ident: e_1_2_10_36_1 doi: 10.1021/bm0501656 – ident: e_1_2_10_94_1 doi: 10.1088/1758-5090/ab0fd3 – ident: e_1_2_10_99_1 doi: 10.1088/1758-5090/ab57d8 – ident: e_1_2_10_41_1 doi: 10.1016/j.compositesb.2022.110264 – ident: e_1_2_10_30_1 doi: 10.1002/adfm.202109864 – ident: e_1_2_10_131_1 doi: 10.1111/j.1748-1716.1994.tb09813.x – ident: e_1_2_10_92_1 doi: 10.1039/C9GC00559E – ident: e_1_2_10_53_1 doi: 10.1088/1758-5090/ab7e74 – ident: e_1_2_10_126_1 doi: 10.1088/1748-605X/ac6ea9 – ident: e_1_2_10_35_1 doi: 10.1021/ma9921347 – ident: e_1_2_10_21_1 doi: 10.1021/acsami.9b15451 – ident: e_1_2_10_117_1 doi: 10.1016/j.eurpolymj.2015.09.027 – ident: e_1_2_10_22_1 doi: 10.1126/sciadv.1500758 – ident: e_1_2_10_106_1 doi: 10.1021/acs.nanolett.9b00583 – ident: e_1_2_10_108_1 doi: 10.3390/polym10050555 – ident: e_1_2_10_10_1 doi: 10.1002/smll.202000546 – ident: e_1_2_10_89_1 doi: 10.1126/sciadv.abi9119 – ident: e_1_2_10_62_1 doi: 10.1016/j.apmt.2022.101478 – ident: e_1_2_10_73_1 doi: 10.1016/j.jmbbm.2018.12.020 – ident: e_1_2_10_12_1 doi: 10.1063/1.4967456 – ident: e_1_2_10_48_1 doi: 10.1002/adhm.202101405 – ident: e_1_2_10_65_1 doi: 10.1016/j.actbio.2014.04.031 – ident: e_1_2_10_111_1 doi: 10.1016/j.jddst.2019.05.037 – ident: e_1_2_10_37_1 doi: 10.1039/C7LC00694B – ident: e_1_2_10_135_1 doi: 10.1002/jbm.a.30182 – ident: e_1_2_10_91_1 doi: 10.1088/1748-605X/abe55e – ident: e_1_2_10_138_1 doi: 10.1021/acsbiomaterials.6b00499 – ident: e_1_2_10_120_1 doi: 10.1021/la0531502 – ident: e_1_2_10_113_1 doi: 10.1016/j.molstruc.2004.04.035 – ident: e_1_2_10_63_1 doi: 10.1016/j.jds.2022.07.014 – ident: e_1_2_10_88_1 doi: 10.1126/sciadv.abb3308 – ident: e_1_2_10_47_1 doi: 10.1039/C8BM00618K – ident: e_1_2_10_16_1 doi: 10.1016/j.biomaterials.2018.11.011 – ident: e_1_2_10_32_1 doi: 10.1038/s41551-020-0566-1 – ident: e_1_2_10_77_1 doi: 10.1002/admt.202000103 – ident: e_1_2_10_97_1 doi: 10.1016/j.bioactmat.2022.08.021 – ident: e_1_2_10_134_1 doi: 10.1073/pnas.89.17.7919 – ident: e_1_2_10_15_1 doi: 10.1089/3dp.2021.0147 – ident: e_1_2_10_83_1 doi: 10.1038/s41467-020-14480-0 – ident: e_1_2_10_104_1 doi: 10.1039/D1LC00288K – ident: e_1_2_10_13_1 doi: 10.1016/j.apmt.2020.100778 – ident: e_1_2_10_80_1 doi: 10.1021/la902587p – ident: e_1_2_10_31_1 doi: 10.1002/adfm.202208325 – ident: e_1_2_10_86_1 doi: 10.1088/1758-5090/ac5fb7 – ident: e_1_2_10_136_1 doi: 10.4161/cc.7.13.6240 – ident: e_1_2_10_112_1 doi: 10.1016/j.compstruct.2005.10.016 – ident: e_1_2_10_87_1 doi: 10.1016/j.actbio.2019.02.038 – ident: e_1_2_10_107_1 doi: 10.1088/1758-5090/ab10ae – ident: e_1_2_10_49_1 doi: 10.1002/adfm.201908349 – ident: e_1_2_10_96_1 doi: 10.1016/j.msea.2007.01.104 – ident: e_1_2_10_133_1 doi: 10.1016/j.biomaterials.2008.11.011 – ident: e_1_2_10_123_1 doi: 10.1016/j.apmt.2019.100479 – ident: e_1_2_10_102_1 doi: 10.1002/adma.202102661 – ident: e_1_2_10_4_1 doi: 10.1039/C6LC00193A – ident: e_1_2_10_20_1 doi: 10.1016/j.apmt.2022.101729 – ident: e_1_2_10_52_1 doi: 10.1016/j.actbio.2020.06.012 – ident: e_1_2_10_129_1 doi: 10.1016/j.matdes.2019.108324 – ident: e_1_2_10_9_1 doi: 10.1073/pnas.1814238116 – ident: e_1_2_10_58_1 doi: 10.1016/j.ymeth.2020.04.003 – ident: e_1_2_10_130_1 doi: 10.1177/0271678X221135658 – ident: e_1_2_10_45_1 doi: 10.1002/smll.202203426 – ident: e_1_2_10_61_1 doi: 10.1002/adma.201200810 – ident: e_1_2_10_103_1 doi: 10.1016/j.biomaterials.2021.121286 – ident: e_1_2_10_100_1 doi: 10.1002/adma.202200653 – ident: e_1_2_10_72_1 doi: 10.1021/acsami.7b00849 – ident: e_1_2_10_3_1 doi: 10.1002/adfm.201910811 – ident: e_1_2_10_71_1 doi: 10.1016/j.carbpol.2021.118222 – ident: e_1_2_10_42_1 doi: 10.1002/adhm.202100238 – ident: e_1_2_10_57_1 doi: 10.1002/biot.201700703 – ident: e_1_2_10_93_1 doi: 10.1039/C9MH00174C – ident: e_1_2_10_81_1 doi: 10.1016/j.msec.2016.09.081 – ident: e_1_2_10_105_1 doi: 10.1088/1758-5090/abb11e – ident: e_1_2_10_140_1 doi: 10.1002/adfm.202008878 – ident: e_1_2_10_98_1 doi: 10.1039/C9MH01283D – ident: e_1_2_10_59_1 doi: 10.1002/adfm.201801331 – ident: e_1_2_10_17_1 doi: 10.1016/j.jss.2015.06.051 – ident: e_1_2_10_124_1 doi: 10.1002/marc.202200271 – ident: e_1_2_10_139_1 doi: 10.1016/j.stemcr.2021.08.003 – ident: e_1_2_10_26_1 doi: 10.1002/dvdy.385 – ident: e_1_2_10_128_1 doi: 10.1002/adma.202005652 – ident: e_1_2_10_69_1 doi: 10.1016/j.apmt.2019.100549 |
SSID | ssj0002920456 |
Score | 2.3726199 |
SecondaryResourceType | review_article |
Snippet | Fabricating engineered vasculature within biological scaffolds is one of the most common strategies to maintain high cell viability before implantation. Many... Abstract Fabricating engineered vasculature within biological scaffolds is one of the most common strategies to maintain high cell viability before... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
SubjectTerms | 3-D printers 3D printing Biological activity Biomedical materials Biomimetic materials Drugs engineered vasculature hydrogel Hydrogels Light Materials science Methods polymer sacrificial template Scaffolds Three dimensional printing Tissue engineering |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ1ar7EG8xSb7zB59lSLoyULBQ9jN7oJQo9j6_53JpiXQgxevyZLHTGbmm53JN4RceaEcy6PLCmltBpbIMmOsynyQ3Ktaauawovv8oiZT8TSTs96oL-wJS_TASXAjgMg2CiG1zaMwTDtTsFzZMuchOAgv6H0h5vWSKfTBOIMJoEH6SxZZRkcfzrIbhLm98NOy9G844TayjPfJXgcJ6W16lAOyFZpDstsjCjwib4DuIDrQrmK_oO8N5Q8UN-WwbZkuLBh_4oKgSDY1RwRJAY_SaF0aBASrQnfJ4GnXgIrlg2MyHT--3k-ybixCVjOlVQYvLq1mwtcsWgkJZqGD50L4UDPAc8EU1rAIxuusRbq50huuog6QqJQuLyI_IdvNZxNOCZW8FrWznkcjRDTS1K6Mufba8tLnpRiQ65W0qrrjDMfRFfMqsR2zCsVaCTUgdL3wK9FkbC65Q3GvTyOvdXsAtF112q7-0vaADFfKqjpjW1Q8B5QqkZr_7D_ucU52cKZ8aiQbku3l90-4AOSxdJftR_YLuRXWyg priority: 102 providerName: Directory of Open Access Journals |
Title | Recent advances in 3D printing sacrificial templates for fabricating engineered vasculature |
URI | https://www.proquest.com/docview/3092350875 https://doaj.org/article/230af4457a0f4927b91206a803eeb426 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSxxBEG7iekkOEvMgm5ilD8Fbx5l-90li3FUCioQICzkM_QwBs2tcvea3WzXTuxEEL3OYaQamu6vqq66a7yPkU5I68KYE1irvGVgiZ855zVJWIumoDA9Y0T0716eX8ttczeuB26q2Va59Yu-o0zLiGfmBaACKKORfP7z-y1A1CqurVUJji2yDC7Z2RLaPpucX3zenLKjFJHsJV260YxB-58Ofs8g8evAneP4Zoe-DkNQz9z9yzH20mb0kOxUm0i_Duu6SZ3nxirx4QB74mvwExAcRg9Yq_or-XlBxTPGgDluZ6cqDQxj4ISgSUF0hqqSAUWnxYRAHglG5vjInWptSsaTwhlzOpj--nrIqlcAi10YzkbPyhssUefEKks7W5CSkTDlywHjZtd7xAgYdvEcKOpuc0MVkSF5saNoi3pLRYrnI7whVIsoYfBLFSVmccjHY0phkvLCpsXJM9tez1cXKI45yFlfdwIDMO5zWTuoxoZuB1wN1xuMhRzjdm8fIdd3fWN786qrpdJAk-SKlMr4p0nETXMsb7W0DHx0AYIzJ3nqxumqAq-7_dnn_9OMP5DkqyA9tY3tkdHtzlz8CzrgNE7JlZyeTuqUmfbYO17N_03uCxtXn |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxELVCOACHKGzKkAR8AG4m3V7bhwgBYZiQ5ZRII3EwXhFSmAmZIMRP8Y2p6mWIFIlbrm3LUpfLrme76j1CXiapA69KYLXynsFK5Mxar1nKSiQdleEBX3SPjvXkVH6equkK-TvUwmBa5bAntht1mke8I98RFUARhfzrb89_MlSNwtfVQUKjc4uD_Oc3HNkWu_t7ML-vOB9_PPkwYb2qAItcG81EzsobLlPkxSs4n9UmJyFlypEDHMq29pYX8P3gPbK1NckKXUwGnN-Eqi4Cxr1D7koBkRwr08eflnc6qPwkW8FYbrRlEOynXZ0u8pzu_Aiev0GgfS0AtjoBN8JAG9vG62StB6X0XedFD8lKnj0iD65RFT4mXwBfQnyifc7Agn6fUbFH8VoQE6fpwsP207FRUKS7OkMMSwER0-JDJ0UEvXI_ZE60T4HFB4wn5PRWTPiUrM7ms7xBqBJRxuCTKFbKYpWNoSmVScaLJlWNHJHXg7Vc7FnLUTzjzHV8y9yhWZ3UI0KXHc87oo6bXd6juZfNyKzdfphffHP9QnVwJPNFSmV8VaTlJtiaV9o3Ffx0ADgzIlvDZLl-uS_cP-d89v_mF-Te5OTo0B3uHx9skvuoXd8lrG2R1cuLX3kbEM5leN66FSVfb9uPrwC2Iw1s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+3D+printing+sacrificial+templates+for+fabricating+engineered+vasculature&rft.jtitle=MedComm+-+Biomaterials+and+applications&rft.au=Li%2C+Shuai&rft.au=Li%2C+Hangyu&rft.au=Shang%2C+Xiushuai&rft.au=He%2C+Jiayan&rft.date=2023-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2769-643X&rft.eissn=2769-643X&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1002%2Fmba2.46 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2769-643X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2769-643X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2769-643X&client=summon |