Robust Resilient H∞ State Estimation for Time-varying Recurrent Neural Networks Subject to Probabilistic Quantization Under Variance Constraint

This paper is concerned with the robust resilient H ∞ state estimation problem for time-varying recurrent neural networks (TVRNNs) with probabilistic quantization under variance constraint. Here, a situation is considered where the signals are quantized before entering the network, and the occurrenc...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of control, automation, and systems Vol. 21; no. 2; pp. 684 - 695
Main Authors Gao, Yan, Hu, Jun, Yu, Hui, Du, Junhua
Format Journal Article
LanguageEnglish
Published Bucheon / Seoul Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers 01.02.2023
Springer Nature B.V
제어·로봇·시스템학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper is concerned with the robust resilient H ∞ state estimation problem for time-varying recurrent neural networks (TVRNNs) with probabilistic quantization under variance constraint. Here, a situation is considered where the signals are quantized before entering the network, and the occurrence probability is assumed to be known. In addition, during the design of the state estimation algorithm, the additive variation of the estimator gain is considered to reflect the parameter deviation that may occur during the execution. The main purpose is to design a finite-horizon resilient state estimation algorithm such that, in the presence of probabilistic quantization and estimator gain perturbation, some sufficient criteria are obtained for the estimation error system to satisfy the prescribed H ∞ performance requirement within the finite-horizon and the error variance boundedness. Finally, a numerical example is conducted to verify the feasibility of the presented estimation algorithm against the probabilistic quantization and estimator gain perturbation.
AbstractList This paper is concerned with the robust resilient H∞ state estimation problem for time-varying recurrent neural networks (TVRNNs) with probabilistic quantization under variance constraint. Here, a situation is considered where the signals are quantized before entering the network, and the occurrence probability is assumed to be known. In addition, during the design of the state estimation algorithm, the additive variation of the estimator gain is considered to reflect the parameter deviation that may occur during the execution. The main purpose is to design a finite-horizon resilient state estimation algorithm such that, in the presence of probabilistic quantization and estimator gain perturbation, some sufficient criteria are obtained for the estimation error system to satisfy the prescribed H∞ performance requirement within the finite-horizon and the error variance boundedness. Finally, a numerical example is conducted to verify the feasibility of the presented estimation algorithm against the probabilistic quantization and estimator gain perturbation. KCI Citation Count: 3
This paper is concerned with the robust resilient H∞ state estimation problem for time-varying recurrent neural networks (TVRNNs) with probabilistic quantization under variance constraint. Here, a situation is considered where the signals are quantized before entering the network, and the occurrence probability is assumed to be known. In addition, during the design of the state estimation algorithm, the additive variation of the estimator gain is considered to reflect the parameter deviation that may occur during the execution. The main purpose is to design a finite-horizon resilient state estimation algorithm such that, in the presence of probabilistic quantization and estimator gain perturbation, some sufficient criteria are obtained for the estimation error system to satisfy the prescribed H∞ performance requirement within the finite-horizon and the error variance boundedness. Finally, a numerical example is conducted to verify the feasibility of the presented estimation algorithm against the probabilistic quantization and estimator gain perturbation.
This paper is concerned with the robust resilient H ∞ state estimation problem for time-varying recurrent neural networks (TVRNNs) with probabilistic quantization under variance constraint. Here, a situation is considered where the signals are quantized before entering the network, and the occurrence probability is assumed to be known. In addition, during the design of the state estimation algorithm, the additive variation of the estimator gain is considered to reflect the parameter deviation that may occur during the execution. The main purpose is to design a finite-horizon resilient state estimation algorithm such that, in the presence of probabilistic quantization and estimator gain perturbation, some sufficient criteria are obtained for the estimation error system to satisfy the prescribed H ∞ performance requirement within the finite-horizon and the error variance boundedness. Finally, a numerical example is conducted to verify the feasibility of the presented estimation algorithm against the probabilistic quantization and estimator gain perturbation.
Author Gao, Yan
Du, Junhua
Hu, Jun
Yu, Hui
Author_xml – sequence: 1
  givenname: Yan
  surname: Gao
  fullname: Gao, Yan
  organization: Department of Mathematics, Harbin University of Science and Technology
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-7852-5064
  surname: Hu
  fullname: Hu, Jun
  email: jhu@hrbust.edu.cn
  organization: School of Automation, Harbin University of Science and Technology
– sequence: 3
  givenname: Hui
  surname: Yu
  fullname: Yu, Hui
  organization: School of Automation, Harbin University of Science and Technology
– sequence: 4
  givenname: Junhua
  surname: Du
  fullname: Du, Junhua
  organization: Department of Mathematics, Harbin University of Science and Technology, College of Science, Qiqihar University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002926565$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kc1uEzEUhS1UJNLCA7CzxA5pwPbM2DPLKiptpYqfNGVr2c6dyElql2sPpDwBW16Ah-NJcDpISEiwOpvznXt1zjE5CjEAIc85e8UZU68TF23bVkzwikklq_0jMhOMtVXDenFEZrztu0o2jXxCjlPaMCal6NWMfF9EO6ZMF5D8zkPI9OLntx_0OpsM9Cxlf2uyj4EOEenS30L12eC9D-sCuBHxALyFEc2uSP4ScZvo9Wg34DLNkb7HaI0twSXI0Q-jCdl_nQJvwgqQfjToTXBA5zGkjMaH_JQ8HswuwbPfekJu3pwt5xfV1bvzy_npVeWElPuqG2pbK9OYnhuoVdMA9E0nV10_DK7j0jamBmWFtMz2YKRzK1V3wIRVQytWbX1CXk65AQe9dV5H4x90HfUW9elieak545y1jSjmF5P5DuOnEVLWmzhiKP9poRRnitf9IZJPLocxJYRB32EpEO9LkD7MpKeZdJlJH2bS-8Kovxjn80NFhzp2_yXFRKZyJawB__z0b-gX7AytOA
CitedBy_id crossref_primary_10_1016_j_neucom_2024_127448
crossref_primary_10_1002_acs_3914
crossref_primary_10_1002_rnc_7669
crossref_primary_10_1038_s41598_024_52209_x
Cites_doi 10.1109/TNNLS.2019.2944552
10.1049/iet-gtd.2018.5525
10.1016/j.jfranklin.2020.03.031
10.1016/j.ins.2020.06.021
10.1109/TNNLS.2020.3016120
10.1007/s00521-018-3516-z
10.1002/rnc.4443
10.1109/JAS.2022.105581
10.1109/TSP.2010.2042489
10.1109/TCSI.2018.2824306
10.1016/j.neunet.2018.05.007
10.1016/j.neucom.2017.09.078
10.1016/j.jfranklin.2018.01.038
10.1109/TNNLS.2015.2475737
10.1007/s11063-019-10064-2
10.1016/j.jfranklin.2020.05.003
10.9781/ijimai.2018.01.004
10.1109/TCYB.2017.2729581
10.1080/00207721.2021.1872118
10.1080/00207721.2021.1995528
10.1080/00207721.2021.1917721
10.1093/imamci/dnx043
10.1002/asjc.2252
10.1080/00207179.2017.1350884
10.1109/JAS.2022.105572
10.1109/9.618239
10.1049/iet-cvi.2013.0294
10.1016/j.neucom.2019.04.034
10.1002/rnc.1662
10.1016/j.neunet.2020.08.023
10.1016/j.neucom.2005.03.003
10.1007/s12555-020-0326-8
10.1080/00207721.2021.1885082
10.1109/TNNLS.2018.2790982
10.1016/j.bspc.2014.07.004
10.1016/j.fss.2018.01.017
10.1016/j.jfranklin.2020.10.018
ContentType Journal Article
Copyright ICROS, KIEE and Springer 2023
ICROS, KIEE and Springer 2023.
Copyright_xml – notice: ICROS, KIEE and Springer 2023
– notice: ICROS, KIEE and Springer 2023.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ACYCR
DOI 10.1007/s12555-021-0676-x
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Korean Citation Index
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2005-4092
EndPage 695
ExternalDocumentID oai_kci_go_kr_ARTI_10110542
10_1007_s12555_021_0676_x
GroupedDBID -EM
.UV
06D
0R~
0VY
1N0
203
29J
29~
2KG
2LR
2VQ
30V
3V.
4.4
406
408
40D
5GY
5VS
67Z
7WY
8FE
8FG
8FL
96X
9ZL
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
BA0
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRJ
FRNLG
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GNUQQ
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GW5
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KOV
KVFHK
LLZTM
M0C
M0N
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P62
P9P
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
R9I
ROL
RSV
S1Z
S27
S3B
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TDB
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7X
Z7Z
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
7SC
7SP
7TB
8FD
ABRTQ
FR3
JQ2
L7M
L~C
L~D
ACYCR
PMFND
ID FETCH-LOGICAL-c266x-8f3b37a4a91ae3744ee9486d89ffc816b4a3e7b26b0b9ea6ccd738e02b7f52d53
IEDL.DBID U2A
ISSN 1598-6446
IngestDate Thu May 29 05:23:44 EDT 2025
Sat Jul 26 01:21:45 EDT 2025
Thu Apr 24 23:04:54 EDT 2025
Tue Jul 01 00:27:58 EDT 2025
Fri Feb 21 02:44:27 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords resilient state estimator
time-varying recurrent neural networks
performance
variance constraint
probabilistic quantization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266x-8f3b37a4a91ae3744ee9486d89ffc816b4a3e7b26b0b9ea6ccd738e02b7f52d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
http://link.springer.com/article/10.1007/s12555-021-0676-x
ORCID 0000-0002-7852-5064
PQID 2771071395
PQPubID 326316
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10110542
proquest_journals_2771071395
crossref_primary_10_1007_s12555_021_0676_x
crossref_citationtrail_10_1007_s12555_021_0676_x
springer_journals_10_1007_s12555_021_0676_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230200
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace Bucheon / Seoul
PublicationPlace_xml – name: Bucheon / Seoul
– name: Heidelberg
PublicationSubtitle IJCAS
PublicationTitle International journal of control, automation, and systems
PublicationTitleAbbrev Int. J. Control Autom. Syst
PublicationYear 2023
Publisher Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers
Springer Nature B.V
제어·로봇·시스템학회
Publisher_xml – name: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers
– name: Springer Nature B.V
– name: 제어·로봇·시스템학회
References Li, Dong, Wang, Bu (CR17) 2020; 31
Liu, Wang, Chen, Wei (CR12) 2020; 132
Shen, Xing, Huo, Wu, Park (CR1) 2019; 356
Saravanakumar, Nirmala, Raja, Cao, Lu (CR4) 2020; 22
Geng, Wang, Sun (CR6) 2019; 13
Karam, Laleg-Kirati, Zayane, Kashou (CR5) 2014; 14
Boughrara, Chtourou, Amar, Chen (CR36) 2014; 8
Saravanakumar, Muoi, Zhu (CR37) 2020; 357
Tang, Qiao, Zhang, Wu, Chai, Yu (CR8) 2018; 275
Wang, Dong, Xue, Peng (CR23) 2019; 356
Hu, Zhang, Liu, Yu (CR38) 2021; 52
Keel, Bhattacharyya (CR27) 1997; 42
Yu, Dong, Wang, Li (CR30) 2019; 31
Rakkiyappan, Maheswari, Velmurugan, Park (CR24) 2018; 105
Zou, Wang, Hu, Liu, Liu (CR39) 2021; 52
Dong, Wang, Ho, Gao (CR34) 2010; 58
Huang, Shen, Xia, Huang, Wang (CR22) 2019; 50
Hu, Jia, Yu, Liu (CR15) 2022; 9
Tamura, Zhang, Xu, Ishii, Tang (CR9) 2005; 68
Rakkiyappan, Maheswari, Velmurugan, Park (CR20) 2018; 105
Shen, Wang, Xia, Cao, Chen (CR25) 2020; 357
Wang, Shen, Zou (CR21) 2022; 9
Shen, Wang, Shu, Wei (CR35) 2011; 21
Dong, Zhong, Shi, Kang, Cheng (CR13) 2019; 356
Abdel-Nasser, Mahmoud, Kashef (CR7) 2018; 5
Zhang, Wang, Ding, Wei, Alsaadi (CR31) 2019; 36
Shen, Wang, Shen, Alsaadi (CR11) 2020; 539
Dong, Hou, Wang, Ren (CR33) 2018; 29
Saravanakumar, Anthoni, Zhu (CR29) 2020; 357
Bao, Park, Cao (CR3) 2016; 27
Wu, Xu, Shi, Chen, Su (CR26) 2018; 29
Han, Kao, Park (CR28) 2019; 29
Wang, Wang, Liang, Liu (CR18) 2018; 65
Shi, Zhou, Guo (CR19) 2021; 19
Hu, Jia, Liu, Yi, Liu (CR14) 2021; 52
Cheng, Park, Karimi, Shen (CR2) 2018; 48
Ali, Vadivel, Saravanakumar (CR10) 2019; 92
Qian, Xing, Fei (CR16) 2021; 32
Liu, Ma, Zhang, Bo (CR32) 2021; 52
Z Huang (676_CR22) 2019; 50
R Rakkiyappan (676_CR24) 2018; 105
W Qian (676_CR16) 2021; 32
J Cheng (676_CR2) 2018; 48
Y Yu (676_CR30) 2019; 31
Y Shen (676_CR11) 2020; 539
S Liu (676_CR12) 2020; 132
S Dong (676_CR13) 2019; 356
S Zhang (676_CR31) 2019; 36
H Dong (676_CR34) 2010; 58
T Saravanakumar (676_CR29) 2020; 357
M S Ali (676_CR10) 2019; 92
R Rakkiyappan (676_CR20) 2018; 105
J Tang (676_CR8) 2018; 275
H Bao (676_CR3) 2016; 27
Z G Wu (676_CR26) 2018; 29
B Shen (676_CR35) 2011; 21
H Boughrara (676_CR36) 2014; 8
S Geng (676_CR6) 2019; 13
Y-A Wang (676_CR21) 2022; 9
H Dong (676_CR33) 2018; 29
J Li (676_CR17) 2020; 31
L Liu (676_CR32) 2021; 52
T Saravanakumar (676_CR4) 2020; 22
A M Karam (676_CR5) 2014; 14
Y Han (676_CR28) 2019; 29
H Tamura (676_CR9) 2005; 68
H Wang (676_CR23) 2019; 356
F Wang (676_CR18) 2018; 65
M Abdel-Nasser (676_CR7) 2018; 5
Z Shi (676_CR19) 2021; 19
H Shen (676_CR1) 2019; 356
T Saravanakumar (676_CR37) 2020; 357
J Hu (676_CR15) 2022; 9
L H Keel (676_CR27) 1997; 42
J Hu (676_CR14) 2021; 52
H Shen (676_CR25) 2020; 357
J Hu (676_CR38) 2021; 52
L Zou (676_CR39) 2021; 52
References_xml – volume: 31
  start-page: 3747
  issue: 9
  year: 2020
  end-page: 3753
  ident: CR17
  article-title: Partial-neurons-based passivity-guaranteed state estimation for neural networks with randomly occurring time delays
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2944552
– volume: 13
  start-page: 4503
  issue: 19
  year: 2019
  end-page: 4509
  ident: CR6
  article-title: State estimation of 500 kV sulphur hexafluoride high-voltage CBs based on Bayesian probability and neural network
  publication-title: IET Generation Transmission and Distribution
  doi: 10.1049/iet-gtd.2018.5525
– volume: 357
  start-page: 6352
  issue: 10
  year: 2020
  end-page: 6369
  ident: CR25
  article-title: Non-fragile mixed passive and state estimation for singularly perturbed neural networks with semi-Markov jumping parameters
  publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics
  doi: 10.1016/j.jfranklin.2020.03.031
– volume: 539
  start-page: 434
  year: 2020
  end-page: 446
  ident: CR11
  article-title: state estimation for multi-rate artificial neural networks with integral measurements: A switched system approach
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.06.021
– volume: 32
  start-page: 3909
  issue: 9
  year: 2021
  end-page: 3918
  ident: CR16
  article-title: state estimation for neural networks with general activation function and mixed time-varying delays
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3016120
– volume: 31
  start-page: 7245
  issue: 11
  year: 2019
  end-page: 7256
  ident: CR30
  article-title: Delay-distribution-dependent non-fragile state estimation for discrete-time neural networks under event-triggered mechanism
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-018-3516-z
– volume: 29
  start-page: 1462
  issue: 5
  year: 2019
  end-page: 1483
  ident: CR28
  article-title: Robust nonfragile observer-based control of switched discrete singular systems with time-varying delays: a sliding mode control design
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.4443
– volume: 9
  start-page: 941
  issue: 5
  year: 2022
  end-page: 944
  ident: CR15
  article-title: Dynamic event-triggered state estimation for nonlinear coupled output complex networks subject to innovation constraints
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2022.105581
– volume: 58
  start-page: 2534
  issue: 5
  year: 2010
  end-page: 2543
  ident: CR34
  article-title: Variance-constrained filtering for a class of nonlinear time-varying systems with multiple missing measurements: the finite-horizon case
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2010.2042489
– volume: 65
  start-page: 2992
  issue: 9
  year: 2018
  end-page: 3004
  ident: CR18
  article-title: Resilient filtering for linear time-varying repetitive processes under uniform quantizations and round-robin protocols
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
  doi: 10.1109/TCSI.2018.2824306
– volume: 105
  start-page: 236
  year: 2018
  end-page: 248
  ident: CR24
  article-title: Event-triggered state estimation for semi-Markov jumping discrete-time neural networks with quantization
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.05.007
– volume: 275
  start-page: 1426
  year: 2018
  end-page: 1440
  ident: CR8
  article-title: Combinatorial optimization of input features and learning parameters for decorrelated neural network ensemble-based soft measuring model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.078
– volume: 356
  start-page: 10216
  issue: 17
  year: 2019
  end-page: 10240
  ident: CR23
  article-title: Event-triggered state estimation for discrete-time neural networks with sensor saturations and data quantization
  publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics
  doi: 10.1016/j.jfranklin.2018.01.038
– volume: 27
  start-page: 190
  issue: 1
  year: 2016
  end-page: 201
  ident: CR3
  article-title: Exponential synchronization of coupled stochastic memristor-based neural networks with time-varying probabilistic delay coupling and impulsive delay
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2475737
– volume: 50
  start-page: 2821
  issue: 3
  year: 2019
  end-page: 2841
  ident: CR22
  article-title: Extended synchronization control for switched neural networks with multi quantization densities based on a persistent dwell-time approach
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-019-10064-2
– volume: 357
  start-page: 6197
  issue: 10
  year: 2020
  end-page: 6227
  ident: CR29
  article-title: Resilient extended dissipative control for Markovian jump systems with partially known transition probabilities under actuator saturation
  publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics
  doi: 10.1016/j.jfranklin.2020.05.003
– volume: 5
  start-page: 92
  issue: 1
  year: 2018
  end-page: 100
  ident: CR7
  article-title: A novel smart grid state estimation method based on neural networks
  publication-title: International Journal of Interactive Multimedia and Artificial Intelligence
  doi: 10.9781/ijimai.2018.01.004
– volume: 48
  start-page: 2232
  issue: 8
  year: 2018
  end-page: 2244
  ident: CR2
  article-title: A flexible terminal approach to sampled-data exponentially synchronization of Markovian neural networks with time-varying delayed signals
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2729581
– volume: 105
  start-page: 236
  year: 2018
  end-page: 248
  ident: CR20
  article-title: Event-triggered state estimation for semi-Markov jumping discrete-time neural networks with quantization
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.05.007
– volume: 52
  start-page: 1192
  issue: 6
  year: 2021
  end-page: 1205
  ident: CR32
  article-title: Distributed non-fragile set-membership filtering for nonlinear systems under fading channels and bias injection attacks
  publication-title: International Journal of System Science
  doi: 10.1080/00207721.2021.1872118
– volume: 52
  start-page: 3351
  issue: 16
  year: 2021
  end-page: 3367
  ident: CR14
  article-title: A survey on state estimation of complex dynamical networks
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207721.2021.1995528
– volume: 52
  start-page: 3013
  issue: 14
  year: 2021
  end-page: 3034
  ident: CR39
  article-title: Communication-protocol-based analysis and synthesis of networked systems: progress, prospects and challenges
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207721.2021.1917721
– volume: 36
  start-page: 247
  issue: 1
  year: 2019
  end-page: 269
  ident: CR31
  article-title: Non-fragile state estimation for discrete-time complex networks with randomly occurring time-varying delays and channel fadings
  publication-title: IMA Journal of Mathematical Control and Information
  doi: 10.1093/imamci/dnx043
– volume: 22
  start-page: 2487
  issue: 6
  year: 2020
  end-page: 2499
  ident: CR4
  article-title: Finite-time reliable dissipative control of neutral-type switched artificial neural networks with non-linear fault inputs and randomly occurring uncertainties
  publication-title: Asian Journal of Control
  doi: 10.1002/asjc.2252
– volume: 92
  start-page: 270
  issue: 2
  year: 2019
  end-page: 290
  ident: CR10
  article-title: Event-triggered state estimation for Markovian jumping impulsive neural networks with interval time-varying delays
  publication-title: International Journal of Control
  doi: 10.1080/00207179.2017.1350884
– volume: 9
  start-page: 926
  issue: 5
  year: 2022
  end-page: 929
  ident: CR21
  article-title: Recursive fault estimation with energy harvesting sensors and uniform quantization effects
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2022.105572
– volume: 42
  start-page: 1098
  issue: 8
  year: 1997
  end-page: 1105
  ident: CR27
  article-title: Robust, fragile, or optimal?”
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.618239
– volume: 8
  start-page: 729
  issue: 6
  year: 2014
  end-page: 739
  ident: CR36
  article-title: Face recognition based on perceived facial images and multilayer perceptron neural network using constructive training algorithm
  publication-title: IET Computer Vision
  doi: 10.1049/iet-cvi.2013.0294
– volume: 356
  start-page: 9
  year: 2019
  end-page: 20
  ident: CR13
  article-title: Further improved results on non-fragile performance state estimation for delayed static neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.034
– volume: 21
  start-page: 1693
  issue: 14
  year: 2011
  end-page: 1709
  ident: CR35
  article-title: filtering for uncertain time-varying systems with multiple randomly occurred nonlinearities and successive packet dropouts
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.1662
– volume: 132
  start-page: 211
  year: 2020
  end-page: 219
  ident: CR12
  article-title: Dynamic event-based state estimation for delayed artificial neural networks with multiplicative noises: A gain-scheduled approach
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.08.023
– volume: 68
  start-page: 297
  year: 2005
  end-page: 305
  ident: CR9
  article-title: Lagrangian object relaxation neural network for combinatorial optimization problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.03.003
– volume: 19
  start-page: 1944
  issue: 5
  year: 2021
  end-page: 1952
  ident: CR19
  article-title: Neural network observer based consensus control of unknown nonlinear multi-agent systems with prescribed performance and input quantization
  publication-title: International Journal of Control Automation and Systems
  doi: 10.1007/s12555-020-0326-8
– volume: 52
  start-page: 1129
  issue: 6
  year: 2021
  end-page: 1147
  ident: CR38
  article-title: A survey on sliding mode control for networked control systems
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207721.2021.1885082
– volume: 29
  start-page: 5111
  issue: 10
  year: 2018
  end-page: 5121
  ident: CR26
  article-title: Nonfragile state estimation of quantized complex networks with switching topologies
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2790982
– volume: 29
  start-page: 2757
  issue: 7
  year: 2018
  end-page: 2768
  ident: CR33
  article-title: Variance-constrained state estimation for complex networks with randomly varying topologies
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 14
  start-page: 240
  year: 2014
  end-page: 247
  ident: CR5
  article-title: Nonlinear neural network for hemodynamic model state and input estimation using fMRI data
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2014.07.004
– volume: 356
  start-page: 113
  year: 2019
  end-page: 128
  ident: CR1
  article-title: Finite-time asynchronous state estimation for discrete-time fuzzy Markov jump neural networks with uncertain measurements
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2018.01.017
– volume: 357
  start-page: 13637
  issue: 18
  year: 2020
  end-page: 13665
  ident: CR37
  article-title: Finite-time sampled-data control of switched stochastic model with non-deterministic actuator faults and saturation nonlinearity
  publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics
  doi: 10.1016/j.jfranklin.2020.10.018
– volume: 105
  start-page: 236
  year: 2018
  ident: 676_CR24
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.05.007
– volume: 29
  start-page: 2757
  issue: 7
  year: 2018
  ident: 676_CR33
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 52
  start-page: 3351
  issue: 16
  year: 2021
  ident: 676_CR14
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207721.2021.1995528
– volume: 539
  start-page: 434
  year: 2020
  ident: 676_CR11
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.06.021
– volume: 9
  start-page: 941
  issue: 5
  year: 2022
  ident: 676_CR15
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2022.105581
– volume: 31
  start-page: 3747
  issue: 9
  year: 2020
  ident: 676_CR17
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2944552
– volume: 29
  start-page: 5111
  issue: 10
  year: 2018
  ident: 676_CR26
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2790982
– volume: 356
  start-page: 10216
  issue: 17
  year: 2019
  ident: 676_CR23
  publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics
  doi: 10.1016/j.jfranklin.2018.01.038
– volume: 52
  start-page: 3013
  issue: 14
  year: 2021
  ident: 676_CR39
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207721.2021.1917721
– volume: 31
  start-page: 7245
  issue: 11
  year: 2019
  ident: 676_CR30
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-018-3516-z
– volume: 14
  start-page: 240
  year: 2014
  ident: 676_CR5
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2014.07.004
– volume: 357
  start-page: 6352
  issue: 10
  year: 2020
  ident: 676_CR25
  publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics
  doi: 10.1016/j.jfranklin.2020.03.031
– volume: 22
  start-page: 2487
  issue: 6
  year: 2020
  ident: 676_CR4
  publication-title: Asian Journal of Control
  doi: 10.1002/asjc.2252
– volume: 48
  start-page: 2232
  issue: 8
  year: 2018
  ident: 676_CR2
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2729581
– volume: 8
  start-page: 729
  issue: 6
  year: 2014
  ident: 676_CR36
  publication-title: IET Computer Vision
  doi: 10.1049/iet-cvi.2013.0294
– volume: 275
  start-page: 1426
  year: 2018
  ident: 676_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.078
– volume: 42
  start-page: 1098
  issue: 8
  year: 1997
  ident: 676_CR27
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.618239
– volume: 65
  start-page: 2992
  issue: 9
  year: 2018
  ident: 676_CR18
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
  doi: 10.1109/TCSI.2018.2824306
– volume: 29
  start-page: 1462
  issue: 5
  year: 2019
  ident: 676_CR28
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.4443
– volume: 9
  start-page: 926
  issue: 5
  year: 2022
  ident: 676_CR21
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2022.105572
– volume: 105
  start-page: 236
  year: 2018
  ident: 676_CR20
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.05.007
– volume: 50
  start-page: 2821
  issue: 3
  year: 2019
  ident: 676_CR22
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-019-10064-2
– volume: 58
  start-page: 2534
  issue: 5
  year: 2010
  ident: 676_CR34
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2010.2042489
– volume: 32
  start-page: 3909
  issue: 9
  year: 2021
  ident: 676_CR16
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3016120
– volume: 36
  start-page: 247
  issue: 1
  year: 2019
  ident: 676_CR31
  publication-title: IMA Journal of Mathematical Control and Information
  doi: 10.1093/imamci/dnx043
– volume: 357
  start-page: 13637
  issue: 18
  year: 2020
  ident: 676_CR37
  publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics
  doi: 10.1016/j.jfranklin.2020.10.018
– volume: 5
  start-page: 92
  issue: 1
  year: 2018
  ident: 676_CR7
  publication-title: International Journal of Interactive Multimedia and Artificial Intelligence
  doi: 10.9781/ijimai.2018.01.004
– volume: 19
  start-page: 1944
  issue: 5
  year: 2021
  ident: 676_CR19
  publication-title: International Journal of Control Automation and Systems
  doi: 10.1007/s12555-020-0326-8
– volume: 356
  start-page: 9
  year: 2019
  ident: 676_CR13
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.034
– volume: 52
  start-page: 1129
  issue: 6
  year: 2021
  ident: 676_CR38
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207721.2021.1885082
– volume: 27
  start-page: 190
  issue: 1
  year: 2016
  ident: 676_CR3
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2475737
– volume: 52
  start-page: 1192
  issue: 6
  year: 2021
  ident: 676_CR32
  publication-title: International Journal of System Science
  doi: 10.1080/00207721.2021.1872118
– volume: 68
  start-page: 297
  year: 2005
  ident: 676_CR9
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.03.003
– volume: 92
  start-page: 270
  issue: 2
  year: 2019
  ident: 676_CR10
  publication-title: International Journal of Control
  doi: 10.1080/00207179.2017.1350884
– volume: 21
  start-page: 1693
  issue: 14
  year: 2011
  ident: 676_CR35
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.1662
– volume: 13
  start-page: 4503
  issue: 19
  year: 2019
  ident: 676_CR6
  publication-title: IET Generation Transmission and Distribution
  doi: 10.1049/iet-gtd.2018.5525
– volume: 132
  start-page: 211
  year: 2020
  ident: 676_CR12
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.08.023
– volume: 356
  start-page: 113
  year: 2019
  ident: 676_CR1
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2018.01.017
– volume: 357
  start-page: 6197
  issue: 10
  year: 2020
  ident: 676_CR29
  publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics
  doi: 10.1016/j.jfranklin.2020.05.003
SSID ssj0066297
Score 2.2945328
Snippet This paper is concerned with the robust resilient H ∞ state estimation problem for time-varying recurrent neural networks (TVRNNs) with probabilistic...
This paper is concerned with the robust resilient H∞ state estimation problem for time-varying recurrent neural networks (TVRNNs) with probabilistic...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 684
SubjectTerms Algorithms
Control
Engineering
H infinity
Horizon
Measurement
Mechatronics
Neural networks
Perturbation
Recurrent neural networks
Regular Papers
Robotics
Robustness (mathematics)
State estimation
Statistical analysis
Variance
제어계측공학
Title Robust Resilient H∞ State Estimation for Time-varying Recurrent Neural Networks Subject to Probabilistic Quantization Under Variance Constraint
URI https://link.springer.com/article/10.1007/s12555-021-0676-x
https://www.proquest.com/docview/2771071395
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002926565
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Journal of Control, 2023, Automation, and Systems, 21(2), , pp.684-695
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELb4uZQDaimIpRRZghPI0q7j2PFxVS3dUoEAdRE9WbbjIATaRUkW8Qi98gI8HE_CTH5YQG0lTjk4jqN8tuebeOYbQnYs-MYa2phXLmZCW8cS7jQDYwLsXEU-VCKuh0dyOBIH5_F5k8ddtNHu7ZFktVPPkt2A_WI2MUbqKMmAOC7G6LrDJB7xfrv9SsnriiqxThgYe9keZf7tEa-M0fw4z17xzDdHo5XF2f9IlhuqSPs1tp_IXBivkKUXAoKfyf3pxE2Lkp6G4vIaMxvp8PHPA60YJB3A6q0TEykwU4rJHuzW5pjXBB18LcxEUZ0DRjmqw8ELCjsJ_pqh5YQe57DYMXgWtZzpyRRAaLI2aVUuiZ6Bo42zhmLZz6rYRLlKRvuDX9-GrCmywDzY5juWZJGLlBVW92yIlBAhaJHINNFZ5pOedMJGQTkuXdfpYKX3qYqS0OVOZTFP42iNLIwn47BOKAd3yCodlJBWCDB0mXRJCrtCTwMrTrsd0m2_tvGNAjm-27WZaScjQAYAMgiQueuQ3ecuN7X8xv9u3gYIzZW_NCiajdeLibnKDbgGPzCWDbik4B2y2UJsmvVaGK6AaYG_ruMO2WthnzX_c8iNd939hXzAavV10PcmWSjzafgKnKZ0W2Sx__33z8FWNZefAIhK8jk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELZaemg5IEpbseWnluiplaVdx_HPEVWghcKKIhZxs2zHQQi0i5JsxSP02hfg4XiSzuSHhYpW4pSD4zjKZ3u-iWe-IeSzA9_YQBsLyqdMGOeZ5t4wMCbAzlUSYi3iejiSw7HYP0vP2jzusot2744k6516nuwG7BeziTFSR0kGxPEVcAGNcVxjvt1tv1LypqJKajQDYy-7o8ynHvHIGL2cFPkjnvnX0WhtcXaXyVJLFel2g-1b8iJOVsjiAwHBd-T38dTPyooex_LiCjMb6fDu1y2tGSTdgdXbJCZSYKYUkz3YT1dgXhN0CI0wE0V1Dhhl1ISDlxR2Evw1Q6spPSpgsWPwLGo50x8zAKHN2qR1uSR6Co42zhqKZT_rYhPVezLe3Tn5NmRtkQUWwDbfMJ0nPlFOODNwMVFCxGiElpk2eR70QHrhkqg8l77vTXQyhEwlOva5V3nKszT5QBYm00lcJZSDO-SUiUpIJwQYulx6ncGuMDDAirN-j_S7r21Dq0CO73Zl59rJCJAFgCwCZG965Mt9l-tGfuN_N28BhPYyXFgUzcbr-dReFhZcgz2MZQMuKXiPrHcQ23a9lpYrYFrgr5u0R752sM-b_znkx2fd_Ym8Hp4cHtiDvdH3NfIGK9c3AeDrZKEqZnED-E3lN-v5_Ad_NvOY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELZaKqFyqFpoxVLaWoITyGLXcez4iIDVUmAFiK24WbbjoBUoi5JsxSP02hfow_VJOpOfbqnaSj3l4DiO8tmeb-KZbwjZtuAba2hjXrmYCW0dS7jTDIwJsHMV-VCLuJ6N5WgiPl7H122d07KLdu-OJJucBlRpyqu9-zTbWyS-ARPGzGKM2lGSAYl8BrvxAKf1hO93W7GUvKmuEuuEgeGX3bHmnx7xyDA9zYvsEef87Zi0tj7Dl-RFSxvpfoPzK_Ik5Ktk5RcxwTXy9XLm5mVFL0M5vcMsRzr6_uUbrdkkPYKV3CQpUmCpFBM_2GdbYI4TdPCNSBNFpQ4YZdyEhpcUdhX8TUOrGT0vYOFjIC3qOtOLOQDSZnDSunQS_QRON84giiVA68IT1WsyGR5dHYxYW3CBebDTDyzJIhcpK6we2BApIULQIpFporPMJwPphI2Ccly6vtPBSu9TFSWhz53KYp7G0RuylM_ysE4oB9fIKh2UkFYIMHqZdEkKO8RAA0NO-z3S77628a0aOb7bnVnoKCNABgAyCJB56JGdn13uGymOf928BRCaWz81KKCN15uZuS0MuAnHGNcGvFLwHtnsIDbt2i0NV8C6wHfXcY_sdrAvmv865MZ_3f2BLJ8fDs3p8fjkLXmOReybWPBNslQV8_AOqE7l3tfT-QdNUvfU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Resilient+H%E2%88%9E+State+Estimation+for+Time-varying+Recurrent+Neural+Networks+Subject+to+Probabilistic+Quantization+Under+Variance+Constraint&rft.jtitle=International+journal+of+control%2C+automation%2C+and+systems&rft.au=Gao%2C+Yan&rft.au=Hu%2C+Jun&rft.au=Yu%2C+Hui&rft.au=Du%2C+Junhua&rft.date=2023-02-01&rft.pub=Institute+of+Control%2C+Robotics+and+Systems+and+The+Korean+Institute+of+Electrical+Engineers&rft.issn=1598-6446&rft.eissn=2005-4092&rft.volume=21&rft.issue=2&rft.spage=684&rft.epage=695&rft_id=info:doi/10.1007%2Fs12555-021-0676-x&rft.externalDocID=10_1007_s12555_021_0676_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-6446&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-6446&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-6446&client=summon