Robust Resilient H∞ State Estimation for Time-varying Recurrent Neural Networks Subject to Probabilistic Quantization Under Variance Constraint
This paper is concerned with the robust resilient H ∞ state estimation problem for time-varying recurrent neural networks (TVRNNs) with probabilistic quantization under variance constraint. Here, a situation is considered where the signals are quantized before entering the network, and the occurrenc...
Saved in:
Published in | International journal of control, automation, and systems Vol. 21; no. 2; pp. 684 - 695 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bucheon / Seoul
Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers
01.02.2023
Springer Nature B.V 제어·로봇·시스템학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper is concerned with the robust resilient
H
∞
state estimation problem for time-varying recurrent neural networks (TVRNNs) with probabilistic quantization under variance constraint. Here, a situation is considered where the signals are quantized before entering the network, and the occurrence probability is assumed to be known. In addition, during the design of the state estimation algorithm, the additive variation of the estimator gain is considered to reflect the parameter deviation that may occur during the execution. The main purpose is to design a finite-horizon resilient state estimation algorithm such that, in the presence of probabilistic quantization and estimator gain perturbation, some sufficient criteria are obtained for the estimation error system to satisfy the prescribed
H
∞
performance requirement within the finite-horizon and the error variance boundedness. Finally, a numerical example is conducted to verify the feasibility of the presented estimation algorithm against the probabilistic quantization and estimator gain perturbation. |
---|---|
AbstractList | This paper is concerned with the robust resilient H∞ state estimation problem for time-varying recurrent neural networks (TVRNNs) with probabilistic quantization under variance constraint. Here, a situation is considered where the signals are quantized before entering the network, and the occurrence probability is assumed to be known. In addition, during the design of the state estimation algorithm, the additive variation of the estimator gain is considered to reflect the parameter deviation that may occur during the execution. The main purpose is to design a finite-horizon resilient state estimation algorithm such that, in the presence of probabilistic quantization and estimator gain perturbation, some sufficient criteria are obtained for the estimation error system to satisfy the prescribed H∞ performance requirement within the finite-horizon and the error variance boundedness. Finally, a numerical example is conducted to verify the feasibility of the presented estimation algorithm against the probabilistic quantization and estimator gain perturbation. KCI Citation Count: 3 This paper is concerned with the robust resilient H∞ state estimation problem for time-varying recurrent neural networks (TVRNNs) with probabilistic quantization under variance constraint. Here, a situation is considered where the signals are quantized before entering the network, and the occurrence probability is assumed to be known. In addition, during the design of the state estimation algorithm, the additive variation of the estimator gain is considered to reflect the parameter deviation that may occur during the execution. The main purpose is to design a finite-horizon resilient state estimation algorithm such that, in the presence of probabilistic quantization and estimator gain perturbation, some sufficient criteria are obtained for the estimation error system to satisfy the prescribed H∞ performance requirement within the finite-horizon and the error variance boundedness. Finally, a numerical example is conducted to verify the feasibility of the presented estimation algorithm against the probabilistic quantization and estimator gain perturbation. This paper is concerned with the robust resilient H ∞ state estimation problem for time-varying recurrent neural networks (TVRNNs) with probabilistic quantization under variance constraint. Here, a situation is considered where the signals are quantized before entering the network, and the occurrence probability is assumed to be known. In addition, during the design of the state estimation algorithm, the additive variation of the estimator gain is considered to reflect the parameter deviation that may occur during the execution. The main purpose is to design a finite-horizon resilient state estimation algorithm such that, in the presence of probabilistic quantization and estimator gain perturbation, some sufficient criteria are obtained for the estimation error system to satisfy the prescribed H ∞ performance requirement within the finite-horizon and the error variance boundedness. Finally, a numerical example is conducted to verify the feasibility of the presented estimation algorithm against the probabilistic quantization and estimator gain perturbation. |
Author | Gao, Yan Du, Junhua Hu, Jun Yu, Hui |
Author_xml | – sequence: 1 givenname: Yan surname: Gao fullname: Gao, Yan organization: Department of Mathematics, Harbin University of Science and Technology – sequence: 2 givenname: Jun orcidid: 0000-0002-7852-5064 surname: Hu fullname: Hu, Jun email: jhu@hrbust.edu.cn organization: School of Automation, Harbin University of Science and Technology – sequence: 3 givenname: Hui surname: Yu fullname: Yu, Hui organization: School of Automation, Harbin University of Science and Technology – sequence: 4 givenname: Junhua surname: Du fullname: Du, Junhua organization: Department of Mathematics, Harbin University of Science and Technology, College of Science, Qiqihar University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002926565$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kc1uEzEUhS1UJNLCA7CzxA5pwPbM2DPLKiptpYqfNGVr2c6dyElql2sPpDwBW16Ah-NJcDpISEiwOpvznXt1zjE5CjEAIc85e8UZU68TF23bVkzwikklq_0jMhOMtVXDenFEZrztu0o2jXxCjlPaMCal6NWMfF9EO6ZMF5D8zkPI9OLntx_0OpsM9Cxlf2uyj4EOEenS30L12eC9D-sCuBHxALyFEc2uSP4ScZvo9Wg34DLNkb7HaI0twSXI0Q-jCdl_nQJvwgqQfjToTXBA5zGkjMaH_JQ8HswuwbPfekJu3pwt5xfV1bvzy_npVeWElPuqG2pbK9OYnhuoVdMA9E0nV10_DK7j0jamBmWFtMz2YKRzK1V3wIRVQytWbX1CXk65AQe9dV5H4x90HfUW9elieak545y1jSjmF5P5DuOnEVLWmzhiKP9poRRnitf9IZJPLocxJYRB32EpEO9LkD7MpKeZdJlJH2bS-8Kovxjn80NFhzp2_yXFRKZyJawB__z0b-gX7AytOA |
CitedBy_id | crossref_primary_10_1016_j_neucom_2024_127448 crossref_primary_10_1002_acs_3914 crossref_primary_10_1002_rnc_7669 crossref_primary_10_1038_s41598_024_52209_x |
Cites_doi | 10.1109/TNNLS.2019.2944552 10.1049/iet-gtd.2018.5525 10.1016/j.jfranklin.2020.03.031 10.1016/j.ins.2020.06.021 10.1109/TNNLS.2020.3016120 10.1007/s00521-018-3516-z 10.1002/rnc.4443 10.1109/JAS.2022.105581 10.1109/TSP.2010.2042489 10.1109/TCSI.2018.2824306 10.1016/j.neunet.2018.05.007 10.1016/j.neucom.2017.09.078 10.1016/j.jfranklin.2018.01.038 10.1109/TNNLS.2015.2475737 10.1007/s11063-019-10064-2 10.1016/j.jfranklin.2020.05.003 10.9781/ijimai.2018.01.004 10.1109/TCYB.2017.2729581 10.1080/00207721.2021.1872118 10.1080/00207721.2021.1995528 10.1080/00207721.2021.1917721 10.1093/imamci/dnx043 10.1002/asjc.2252 10.1080/00207179.2017.1350884 10.1109/JAS.2022.105572 10.1109/9.618239 10.1049/iet-cvi.2013.0294 10.1016/j.neucom.2019.04.034 10.1002/rnc.1662 10.1016/j.neunet.2020.08.023 10.1016/j.neucom.2005.03.003 10.1007/s12555-020-0326-8 10.1080/00207721.2021.1885082 10.1109/TNNLS.2018.2790982 10.1016/j.bspc.2014.07.004 10.1016/j.fss.2018.01.017 10.1016/j.jfranklin.2020.10.018 |
ContentType | Journal Article |
Copyright | ICROS, KIEE and Springer 2023 ICROS, KIEE and Springer 2023. |
Copyright_xml | – notice: ICROS, KIEE and Springer 2023 – notice: ICROS, KIEE and Springer 2023. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D ACYCR |
DOI | 10.1007/s12555-021-0676-x |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Korean Citation Index |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2005-4092 |
EndPage | 695 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10110542 10_1007_s12555_021_0676_x |
GroupedDBID | -EM .UV 06D 0R~ 0VY 1N0 203 29J 29~ 2KG 2LR 2VQ 30V 3V. 4.4 406 408 40D 5GY 5VS 67Z 7WY 8FE 8FG 8FL 96X 9ZL AACDK AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC BA0 BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CSCUP DBRKI DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRJ FRNLG FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GNUQQ GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GW5 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ K60 K6V K6~ K7- KOV KVFHK LLZTM M0C M0N M4Y MA- NPVJJ NQJWS NU0 O9- O9J P62 P9P PQBIZ PQBZA PQQKQ PROAC PT4 Q2X R9I ROL RSV S1Z S27 S3B SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7X Z7Z Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT 7SC 7SP 7TB 8FD ABRTQ FR3 JQ2 L7M L~C L~D ACYCR PMFND |
ID | FETCH-LOGICAL-c266x-8f3b37a4a91ae3744ee9486d89ffc816b4a3e7b26b0b9ea6ccd738e02b7f52d53 |
IEDL.DBID | U2A |
ISSN | 1598-6446 |
IngestDate | Thu May 29 05:23:44 EDT 2025 Sat Jul 26 01:21:45 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Tue Jul 01 00:27:58 EDT 2025 Fri Feb 21 02:44:27 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | resilient state estimator time-varying recurrent neural networks performance variance constraint probabilistic quantization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c266x-8f3b37a4a91ae3744ee9486d89ffc816b4a3e7b26b0b9ea6ccd738e02b7f52d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 http://link.springer.com/article/10.1007/s12555-021-0676-x |
ORCID | 0000-0002-7852-5064 |
PQID | 2771071395 |
PQPubID | 326316 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10110542 proquest_journals_2771071395 crossref_primary_10_1007_s12555_021_0676_x crossref_citationtrail_10_1007_s12555_021_0676_x springer_journals_10_1007_s12555_021_0676_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230200 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 2 year: 2023 text: 20230200 |
PublicationDecade | 2020 |
PublicationPlace | Bucheon / Seoul |
PublicationPlace_xml | – name: Bucheon / Seoul – name: Heidelberg |
PublicationSubtitle | IJCAS |
PublicationTitle | International journal of control, automation, and systems |
PublicationTitleAbbrev | Int. J. Control Autom. Syst |
PublicationYear | 2023 |
Publisher | Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers Springer Nature B.V 제어·로봇·시스템학회 |
Publisher_xml | – name: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers – name: Springer Nature B.V – name: 제어·로봇·시스템학회 |
References | Li, Dong, Wang, Bu (CR17) 2020; 31 Liu, Wang, Chen, Wei (CR12) 2020; 132 Shen, Xing, Huo, Wu, Park (CR1) 2019; 356 Saravanakumar, Nirmala, Raja, Cao, Lu (CR4) 2020; 22 Geng, Wang, Sun (CR6) 2019; 13 Karam, Laleg-Kirati, Zayane, Kashou (CR5) 2014; 14 Boughrara, Chtourou, Amar, Chen (CR36) 2014; 8 Saravanakumar, Muoi, Zhu (CR37) 2020; 357 Tang, Qiao, Zhang, Wu, Chai, Yu (CR8) 2018; 275 Wang, Dong, Xue, Peng (CR23) 2019; 356 Hu, Zhang, Liu, Yu (CR38) 2021; 52 Keel, Bhattacharyya (CR27) 1997; 42 Yu, Dong, Wang, Li (CR30) 2019; 31 Rakkiyappan, Maheswari, Velmurugan, Park (CR24) 2018; 105 Zou, Wang, Hu, Liu, Liu (CR39) 2021; 52 Dong, Wang, Ho, Gao (CR34) 2010; 58 Huang, Shen, Xia, Huang, Wang (CR22) 2019; 50 Hu, Jia, Yu, Liu (CR15) 2022; 9 Tamura, Zhang, Xu, Ishii, Tang (CR9) 2005; 68 Rakkiyappan, Maheswari, Velmurugan, Park (CR20) 2018; 105 Shen, Wang, Xia, Cao, Chen (CR25) 2020; 357 Wang, Shen, Zou (CR21) 2022; 9 Shen, Wang, Shu, Wei (CR35) 2011; 21 Dong, Zhong, Shi, Kang, Cheng (CR13) 2019; 356 Abdel-Nasser, Mahmoud, Kashef (CR7) 2018; 5 Zhang, Wang, Ding, Wei, Alsaadi (CR31) 2019; 36 Shen, Wang, Shen, Alsaadi (CR11) 2020; 539 Dong, Hou, Wang, Ren (CR33) 2018; 29 Saravanakumar, Anthoni, Zhu (CR29) 2020; 357 Bao, Park, Cao (CR3) 2016; 27 Wu, Xu, Shi, Chen, Su (CR26) 2018; 29 Han, Kao, Park (CR28) 2019; 29 Wang, Wang, Liang, Liu (CR18) 2018; 65 Shi, Zhou, Guo (CR19) 2021; 19 Hu, Jia, Liu, Yi, Liu (CR14) 2021; 52 Cheng, Park, Karimi, Shen (CR2) 2018; 48 Ali, Vadivel, Saravanakumar (CR10) 2019; 92 Qian, Xing, Fei (CR16) 2021; 32 Liu, Ma, Zhang, Bo (CR32) 2021; 52 Z Huang (676_CR22) 2019; 50 R Rakkiyappan (676_CR24) 2018; 105 W Qian (676_CR16) 2021; 32 J Cheng (676_CR2) 2018; 48 Y Yu (676_CR30) 2019; 31 Y Shen (676_CR11) 2020; 539 S Liu (676_CR12) 2020; 132 S Dong (676_CR13) 2019; 356 S Zhang (676_CR31) 2019; 36 H Dong (676_CR34) 2010; 58 T Saravanakumar (676_CR29) 2020; 357 M S Ali (676_CR10) 2019; 92 R Rakkiyappan (676_CR20) 2018; 105 J Tang (676_CR8) 2018; 275 H Bao (676_CR3) 2016; 27 Z G Wu (676_CR26) 2018; 29 B Shen (676_CR35) 2011; 21 H Boughrara (676_CR36) 2014; 8 S Geng (676_CR6) 2019; 13 Y-A Wang (676_CR21) 2022; 9 H Dong (676_CR33) 2018; 29 J Li (676_CR17) 2020; 31 L Liu (676_CR32) 2021; 52 T Saravanakumar (676_CR4) 2020; 22 A M Karam (676_CR5) 2014; 14 Y Han (676_CR28) 2019; 29 H Tamura (676_CR9) 2005; 68 H Wang (676_CR23) 2019; 356 F Wang (676_CR18) 2018; 65 M Abdel-Nasser (676_CR7) 2018; 5 Z Shi (676_CR19) 2021; 19 H Shen (676_CR1) 2019; 356 T Saravanakumar (676_CR37) 2020; 357 J Hu (676_CR15) 2022; 9 L H Keel (676_CR27) 1997; 42 J Hu (676_CR14) 2021; 52 H Shen (676_CR25) 2020; 357 J Hu (676_CR38) 2021; 52 L Zou (676_CR39) 2021; 52 |
References_xml | – volume: 31 start-page: 3747 issue: 9 year: 2020 end-page: 3753 ident: CR17 article-title: Partial-neurons-based passivity-guaranteed state estimation for neural networks with randomly occurring time delays publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2944552 – volume: 13 start-page: 4503 issue: 19 year: 2019 end-page: 4509 ident: CR6 article-title: State estimation of 500 kV sulphur hexafluoride high-voltage CBs based on Bayesian probability and neural network publication-title: IET Generation Transmission and Distribution doi: 10.1049/iet-gtd.2018.5525 – volume: 357 start-page: 6352 issue: 10 year: 2020 end-page: 6369 ident: CR25 article-title: Non-fragile mixed passive and state estimation for singularly perturbed neural networks with semi-Markov jumping parameters publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics doi: 10.1016/j.jfranklin.2020.03.031 – volume: 539 start-page: 434 year: 2020 end-page: 446 ident: CR11 article-title: state estimation for multi-rate artificial neural networks with integral measurements: A switched system approach publication-title: Information Sciences doi: 10.1016/j.ins.2020.06.021 – volume: 32 start-page: 3909 issue: 9 year: 2021 end-page: 3918 ident: CR16 article-title: state estimation for neural networks with general activation function and mixed time-varying delays publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.3016120 – volume: 31 start-page: 7245 issue: 11 year: 2019 end-page: 7256 ident: CR30 article-title: Delay-distribution-dependent non-fragile state estimation for discrete-time neural networks under event-triggered mechanism publication-title: Neural Computing and Applications doi: 10.1007/s00521-018-3516-z – volume: 29 start-page: 1462 issue: 5 year: 2019 end-page: 1483 ident: CR28 article-title: Robust nonfragile observer-based control of switched discrete singular systems with time-varying delays: a sliding mode control design publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.4443 – volume: 9 start-page: 941 issue: 5 year: 2022 end-page: 944 ident: CR15 article-title: Dynamic event-triggered state estimation for nonlinear coupled output complex networks subject to innovation constraints publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2022.105581 – volume: 58 start-page: 2534 issue: 5 year: 2010 end-page: 2543 ident: CR34 article-title: Variance-constrained filtering for a class of nonlinear time-varying systems with multiple missing measurements: the finite-horizon case publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2010.2042489 – volume: 65 start-page: 2992 issue: 9 year: 2018 end-page: 3004 ident: CR18 article-title: Resilient filtering for linear time-varying repetitive processes under uniform quantizations and round-robin protocols publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers doi: 10.1109/TCSI.2018.2824306 – volume: 105 start-page: 236 year: 2018 end-page: 248 ident: CR24 article-title: Event-triggered state estimation for semi-Markov jumping discrete-time neural networks with quantization publication-title: Neural Networks doi: 10.1016/j.neunet.2018.05.007 – volume: 275 start-page: 1426 year: 2018 end-page: 1440 ident: CR8 article-title: Combinatorial optimization of input features and learning parameters for decorrelated neural network ensemble-based soft measuring model publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.078 – volume: 356 start-page: 10216 issue: 17 year: 2019 end-page: 10240 ident: CR23 article-title: Event-triggered state estimation for discrete-time neural networks with sensor saturations and data quantization publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics doi: 10.1016/j.jfranklin.2018.01.038 – volume: 27 start-page: 190 issue: 1 year: 2016 end-page: 201 ident: CR3 article-title: Exponential synchronization of coupled stochastic memristor-based neural networks with time-varying probabilistic delay coupling and impulsive delay publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2475737 – volume: 50 start-page: 2821 issue: 3 year: 2019 end-page: 2841 ident: CR22 article-title: Extended synchronization control for switched neural networks with multi quantization densities based on a persistent dwell-time approach publication-title: Neural Processing Letters doi: 10.1007/s11063-019-10064-2 – volume: 357 start-page: 6197 issue: 10 year: 2020 end-page: 6227 ident: CR29 article-title: Resilient extended dissipative control for Markovian jump systems with partially known transition probabilities under actuator saturation publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics doi: 10.1016/j.jfranklin.2020.05.003 – volume: 5 start-page: 92 issue: 1 year: 2018 end-page: 100 ident: CR7 article-title: A novel smart grid state estimation method based on neural networks publication-title: International Journal of Interactive Multimedia and Artificial Intelligence doi: 10.9781/ijimai.2018.01.004 – volume: 48 start-page: 2232 issue: 8 year: 2018 end-page: 2244 ident: CR2 article-title: A flexible terminal approach to sampled-data exponentially synchronization of Markovian neural networks with time-varying delayed signals publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2017.2729581 – volume: 105 start-page: 236 year: 2018 end-page: 248 ident: CR20 article-title: Event-triggered state estimation for semi-Markov jumping discrete-time neural networks with quantization publication-title: Neural Networks doi: 10.1016/j.neunet.2018.05.007 – volume: 52 start-page: 1192 issue: 6 year: 2021 end-page: 1205 ident: CR32 article-title: Distributed non-fragile set-membership filtering for nonlinear systems under fading channels and bias injection attacks publication-title: International Journal of System Science doi: 10.1080/00207721.2021.1872118 – volume: 52 start-page: 3351 issue: 16 year: 2021 end-page: 3367 ident: CR14 article-title: A survey on state estimation of complex dynamical networks publication-title: International Journal of Systems Science doi: 10.1080/00207721.2021.1995528 – volume: 52 start-page: 3013 issue: 14 year: 2021 end-page: 3034 ident: CR39 article-title: Communication-protocol-based analysis and synthesis of networked systems: progress, prospects and challenges publication-title: International Journal of Systems Science doi: 10.1080/00207721.2021.1917721 – volume: 36 start-page: 247 issue: 1 year: 2019 end-page: 269 ident: CR31 article-title: Non-fragile state estimation for discrete-time complex networks with randomly occurring time-varying delays and channel fadings publication-title: IMA Journal of Mathematical Control and Information doi: 10.1093/imamci/dnx043 – volume: 22 start-page: 2487 issue: 6 year: 2020 end-page: 2499 ident: CR4 article-title: Finite-time reliable dissipative control of neutral-type switched artificial neural networks with non-linear fault inputs and randomly occurring uncertainties publication-title: Asian Journal of Control doi: 10.1002/asjc.2252 – volume: 92 start-page: 270 issue: 2 year: 2019 end-page: 290 ident: CR10 article-title: Event-triggered state estimation for Markovian jumping impulsive neural networks with interval time-varying delays publication-title: International Journal of Control doi: 10.1080/00207179.2017.1350884 – volume: 9 start-page: 926 issue: 5 year: 2022 end-page: 929 ident: CR21 article-title: Recursive fault estimation with energy harvesting sensors and uniform quantization effects publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2022.105572 – volume: 42 start-page: 1098 issue: 8 year: 1997 end-page: 1105 ident: CR27 article-title: Robust, fragile, or optimal?” publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.618239 – volume: 8 start-page: 729 issue: 6 year: 2014 end-page: 739 ident: CR36 article-title: Face recognition based on perceived facial images and multilayer perceptron neural network using constructive training algorithm publication-title: IET Computer Vision doi: 10.1049/iet-cvi.2013.0294 – volume: 356 start-page: 9 year: 2019 end-page: 20 ident: CR13 article-title: Further improved results on non-fragile performance state estimation for delayed static neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.034 – volume: 21 start-page: 1693 issue: 14 year: 2011 end-page: 1709 ident: CR35 article-title: filtering for uncertain time-varying systems with multiple randomly occurred nonlinearities and successive packet dropouts publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.1662 – volume: 132 start-page: 211 year: 2020 end-page: 219 ident: CR12 article-title: Dynamic event-based state estimation for delayed artificial neural networks with multiplicative noises: A gain-scheduled approach publication-title: Neural Networks doi: 10.1016/j.neunet.2020.08.023 – volume: 68 start-page: 297 year: 2005 end-page: 305 ident: CR9 article-title: Lagrangian object relaxation neural network for combinatorial optimization problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.03.003 – volume: 19 start-page: 1944 issue: 5 year: 2021 end-page: 1952 ident: CR19 article-title: Neural network observer based consensus control of unknown nonlinear multi-agent systems with prescribed performance and input quantization publication-title: International Journal of Control Automation and Systems doi: 10.1007/s12555-020-0326-8 – volume: 52 start-page: 1129 issue: 6 year: 2021 end-page: 1147 ident: CR38 article-title: A survey on sliding mode control for networked control systems publication-title: International Journal of Systems Science doi: 10.1080/00207721.2021.1885082 – volume: 29 start-page: 5111 issue: 10 year: 2018 end-page: 5121 ident: CR26 article-title: Nonfragile state estimation of quantized complex networks with switching topologies publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2790982 – volume: 29 start-page: 2757 issue: 7 year: 2018 end-page: 2768 ident: CR33 article-title: Variance-constrained state estimation for complex networks with randomly varying topologies publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 14 start-page: 240 year: 2014 end-page: 247 ident: CR5 article-title: Nonlinear neural network for hemodynamic model state and input estimation using fMRI data publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2014.07.004 – volume: 356 start-page: 113 year: 2019 end-page: 128 ident: CR1 article-title: Finite-time asynchronous state estimation for discrete-time fuzzy Markov jump neural networks with uncertain measurements publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2018.01.017 – volume: 357 start-page: 13637 issue: 18 year: 2020 end-page: 13665 ident: CR37 article-title: Finite-time sampled-data control of switched stochastic model with non-deterministic actuator faults and saturation nonlinearity publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics doi: 10.1016/j.jfranklin.2020.10.018 – volume: 105 start-page: 236 year: 2018 ident: 676_CR24 publication-title: Neural Networks doi: 10.1016/j.neunet.2018.05.007 – volume: 29 start-page: 2757 issue: 7 year: 2018 ident: 676_CR33 publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 52 start-page: 3351 issue: 16 year: 2021 ident: 676_CR14 publication-title: International Journal of Systems Science doi: 10.1080/00207721.2021.1995528 – volume: 539 start-page: 434 year: 2020 ident: 676_CR11 publication-title: Information Sciences doi: 10.1016/j.ins.2020.06.021 – volume: 9 start-page: 941 issue: 5 year: 2022 ident: 676_CR15 publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2022.105581 – volume: 31 start-page: 3747 issue: 9 year: 2020 ident: 676_CR17 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2944552 – volume: 29 start-page: 5111 issue: 10 year: 2018 ident: 676_CR26 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2790982 – volume: 356 start-page: 10216 issue: 17 year: 2019 ident: 676_CR23 publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics doi: 10.1016/j.jfranklin.2018.01.038 – volume: 52 start-page: 3013 issue: 14 year: 2021 ident: 676_CR39 publication-title: International Journal of Systems Science doi: 10.1080/00207721.2021.1917721 – volume: 31 start-page: 7245 issue: 11 year: 2019 ident: 676_CR30 publication-title: Neural Computing and Applications doi: 10.1007/s00521-018-3516-z – volume: 14 start-page: 240 year: 2014 ident: 676_CR5 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2014.07.004 – volume: 357 start-page: 6352 issue: 10 year: 2020 ident: 676_CR25 publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics doi: 10.1016/j.jfranklin.2020.03.031 – volume: 22 start-page: 2487 issue: 6 year: 2020 ident: 676_CR4 publication-title: Asian Journal of Control doi: 10.1002/asjc.2252 – volume: 48 start-page: 2232 issue: 8 year: 2018 ident: 676_CR2 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2017.2729581 – volume: 8 start-page: 729 issue: 6 year: 2014 ident: 676_CR36 publication-title: IET Computer Vision doi: 10.1049/iet-cvi.2013.0294 – volume: 275 start-page: 1426 year: 2018 ident: 676_CR8 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.078 – volume: 42 start-page: 1098 issue: 8 year: 1997 ident: 676_CR27 publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.618239 – volume: 65 start-page: 2992 issue: 9 year: 2018 ident: 676_CR18 publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers doi: 10.1109/TCSI.2018.2824306 – volume: 29 start-page: 1462 issue: 5 year: 2019 ident: 676_CR28 publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.4443 – volume: 9 start-page: 926 issue: 5 year: 2022 ident: 676_CR21 publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2022.105572 – volume: 105 start-page: 236 year: 2018 ident: 676_CR20 publication-title: Neural Networks doi: 10.1016/j.neunet.2018.05.007 – volume: 50 start-page: 2821 issue: 3 year: 2019 ident: 676_CR22 publication-title: Neural Processing Letters doi: 10.1007/s11063-019-10064-2 – volume: 58 start-page: 2534 issue: 5 year: 2010 ident: 676_CR34 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2010.2042489 – volume: 32 start-page: 3909 issue: 9 year: 2021 ident: 676_CR16 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.3016120 – volume: 36 start-page: 247 issue: 1 year: 2019 ident: 676_CR31 publication-title: IMA Journal of Mathematical Control and Information doi: 10.1093/imamci/dnx043 – volume: 357 start-page: 13637 issue: 18 year: 2020 ident: 676_CR37 publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics doi: 10.1016/j.jfranklin.2020.10.018 – volume: 5 start-page: 92 issue: 1 year: 2018 ident: 676_CR7 publication-title: International Journal of Interactive Multimedia and Artificial Intelligence doi: 10.9781/ijimai.2018.01.004 – volume: 19 start-page: 1944 issue: 5 year: 2021 ident: 676_CR19 publication-title: International Journal of Control Automation and Systems doi: 10.1007/s12555-020-0326-8 – volume: 356 start-page: 9 year: 2019 ident: 676_CR13 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.034 – volume: 52 start-page: 1129 issue: 6 year: 2021 ident: 676_CR38 publication-title: International Journal of Systems Science doi: 10.1080/00207721.2021.1885082 – volume: 27 start-page: 190 issue: 1 year: 2016 ident: 676_CR3 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2475737 – volume: 52 start-page: 1192 issue: 6 year: 2021 ident: 676_CR32 publication-title: International Journal of System Science doi: 10.1080/00207721.2021.1872118 – volume: 68 start-page: 297 year: 2005 ident: 676_CR9 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.03.003 – volume: 92 start-page: 270 issue: 2 year: 2019 ident: 676_CR10 publication-title: International Journal of Control doi: 10.1080/00207179.2017.1350884 – volume: 21 start-page: 1693 issue: 14 year: 2011 ident: 676_CR35 publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.1662 – volume: 13 start-page: 4503 issue: 19 year: 2019 ident: 676_CR6 publication-title: IET Generation Transmission and Distribution doi: 10.1049/iet-gtd.2018.5525 – volume: 132 start-page: 211 year: 2020 ident: 676_CR12 publication-title: Neural Networks doi: 10.1016/j.neunet.2020.08.023 – volume: 356 start-page: 113 year: 2019 ident: 676_CR1 publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2018.01.017 – volume: 357 start-page: 6197 issue: 10 year: 2020 ident: 676_CR29 publication-title: Journal of The Franklin Institute-Engineering and Applied Mathematics doi: 10.1016/j.jfranklin.2020.05.003 |
SSID | ssj0066297 |
Score | 2.2945328 |
Snippet | This paper is concerned with the robust resilient
H
∞
state estimation problem for time-varying recurrent neural networks (TVRNNs) with probabilistic... This paper is concerned with the robust resilient H∞ state estimation problem for time-varying recurrent neural networks (TVRNNs) with probabilistic... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 684 |
SubjectTerms | Algorithms Control Engineering H infinity Horizon Measurement Mechatronics Neural networks Perturbation Recurrent neural networks Regular Papers Robotics Robustness (mathematics) State estimation Statistical analysis Variance 제어계측공학 |
Title | Robust Resilient H∞ State Estimation for Time-varying Recurrent Neural Networks Subject to Probabilistic Quantization Under Variance Constraint |
URI | https://link.springer.com/article/10.1007/s12555-021-0676-x https://www.proquest.com/docview/2771071395 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002926565 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | International Journal of Control, 2023, Automation, and Systems, 21(2), , pp.684-695 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELb4uZQDaimIpRRZghPI0q7j2PFxVS3dUoEAdRE9WbbjIATaRUkW8Qi98gI8HE_CTH5YQG0lTjk4jqN8tuebeOYbQnYs-MYa2phXLmZCW8cS7jQDYwLsXEU-VCKuh0dyOBIH5_F5k8ddtNHu7ZFktVPPkt2A_WI2MUbqKMmAOC7G6LrDJB7xfrv9SsnriiqxThgYe9keZf7tEa-M0fw4z17xzDdHo5XF2f9IlhuqSPs1tp_IXBivkKUXAoKfyf3pxE2Lkp6G4vIaMxvp8PHPA60YJB3A6q0TEykwU4rJHuzW5pjXBB18LcxEUZ0DRjmqw8ELCjsJ_pqh5YQe57DYMXgWtZzpyRRAaLI2aVUuiZ6Bo42zhmLZz6rYRLlKRvuDX9-GrCmywDzY5juWZJGLlBVW92yIlBAhaJHINNFZ5pOedMJGQTkuXdfpYKX3qYqS0OVOZTFP42iNLIwn47BOKAd3yCodlJBWCDB0mXRJCrtCTwMrTrsd0m2_tvGNAjm-27WZaScjQAYAMgiQueuQ3ecuN7X8xv9u3gYIzZW_NCiajdeLibnKDbgGPzCWDbik4B2y2UJsmvVaGK6AaYG_ruMO2WthnzX_c8iNd939hXzAavV10PcmWSjzafgKnKZ0W2Sx__33z8FWNZefAIhK8jk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELZaemg5IEpbseWnluiplaVdx_HPEVWghcKKIhZxs2zHQQi0i5JsxSP02hfg4XiSzuSHhYpW4pSD4zjKZ3u-iWe-IeSzA9_YQBsLyqdMGOeZ5t4wMCbAzlUSYi3iejiSw7HYP0vP2jzusot2744k6516nuwG7BeziTFSR0kGxPEVcAGNcVxjvt1tv1LypqJKajQDYy-7o8ynHvHIGL2cFPkjnvnX0WhtcXaXyVJLFel2g-1b8iJOVsjiAwHBd-T38dTPyooex_LiCjMb6fDu1y2tGSTdgdXbJCZSYKYUkz3YT1dgXhN0CI0wE0V1Dhhl1ISDlxR2Evw1Q6spPSpgsWPwLGo50x8zAKHN2qR1uSR6Co42zhqKZT_rYhPVezLe3Tn5NmRtkQUWwDbfMJ0nPlFOODNwMVFCxGiElpk2eR70QHrhkqg8l77vTXQyhEwlOva5V3nKszT5QBYm00lcJZSDO-SUiUpIJwQYulx6ncGuMDDAirN-j_S7r21Dq0CO73Zl59rJCJAFgCwCZG965Mt9l-tGfuN_N28BhPYyXFgUzcbr-dReFhZcgz2MZQMuKXiPrHcQ23a9lpYrYFrgr5u0R752sM-b_znkx2fd_Ym8Hp4cHtiDvdH3NfIGK9c3AeDrZKEqZnED-E3lN-v5_Ad_NvOY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELZaKqFyqFpoxVLaWoITyGLXcez4iIDVUmAFiK24WbbjoBUoi5JsxSP02hfow_VJOpOfbqnaSj3l4DiO8tmeb-KZbwjZtuAba2hjXrmYCW0dS7jTDIwJsHMV-VCLuJ6N5WgiPl7H122d07KLdu-OJJucBlRpyqu9-zTbWyS-ARPGzGKM2lGSAYl8BrvxAKf1hO93W7GUvKmuEuuEgeGX3bHmnx7xyDA9zYvsEef87Zi0tj7Dl-RFSxvpfoPzK_Ik5Ktk5RcxwTXy9XLm5mVFL0M5vcMsRzr6_uUbrdkkPYKV3CQpUmCpFBM_2GdbYI4TdPCNSBNFpQ4YZdyEhpcUdhX8TUOrGT0vYOFjIC3qOtOLOQDSZnDSunQS_QRON84giiVA68IT1WsyGR5dHYxYW3CBebDTDyzJIhcpK6we2BApIULQIpFporPMJwPphI2Ccly6vtPBSu9TFSWhz53KYp7G0RuylM_ysE4oB9fIKh2UkFYIMHqZdEkKO8RAA0NO-z3S77628a0aOb7bnVnoKCNABgAyCJB56JGdn13uGymOf928BRCaWz81KKCN15uZuS0MuAnHGNcGvFLwHtnsIDbt2i0NV8C6wHfXcY_sdrAvmv865MZ_3f2BLJ8fDs3p8fjkLXmOReybWPBNslQV8_AOqE7l3tfT-QdNUvfU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Resilient+H%E2%88%9E+State+Estimation+for+Time-varying+Recurrent+Neural+Networks+Subject+to+Probabilistic+Quantization+Under+Variance+Constraint&rft.jtitle=International+journal+of+control%2C+automation%2C+and+systems&rft.au=Gao%2C+Yan&rft.au=Hu%2C+Jun&rft.au=Yu%2C+Hui&rft.au=Du%2C+Junhua&rft.date=2023-02-01&rft.pub=Institute+of+Control%2C+Robotics+and+Systems+and+The+Korean+Institute+of+Electrical+Engineers&rft.issn=1598-6446&rft.eissn=2005-4092&rft.volume=21&rft.issue=2&rft.spage=684&rft.epage=695&rft_id=info:doi/10.1007%2Fs12555-021-0676-x&rft.externalDocID=10_1007_s12555_021_0676_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-6446&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-6446&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-6446&client=summon |