Road Surface Defect Detection-From Image-Based to Non-Image-Based: A Survey

Ensuring traffic safety is crucial, which necessitates the detection and prevention of road surface defects. As a result, there has been a growing interest in the literature on the subject, leading to the development of various road surface defect detection methods. The methods for detecting road de...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 25; no. 9; pp. 10581 - 10603
Main Authors Yu, Jongmin, Jiang, Jiaqi, Fichera, Sebastiano, Paoletti, Paolo, Layzell, Lisa, Mehta, Devansh, Luo, Shan
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ensuring traffic safety is crucial, which necessitates the detection and prevention of road surface defects. As a result, there has been a growing interest in the literature on the subject, leading to the development of various road surface defect detection methods. The methods for detecting road defects can be categorised in various ways depending on the input data types or training methodologies. The predominant approach involves image-based methods, which analyse pixel intensities and surface textures to identify defects. Despite popularity, image-based methods share the distinct limitation of vulnerability to weather and lighting changes. To address this issue, researchers have explored the use of additional sensors, such as laser scanners or LiDARs, providing explicit depth information to enable the detection of defects in terms of scale and volume. However, the exploration of data beyond images has not been sufficiently investigated. In this survey paper, we provide a comprehensive review of road surface defect detection studies, categorising them based on input data types and methodologies used. Additionally, we review recently proposed non-image-based methods and discuss several challenges and open problems associated with these techniques.
AbstractList Ensuring traffic safety is crucial, which necessitates the detection and prevention of road surface defects. As a result, there has been a growing interest in the literature on the subject, leading to the development of various road surface defect detection methods. The methods for detecting road defects can be categorised in various ways depending on the input data types or training methodologies. The predominant approach involves image-based methods, which analyse pixel intensities and surface textures to identify defects. Despite popularity, image-based methods share the distinct limitation of vulnerability to weather and lighting changes. To address this issue, researchers have explored the use of additional sensors, such as laser scanners or LiDARs, providing explicit depth information to enable the detection of defects in terms of scale and volume. However, the exploration of data beyond images has not been sufficiently investigated. In this survey paper, we provide a comprehensive review of road surface defect detection studies, categorising them based on input data types and methodologies used. Additionally, we review recently proposed non-image-based methods and discuss several challenges and open problems associated with these techniques.
Author Luo, Shan
Fichera, Sebastiano
Layzell, Lisa
Yu, Jongmin
Paoletti, Paolo
Jiang, Jiaqi
Mehta, Devansh
Author_xml – sequence: 1
  givenname: Jongmin
  orcidid: 0000-0002-0718-9948
  surname: Yu
  fullname: Yu, Jongmin
  email: bartosz.regula@gmail.com
  organization: Department of Engineering, King's College London, London, U.K
– sequence: 2
  givenname: Jiaqi
  orcidid: 0000-0001-8366-5750
  surname: Jiang
  fullname: Jiang, Jiaqi
  email: jiaqi.1.jiang@kcl.ac.uk
  organization: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, U.K
– sequence: 3
  givenname: Sebastiano
  orcidid: 0000-0003-1006-4959
  surname: Fichera
  fullname: Fichera, Sebastiano
  email: Sebastiano.Fichera@liverpool.ac.uk
  organization: Department of Engineering, King's College London, London, U.K
– sequence: 4
  givenname: Paolo
  orcidid: 0000-0001-6131-0377
  surname: Paoletti
  fullname: Paoletti, Paolo
  email: paoletti@liverpool.ac.uk
  organization: Department of Engineering, King's College London, London, U.K
– sequence: 5
  givenname: Lisa
  surname: Layzell
  fullname: Layzell, Lisa
  email: lisa.layzell@robotiz3d.com
  organization: Robotiz3d Ltd., Daresbury, U.K
– sequence: 6
  givenname: Devansh
  surname: Mehta
  fullname: Mehta, Devansh
  email: devansh.mehta@robotiz3d.com
  organization: Robotiz3d Ltd., Daresbury, U.K
– sequence: 7
  givenname: Shan
  orcidid: 0000-0003-4760-0372
  surname: Luo
  fullname: Luo, Shan
  email: shan.luo@kcl.ac.uk
  organization: Department of Engineering, King's College London, London, U.K
BookMark eNp9kM9Kw0AQxhepYFt9AMFDXmDr_kk2u95qbbVYFGw8h8nurETaRjZR6Nu7oT0UD56-mY_5zQzfiAx2zQ4JueZswjkzt8WyWE8EE-lESi20zM_IkGeZpoxxNehrkVLDMnZBRm37Gd0043xInt8acMn6O3iwmDygR9tF6aLUzY4uQrNNllv4QHoPLbqka5KX6J9Yd8m0539wf0nOPWxavDrqmLwv5sXsia5eH5ez6YpaoVRHUSmshPMWRO44xMPWKSmNjY2VAFI7m6UMtGfSMmtReKiUVroyznEJckzyw14bmrYN6Etbd9D_2wWoNyVnZZ9J2WdS9pmUx0wiyf-QX6HeQtj_y9wcmBoRT-ZTkxtm5C-rT2_J
CODEN ITISFG
CitedBy_id crossref_primary_10_1049_ipr2_13300
crossref_primary_10_2478_bipie_2023_0022
crossref_primary_10_1016_j_compeleceng_2024_110045
crossref_primary_10_1109_TITS_2024_3517162
crossref_primary_10_3390_electronics14050927
crossref_primary_10_1088_1361_665X_ada596
crossref_primary_10_3390_s24175652
Cites_doi 10.1109/IGARSS.2014.6946574
10.1007/s00371-021-02103-8
10.23919/EUSIPCO.2017.8081567
10.l007/978-3-319-46448-0_2
10.1117/12.876724
10.1109/ICIP.2019.8803060
10.14257/astl.2018.150.35
10.1016/j.advengsoft.2006.06.002
10.1109/TIP.2017.2783621
10.1109/IC3I.2016.7917988
10.1016/j.autcon.2019.103018
10.1109/ICIP.2016.7533052
10.1016/0031-3203(95)00067-4
10.1109/TII.2019.2917522
10.1061/(ASCE)CP.1943-5487.0000918
10.1109/TIM.2018.2868490
10.1016/j.autcon.2018.07.003
10.1016/j.cviu.2015.05.006
10.1016/j.engappai.2023.106452
10.1002/stc.2591
10.1109/DCABES.2010.115
10.1016/j.chemolab.2017.10.020
10.1016/j.conbuildmat.2022.126719
10.1109/TIP.2018.2878966
10.22260/ISARC2017/0066
10.1088/1742-6596/1486/7/072076
10.23919/EUSIPCO.2018.8553280
10.1155/2008/861701
10.1109/TIE.1930.896476
10.1080/15568318.2020.1821413
10.3389/fpls.2022.942040
10.1109/TIP.2010.2041397
10.1109/TITS.2022.3161960
10.1117/12.2573124
10.1109/ICIP.2012.6467040
10.1109/TIM.2023.3298391
10.1177/0020294019877490
10.1016/j.aei.2019.100936
10.1109/IV47402.2020.9304843
10.1109/ICASSP.2014.6853659
10.1109/TITS.2023.3234330
10.1007/s11831-016-9194-z
10.3390/s21051581
10.1109/ACCESS.2020.3022786
10.1109/ICRA.2011.5980131
10.1109/ACCESS.2020.2966881
10.1155/2017/1604130
10.1109/ACCESS.2020.2980086
10.1109/ICCV.2019.00925
10.1007/978-3-642-24728-6_40
10.1016/j.cag.2022.07.018
10.3390/met8030197
10.15607/rss.2018.xiv.019
10.1109/JSTARS.2018.2865528
10.1016/j.patrec.2011.11.004
10.1109/IROS.2015.7353481
10.1109/TITS.2016.2552248
10.1109/CVPR.2017.690
10.1080/15568318.2018.1519086
10.1016/S1006-706X(13)60102-8
10.1109/TIP.2018.2808770
10.1016/j.dsp.2020.102907
10.1109/CVPR.2018.00033
10.1109/IJCNN.2017.7966101
10.1109/TITS.2019.2891167
10.1109/TITS.2021.3084809
10.1016/j.aei.2019.100933
10.1109/TITS.2016.2565698
10.1111/mice.12297
10.1016/j.conbuildmat.2020.119397
10.1117/12.872463
10.1109/TITS.2020.2990703
10.1109/CISP.2010.5646923
10.1016/j.patcog.2020.107474
10.4028/www.scientific.net/AMM.204-208.1945
10.1109/JSTARS.2018.2857564
10.1109/BigData.2018.8622327
10.1109/TIE.2017.2764844
10.1109/IST.2018.8577119
10.1109/ICIP.2010.5653305
10.1109/TCYB.2021.3060461
10.1117/12.2514387
10.1109/IMCCC.2015.364
10.1016/j.trpro.2016.11.063
10.1109/ICCSCE47578.2019.9068551
10.1109/ICRA48891.2023.10161099
10.1007/s00138-018-0961-8
10.1109/CVPR.2010.5540198
10.1109/ICSP51882.2021.9408874
10.1061/(asce)cp.1943-5487.0000726
10.1061/(asce)cp.1943-5487.0000775
10.1007/978-1-4020-6754-9_16142
10.1109/NAECON.2018.8556809
10.1109/ITSC.2013.6728408
10.1088/1742-6596/1349/1/012020
10.48550/arXiv.1802.02611
10.1109/ICRA.2016.7487708
10.1016/S0020-7683(03)00147-1
10.1109/BigData50022.2020.9377790
10.1111/mice.12561
10.1109/BEC.2010.5630750
10.1177/1687814019872650
10.37622/IJAER/13.8.2018.6056-6062
10.1007/978-3-319-24574-4_28
10.1016/j.autcon.2023.105023
10.1109/TGRS.2014.2344714
10.1109/TITS.2014.2328589
10.1109/ACCESS.2019.2905845
10.1109/ICIT.2008.4608646
10.1080/10298436.2022.2057978
10.1109/TASE.2014.2354314
10.1109/ACCESS.2018.2881962
10.1109/CVPR.2019.00301
10.1016/j.autcon.2022.104537
10.35490/EC3.2022.160
10.1155/2011/989354
10.1177/1475921720934758
10.1007/978-3-319-10584-0_23
10.11648/j.ijtet.20170302.12
10.1016/j.autcon.2020.103176
10.1109/CVPR.2019.00346
10.1109/JAS.2020.1003234
10.1016/j.optlastec.2017.06.015
10.1061/(ASCE)TE.1943-5436.0000353
10.1007/b101538
10.1155/2021/5573590
10.1111/mice.12041
10.1061/JCCEE5.CPENG-5009
10.1109/TIP.2019.2933750
10.1109/tmc.2022.3198089
10.1109/TITS.2012.2208630
10.1111/mice.12387
10.1109/TITS.2021.3099023
10.1504/IJISE.2014.061995
10.1109/AIPR.2011.6176378
10.1109/ICTEmSys.2019.8695928
10.1109/tits.2023.3267433
10.1016/j.conbuildmat.2020.119096
10.1016/j.neucom.2019.01.036
10.1061/(ASCE)CP.1943-5487.0000245
10.1109/CVPR.2016.91
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TITS.2024.3382837
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 10603
ExternalDocumentID 10_1109_TITS_2024_3382837
10497909
Genre orig-research
GrantInformation_xml – fundername: United Kingdom Research and Innovation (UKRI) Innovate U.K. SMART Grant “ARRES PREVENT: The World-First Autonomous Road Repair Vehicle”
  grantid: 10006122
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c266t-e66eb2dfca27d1afaccd6339cd1ac3aa38dc540a8f03c0cce2fab6868b9dd13a3
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Thu Apr 24 23:11:51 EDT 2025
Tue Jul 01 04:29:16 EDT 2025
Wed Aug 27 02:03:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-e66eb2dfca27d1afaccd6339cd1ac3aa38dc540a8f03c0cce2fab6868b9dd13a3
ORCID 0000-0002-0718-9948
0000-0001-6131-0377
0000-0001-8366-5750
0000-0003-1006-4959
0000-0003-4760-0372
PageCount 23
ParticipantIDs ieee_primary_10497909
crossref_citationtrail_10_1109_TITS_2024_3382837
crossref_primary_10_1109_TITS_2024_3382837
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
Scholar (ref8) 2021; 13
Skorseth (ref37) 2000
ref51
Vincent (ref117) 2010; 11
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
Ren (ref20); 28
Wang (ref158); 33
Buza (ref95); 810
ref49
(ref1) 2022
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
Redmon (ref115) 2018
Pidhorskyi (ref120)
ref34
Nasrollahi (ref35)
ref36
ref31
ref148
ref30
ref149
ref33
ref146
ref32
ref147
ref39
ref38
Yu (ref160) 2021
Djukic (ref77) 2007
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref24
ref23
ref26
ref25
ref159
ref22
ref157
ref21
(ref43) 2016
ref28
ref27
ref29
Arya (ref72) 2022
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
Chang (ref138) 2015
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref133
ref92
ref134
Salari (ref142) 2012
ref131
ref94
ref132
ref130
ref91
ref90
ref139
ref86
ref137
ref85
ref88
Oliveira (ref107)
ref135
ref87
ref136
ref82
ref144
ref81
ref145
ref84
ref83
ref143
ref80
ref79
ref108
ref78
ref109
ref106
Kumar (ref89) 2017
ref75
ref104
Qi (ref141); 30
ref74
ref105
ref102
ref76
ref103
ref2
ref71
ref111
ref70
ref112
ref73
ref110
ref68
ref119
ref67
Qi (ref140)
ref69
ref118
ref64
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref61
ref121
References_xml – ident: ref30
  doi: 10.1109/IGARSS.2014.6946574
– ident: ref131
  doi: 10.1007/s00371-021-02103-8
– year: 2018
  ident: ref115
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv:1804.02767
– ident: ref122
  doi: 10.23919/EUSIPCO.2017.8081567
– ident: ref113
  doi: 10.l007/978-3-319-46448-0_2
– ident: ref12
  doi: 10.1117/12.876724
– ident: ref24
  doi: 10.1109/ICIP.2019.8803060
– ident: ref44
  doi: 10.14257/astl.2018.150.35
– volume-title: Road Safety Statistics
  year: 2022
  ident: ref1
– ident: ref105
  doi: 10.1016/j.advengsoft.2006.06.002
– ident: ref88
  doi: 10.1109/TIP.2017.2783621
– ident: ref63
  doi: 10.1109/IC3I.2016.7917988
– ident: ref67
  doi: 10.1016/j.autcon.2019.103018
– year: 2000
  ident: ref37
  publication-title: Gravel Roads: Maintenance and Design Manual
– ident: ref45
  doi: 10.1109/ICIP.2016.7533052
– ident: ref78
  doi: 10.1016/0031-3203(95)00067-4
– year: 2012
  ident: ref142
  article-title: Pavement distress evaluation using 3D depth information from stereo vision
– ident: ref82
  doi: 10.1109/TII.2019.2917522
– ident: ref10
  doi: 10.1061/(ASCE)CP.1943-5487.0000918
– ident: ref118
  doi: 10.1109/TIM.2018.2868490
– ident: ref11
  doi: 10.1016/j.autcon.2018.07.003
– ident: ref59
  doi: 10.1016/j.cviu.2015.05.006
– ident: ref134
  doi: 10.1016/j.engappai.2023.106452
– ident: ref34
  doi: 10.1002/stc.2591
– ident: ref91
  doi: 10.1109/DCABES.2010.115
– ident: ref79
  doi: 10.1016/j.chemolab.2017.10.020
– ident: ref110
  doi: 10.1016/j.conbuildmat.2022.126719
– ident: ref25
  doi: 10.1109/TIP.2018.2878966
– ident: ref109
  doi: 10.22260/ISARC2017/0066
– ident: ref54
  doi: 10.1088/1742-6596/1486/7/072076
– ident: ref23
  doi: 10.23919/EUSIPCO.2018.8553280
– ident: ref17
  doi: 10.1155/2008/861701
– ident: ref75
  doi: 10.1109/TIE.1930.896476
– ident: ref4
  doi: 10.1080/15568318.2020.1821413
– ident: ref62
  doi: 10.3389/fpls.2022.942040
– ident: ref87
  doi: 10.1109/TIP.2010.2041397
– ident: ref111
  doi: 10.1109/TITS.2022.3161960
– ident: ref33
  doi: 10.1117/12.2573124
– ident: ref84
  doi: 10.1109/ICIP.2012.6467040
– ident: ref97
  doi: 10.1109/TIM.2023.3298391
– ident: ref32
  doi: 10.1177/0020294019877490
– ident: ref150
  doi: 10.1016/j.aei.2019.100936
– ident: ref100
  doi: 10.1109/IV47402.2020.9304843
– ident: ref56
  doi: 10.1109/ICASSP.2014.6853659
– ident: ref98
  doi: 10.1109/TITS.2023.3234330
– ident: ref7
  doi: 10.1007/s11831-016-9194-z
– ident: ref146
  doi: 10.3390/s21051581
– ident: ref103
  doi: 10.1109/ACCESS.2020.3022786
– start-page: 652
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
  ident: ref140
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
– ident: ref2
  doi: 10.1109/ICRA.2011.5980131
– ident: ref9
  doi: 10.1109/ACCESS.2020.2966881
– ident: ref61
  doi: 10.1155/2017/1604130
– volume: 28
  start-page: 91
  volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst.
  ident: ref20
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
– ident: ref102
  doi: 10.1109/ACCESS.2020.2980086
– ident: ref159
  doi: 10.1109/ICCV.2019.00925
– ident: ref15
  doi: 10.1007/978-3-642-24728-6_40
– start-page: 12
  volume-title: Proc. CSCE Annu. Conf.
  ident: ref35
  article-title: Concrete surface defect detection using deep neural network based on LiDAR scanning
– ident: ref57
  doi: 10.1016/j.cag.2022.07.018
– ident: ref80
  doi: 10.3390/met8030197
– ident: ref156
  doi: 10.15607/rss.2018.xiv.019
– ident: ref39
  doi: 10.1109/JSTARS.2018.2865528
– ident: ref48
  doi: 10.1016/j.patrec.2011.11.004
– ident: ref139
  doi: 10.1109/IROS.2015.7353481
– ident: ref46
  doi: 10.1109/TITS.2016.2552248
– ident: ref114
  doi: 10.1109/CVPR.2017.690
– ident: ref5
  doi: 10.1080/15568318.2018.1519086
– ident: ref85
  doi: 10.1016/S1006-706X(13)60102-8
– ident: ref73
  doi: 10.1109/TIP.2018.2808770
– ident: ref49
  doi: 10.1016/j.dsp.2020.102907
– start-page: 158
  year: 2007
  ident: ref77
  article-title: Statistical discriminator of surface defects on hot rolled steel
  publication-title: Image Vis. Comput.
– ident: ref154
  doi: 10.1109/CVPR.2018.00033
– ident: ref47
  doi: 10.1109/IJCNN.2017.7966101
– ident: ref129
  doi: 10.1109/TITS.2019.2891167
– ident: ref68
  doi: 10.1109/TITS.2021.3084809
– ident: ref99
  doi: 10.1016/j.aei.2019.100933
– ident: ref124
  doi: 10.1109/TITS.2016.2565698
– ident: ref127
  doi: 10.1111/mice.12297
– ident: ref50
  doi: 10.1016/j.conbuildmat.2020.119397
– ident: ref74
  doi: 10.1117/12.872463
– volume: 33
  start-page: 17721
  volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst.
  ident: ref158
  article-title: SOLOv2: Dynamic and fast instance segmentation
– ident: ref28
  doi: 10.1109/TITS.2020.2990703
– ident: ref16
  doi: 10.1109/CISP.2010.5646923
– ident: ref21
  doi: 10.1016/j.patcog.2020.107474
– ident: ref42
  doi: 10.4028/www.scientific.net/AMM.204-208.1945
– ident: ref135
  doi: 10.1109/JSTARS.2018.2857564
– ident: ref22
  doi: 10.1109/BigData.2018.8622327
– ident: ref19
  doi: 10.1109/TIE.2017.2764844
– ident: ref53
  doi: 10.1109/IST.2018.8577119
– ident: ref106
  doi: 10.1109/ICIP.2010.5653305
– ident: ref145
  doi: 10.1109/TCYB.2021.3060461
– ident: ref126
  doi: 10.1117/12.2514387
– ident: ref14
  doi: 10.1109/IMCCC.2015.364
– ident: ref38
  doi: 10.1016/j.trpro.2016.11.063
– ident: ref93
  doi: 10.1109/ICCSCE47578.2019.9068551
– ident: ref101
  doi: 10.1109/ICRA48891.2023.10161099
– ident: ref157
  doi: 10.1007/s00138-018-0961-8
– year: 2017
  ident: ref89
  article-title: Automated defect detection in textured materials
– volume: 810
  start-page: 4853
  volume-title: Proc. 2nd Int. Conf. Inf. Technol. Comput. Netw.
  ident: ref95
  article-title: Pothole detection with image processing and spectral clustering
– ident: ref86
  doi: 10.1109/CVPR.2010.5540198
– ident: ref132
  doi: 10.1109/ICSP51882.2021.9408874
– ident: ref31
  doi: 10.1061/(asce)cp.1943-5487.0000726
– ident: ref128
  doi: 10.1061/(asce)cp.1943-5487.0000775
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref117
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref41
  doi: 10.1007/978-1-4020-6754-9_16142
– ident: ref55
  doi: 10.1109/NAECON.2018.8556809
– ident: ref144
  doi: 10.1109/ITSC.2013.6728408
– ident: ref52
  doi: 10.1088/1742-6596/1349/1/012020
– ident: ref27
  doi: 10.48550/arXiv.1802.02611
– ident: ref153
  doi: 10.1109/ICRA.2016.7487708
– ident: ref18
  doi: 10.1016/S0020-7683(03)00147-1
– volume-title: Pothole Damage Costs Drivers $3 Billion Annually Nationwide
  year: 2016
  ident: ref43
– ident: ref71
  doi: 10.1109/BigData50022.2020.9377790
– ident: ref70
  doi: 10.1111/mice.12561
– year: 2022
  ident: ref72
  article-title: RDD2022: A multi-national image dataset for automatic road damage detection
  publication-title: arXiv:2209.08538
– ident: ref92
  doi: 10.1109/BEC.2010.5630750
– ident: ref121
  doi: 10.1177/1687814019872650
– volume: 13
  start-page: 6056
  issue: 8
  year: 2021
  ident: ref8
  article-title: Review and analysis of crack detection and classification techniques based on crack types
  publication-title: Int. J. Appl. Eng. Res.
  doi: 10.37622/IJAER/13.8.2018.6056-6062
– ident: ref108
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref133
  doi: 10.1016/j.autcon.2023.105023
– ident: ref136
  doi: 10.1109/TGRS.2014.2344714
– ident: ref137
  doi: 10.1109/TITS.2014.2328589
– ident: ref65
  doi: 10.1109/ACCESS.2019.2905845
– ident: ref83
  doi: 10.1109/ICIT.2008.4608646
– ident: ref123
  doi: 10.1080/10298436.2022.2057978
– ident: ref3
  doi: 10.1109/TASE.2014.2354314
– ident: ref81
  doi: 10.1109/ACCESS.2018.2881962
– ident: ref119
  doi: 10.1109/CVPR.2019.00301
– ident: ref96
  doi: 10.1016/j.autcon.2022.104537
– volume: 30
  start-page: 4
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref141
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
– ident: ref66
  doi: 10.35490/EC3.2022.160
– ident: ref6
  doi: 10.1155/2011/989354
– ident: ref147
  doi: 10.1177/1475921720934758
– year: 2021
  ident: ref160
  article-title: Normality-calibrated autoencoder for unsupervised anomaly detection on data contamination
  publication-title: arXiv:2110.14825
– year: 2015
  ident: ref138
  article-title: ShapeNet: An information-rich 3D model repository
  publication-title: arXiv:1512.03012
– ident: ref155
  doi: 10.1007/978-3-319-10584-0_23
– start-page: 6822
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref120
  article-title: Generative probabilistic novelty detection with adversarial autoencoders
– ident: ref36
  doi: 10.11648/j.ijtet.20170302.12
– ident: ref26
  doi: 10.1016/j.autcon.2020.103176
– ident: ref148
  doi: 10.1109/CVPR.2019.00346
– ident: ref151
  doi: 10.1109/JAS.2020.1003234
– ident: ref125
  doi: 10.1016/j.optlastec.2017.06.015
– ident: ref143
  doi: 10.1061/(ASCE)TE.1943-5436.0000353
– ident: ref40
  doi: 10.1007/b101538
– ident: ref51
  doi: 10.1155/2021/5573590
– ident: ref149
  doi: 10.1111/mice.12041
– ident: ref152
  doi: 10.1061/JCCEE5.CPENG-5009
– ident: ref58
  doi: 10.1109/TIP.2019.2933750
– start-page: 622
  volume-title: Proc. 17th Eur. Signal Process. Conf.
  ident: ref107
  article-title: Automatic road crack segmentation using entropy and image dynamic thresholding
– ident: ref64
  doi: 10.1109/tmc.2022.3198089
– ident: ref94
  doi: 10.1109/TITS.2012.2208630
– ident: ref69
  doi: 10.1111/mice.12387
– ident: ref130
  doi: 10.1109/TITS.2021.3099023
– ident: ref90
  doi: 10.1504/IJISE.2014.061995
– ident: ref13
  doi: 10.1109/AIPR.2011.6176378
– ident: ref76
  doi: 10.1109/ICTEmSys.2019.8695928
– ident: ref104
  doi: 10.1109/tits.2023.3267433
– ident: ref116
  doi: 10.1016/j.conbuildmat.2020.119096
– ident: ref29
  doi: 10.1016/j.neucom.2019.01.036
– ident: ref60
  doi: 10.1061/(ASCE)CP.1943-5487.0000245
– ident: ref112
  doi: 10.1109/CVPR.2016.91
SSID ssj0014511
Score 2.4887903
Snippet Ensuring traffic safety is crucial, which necessitates the detection and prevention of road surface defects. As a result, there has been a growing interest in...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 10581
SubjectTerms Asphalt
crack detection
deep learning
Defect detection
object detection
object segmentation
Road surface defect detection
Roads
Sensors
Soil
Surface cracks
Surveys
Title Road Surface Defect Detection-From Image-Based to Non-Image-Based: A Survey
URI https://ieeexplore.ieee.org/document/10497909
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJzjwRoyXeuCElNI2adpwG49pA7ED26Tdqrx6gbVoapHg1-O03VSQQJzaWrEa2Wltx_YXhC6kTf-FhGMpGME09SWOlTLYGCX9SHFBfduc_DRigyl9mIWzplm96oUxxlTFZ8a1t1UuX-eqtFtl8IVTHnHbrrcOkVvdrLVKGVigrQocNaCYe-Eyhel7_GoynIwhFAyoCwGZhXv5ZoRap6pURqW_jUbL6dS1JC9uWUhXff5Aavz3fHfQVuNeOr16PeyiNZPtoc0W6OA-enzOhXbG5SIVyjh3xtZzwKWoarIy3F_kc2c4h98MvgELp50id0ZAb5GunZ7lfzcfB2jav5_cDnBzpAJWYIkLbBiDUFqnSgSR9gW8SGlGCFfwoIgQJNYKfDgRpx5RHigtSIVkMYsl19onghyiTpZn5gg54Er60mMi9FJJBRXSQHCkQkYiELIvoi7yljJOVIM3bo-9eE2quMPjiVVLYtWSNGrpossVy1sNtvHX4AMr8dbAWtjHv9BP0IZlr-vDTlGnWJTmDByKQp5XC-kLQgLGjQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QHIADzyHGswdOSBnN0qYNt_GYNrb1wDZptyqvXmArmjok-PU4bTcVJBCntlbSRnZa27X9GaEracN_PuVYCkaxlxCJQ6UMNkZJEiguPGKLkwcR64y9p4k_KYvV81oYY0yefGYa9jSP5etULeyvMnjDPR5wW663AYrfJ0W51ipoYKG2cnjUpoe56y-DmMTlN6PuaAjOYNNrgEtmAV--qaFKX5VcrbR3UbRcUJFN8tJYZLKhPn9gNf57xXtopzQwnVaxI_bRmpkdoO0K7OAh6j2nQjvDxTwRyjgPxmZ0wCHLs7JmuD1Pp053Ch8afAc6TjtZ6kRAr5BunZad_24-amjcfhzdd3DZVAEr0MUZNoyBM60TJZqBJgIepDSjlCu4UFQIGmoFVpwIE5cqF8TWTIRkIQsl15pQQY_Q-iydmWPkgDFJpMuE7ybSE56QBtwj5TMaAJOJCOrIXfI4ViXiuG188RrnnofLYyuW2IolLsVSR9erKW8F3MZfg2uW45WBBbNPfqFfos3OaNCP-92od4q27K2KbLEztJ7NF-YczItMXuSb6gvM98nW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Road+Surface+Defect+Detection-From+Image-Based+to+Non-Image-Based%3A+A+Survey&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Yu%2C+Jongmin&rft.au=Jiang%2C+Jiaqi&rft.au=Fichera%2C+Sebastiano&rft.au=Paoletti%2C+Paolo&rft.date=2024-09-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=25&rft.issue=9&rft.spage=10581&rft.epage=10603&rft_id=info:doi/10.1109%2FTITS.2024.3382837&rft.externalDocID=10497909
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon