Road Surface Defect Detection-From Image-Based to Non-Image-Based: A Survey
Ensuring traffic safety is crucial, which necessitates the detection and prevention of road surface defects. As a result, there has been a growing interest in the literature on the subject, leading to the development of various road surface defect detection methods. The methods for detecting road de...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 25; no. 9; pp. 10581 - 10603 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ensuring traffic safety is crucial, which necessitates the detection and prevention of road surface defects. As a result, there has been a growing interest in the literature on the subject, leading to the development of various road surface defect detection methods. The methods for detecting road defects can be categorised in various ways depending on the input data types or training methodologies. The predominant approach involves image-based methods, which analyse pixel intensities and surface textures to identify defects. Despite popularity, image-based methods share the distinct limitation of vulnerability to weather and lighting changes. To address this issue, researchers have explored the use of additional sensors, such as laser scanners or LiDARs, providing explicit depth information to enable the detection of defects in terms of scale and volume. However, the exploration of data beyond images has not been sufficiently investigated. In this survey paper, we provide a comprehensive review of road surface defect detection studies, categorising them based on input data types and methodologies used. Additionally, we review recently proposed non-image-based methods and discuss several challenges and open problems associated with these techniques. |
---|---|
AbstractList | Ensuring traffic safety is crucial, which necessitates the detection and prevention of road surface defects. As a result, there has been a growing interest in the literature on the subject, leading to the development of various road surface defect detection methods. The methods for detecting road defects can be categorised in various ways depending on the input data types or training methodologies. The predominant approach involves image-based methods, which analyse pixel intensities and surface textures to identify defects. Despite popularity, image-based methods share the distinct limitation of vulnerability to weather and lighting changes. To address this issue, researchers have explored the use of additional sensors, such as laser scanners or LiDARs, providing explicit depth information to enable the detection of defects in terms of scale and volume. However, the exploration of data beyond images has not been sufficiently investigated. In this survey paper, we provide a comprehensive review of road surface defect detection studies, categorising them based on input data types and methodologies used. Additionally, we review recently proposed non-image-based methods and discuss several challenges and open problems associated with these techniques. |
Author | Luo, Shan Fichera, Sebastiano Layzell, Lisa Yu, Jongmin Paoletti, Paolo Jiang, Jiaqi Mehta, Devansh |
Author_xml | – sequence: 1 givenname: Jongmin orcidid: 0000-0002-0718-9948 surname: Yu fullname: Yu, Jongmin email: bartosz.regula@gmail.com organization: Department of Engineering, King's College London, London, U.K – sequence: 2 givenname: Jiaqi orcidid: 0000-0001-8366-5750 surname: Jiang fullname: Jiang, Jiaqi email: jiaqi.1.jiang@kcl.ac.uk organization: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, U.K – sequence: 3 givenname: Sebastiano orcidid: 0000-0003-1006-4959 surname: Fichera fullname: Fichera, Sebastiano email: Sebastiano.Fichera@liverpool.ac.uk organization: Department of Engineering, King's College London, London, U.K – sequence: 4 givenname: Paolo orcidid: 0000-0001-6131-0377 surname: Paoletti fullname: Paoletti, Paolo email: paoletti@liverpool.ac.uk organization: Department of Engineering, King's College London, London, U.K – sequence: 5 givenname: Lisa surname: Layzell fullname: Layzell, Lisa email: lisa.layzell@robotiz3d.com organization: Robotiz3d Ltd., Daresbury, U.K – sequence: 6 givenname: Devansh surname: Mehta fullname: Mehta, Devansh email: devansh.mehta@robotiz3d.com organization: Robotiz3d Ltd., Daresbury, U.K – sequence: 7 givenname: Shan orcidid: 0000-0003-4760-0372 surname: Luo fullname: Luo, Shan email: shan.luo@kcl.ac.uk organization: Department of Engineering, King's College London, London, U.K |
BookMark | eNp9kM9Kw0AQxhepYFt9AMFDXmDr_kk2u95qbbVYFGw8h8nurETaRjZR6Nu7oT0UD56-mY_5zQzfiAx2zQ4JueZswjkzt8WyWE8EE-lESi20zM_IkGeZpoxxNehrkVLDMnZBRm37Gd0043xInt8acMn6O3iwmDygR9tF6aLUzY4uQrNNllv4QHoPLbqka5KX6J9Yd8m0539wf0nOPWxavDrqmLwv5sXsia5eH5ez6YpaoVRHUSmshPMWRO44xMPWKSmNjY2VAFI7m6UMtGfSMmtReKiUVroyznEJckzyw14bmrYN6Etbd9D_2wWoNyVnZZ9J2WdS9pmUx0wiyf-QX6HeQtj_y9wcmBoRT-ZTkxtm5C-rT2_J |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1049_ipr2_13300 crossref_primary_10_2478_bipie_2023_0022 crossref_primary_10_1016_j_compeleceng_2024_110045 crossref_primary_10_1109_TITS_2024_3517162 crossref_primary_10_3390_electronics14050927 crossref_primary_10_1088_1361_665X_ada596 crossref_primary_10_3390_s24175652 |
Cites_doi | 10.1109/IGARSS.2014.6946574 10.1007/s00371-021-02103-8 10.23919/EUSIPCO.2017.8081567 10.l007/978-3-319-46448-0_2 10.1117/12.876724 10.1109/ICIP.2019.8803060 10.14257/astl.2018.150.35 10.1016/j.advengsoft.2006.06.002 10.1109/TIP.2017.2783621 10.1109/IC3I.2016.7917988 10.1016/j.autcon.2019.103018 10.1109/ICIP.2016.7533052 10.1016/0031-3203(95)00067-4 10.1109/TII.2019.2917522 10.1061/(ASCE)CP.1943-5487.0000918 10.1109/TIM.2018.2868490 10.1016/j.autcon.2018.07.003 10.1016/j.cviu.2015.05.006 10.1016/j.engappai.2023.106452 10.1002/stc.2591 10.1109/DCABES.2010.115 10.1016/j.chemolab.2017.10.020 10.1016/j.conbuildmat.2022.126719 10.1109/TIP.2018.2878966 10.22260/ISARC2017/0066 10.1088/1742-6596/1486/7/072076 10.23919/EUSIPCO.2018.8553280 10.1155/2008/861701 10.1109/TIE.1930.896476 10.1080/15568318.2020.1821413 10.3389/fpls.2022.942040 10.1109/TIP.2010.2041397 10.1109/TITS.2022.3161960 10.1117/12.2573124 10.1109/ICIP.2012.6467040 10.1109/TIM.2023.3298391 10.1177/0020294019877490 10.1016/j.aei.2019.100936 10.1109/IV47402.2020.9304843 10.1109/ICASSP.2014.6853659 10.1109/TITS.2023.3234330 10.1007/s11831-016-9194-z 10.3390/s21051581 10.1109/ACCESS.2020.3022786 10.1109/ICRA.2011.5980131 10.1109/ACCESS.2020.2966881 10.1155/2017/1604130 10.1109/ACCESS.2020.2980086 10.1109/ICCV.2019.00925 10.1007/978-3-642-24728-6_40 10.1016/j.cag.2022.07.018 10.3390/met8030197 10.15607/rss.2018.xiv.019 10.1109/JSTARS.2018.2865528 10.1016/j.patrec.2011.11.004 10.1109/IROS.2015.7353481 10.1109/TITS.2016.2552248 10.1109/CVPR.2017.690 10.1080/15568318.2018.1519086 10.1016/S1006-706X(13)60102-8 10.1109/TIP.2018.2808770 10.1016/j.dsp.2020.102907 10.1109/CVPR.2018.00033 10.1109/IJCNN.2017.7966101 10.1109/TITS.2019.2891167 10.1109/TITS.2021.3084809 10.1016/j.aei.2019.100933 10.1109/TITS.2016.2565698 10.1111/mice.12297 10.1016/j.conbuildmat.2020.119397 10.1117/12.872463 10.1109/TITS.2020.2990703 10.1109/CISP.2010.5646923 10.1016/j.patcog.2020.107474 10.4028/www.scientific.net/AMM.204-208.1945 10.1109/JSTARS.2018.2857564 10.1109/BigData.2018.8622327 10.1109/TIE.2017.2764844 10.1109/IST.2018.8577119 10.1109/ICIP.2010.5653305 10.1109/TCYB.2021.3060461 10.1117/12.2514387 10.1109/IMCCC.2015.364 10.1016/j.trpro.2016.11.063 10.1109/ICCSCE47578.2019.9068551 10.1109/ICRA48891.2023.10161099 10.1007/s00138-018-0961-8 10.1109/CVPR.2010.5540198 10.1109/ICSP51882.2021.9408874 10.1061/(asce)cp.1943-5487.0000726 10.1061/(asce)cp.1943-5487.0000775 10.1007/978-1-4020-6754-9_16142 10.1109/NAECON.2018.8556809 10.1109/ITSC.2013.6728408 10.1088/1742-6596/1349/1/012020 10.48550/arXiv.1802.02611 10.1109/ICRA.2016.7487708 10.1016/S0020-7683(03)00147-1 10.1109/BigData50022.2020.9377790 10.1111/mice.12561 10.1109/BEC.2010.5630750 10.1177/1687814019872650 10.37622/IJAER/13.8.2018.6056-6062 10.1007/978-3-319-24574-4_28 10.1016/j.autcon.2023.105023 10.1109/TGRS.2014.2344714 10.1109/TITS.2014.2328589 10.1109/ACCESS.2019.2905845 10.1109/ICIT.2008.4608646 10.1080/10298436.2022.2057978 10.1109/TASE.2014.2354314 10.1109/ACCESS.2018.2881962 10.1109/CVPR.2019.00301 10.1016/j.autcon.2022.104537 10.35490/EC3.2022.160 10.1155/2011/989354 10.1177/1475921720934758 10.1007/978-3-319-10584-0_23 10.11648/j.ijtet.20170302.12 10.1016/j.autcon.2020.103176 10.1109/CVPR.2019.00346 10.1109/JAS.2020.1003234 10.1016/j.optlastec.2017.06.015 10.1061/(ASCE)TE.1943-5436.0000353 10.1007/b101538 10.1155/2021/5573590 10.1111/mice.12041 10.1061/JCCEE5.CPENG-5009 10.1109/TIP.2019.2933750 10.1109/tmc.2022.3198089 10.1109/TITS.2012.2208630 10.1111/mice.12387 10.1109/TITS.2021.3099023 10.1504/IJISE.2014.061995 10.1109/AIPR.2011.6176378 10.1109/ICTEmSys.2019.8695928 10.1109/tits.2023.3267433 10.1016/j.conbuildmat.2020.119096 10.1016/j.neucom.2019.01.036 10.1061/(ASCE)CP.1943-5487.0000245 10.1109/CVPR.2016.91 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TITS.2024.3382837 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 10603 |
ExternalDocumentID | 10_1109_TITS_2024_3382837 10497909 |
Genre | orig-research |
GrantInformation_xml | – fundername: United Kingdom Research and Innovation (UKRI) Innovate U.K. SMART Grant “ARRES PREVENT: The World-First Autonomous Road Repair Vehicle” grantid: 10006122 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c266t-e66eb2dfca27d1afaccd6339cd1ac3aa38dc540a8f03c0cce2fab6868b9dd13a3 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Thu Apr 24 23:11:51 EDT 2025 Tue Jul 01 04:29:16 EDT 2025 Wed Aug 27 02:03:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c266t-e66eb2dfca27d1afaccd6339cd1ac3aa38dc540a8f03c0cce2fab6868b9dd13a3 |
ORCID | 0000-0002-0718-9948 0000-0001-6131-0377 0000-0001-8366-5750 0000-0003-1006-4959 0000-0003-4760-0372 |
PageCount | 23 |
ParticipantIDs | ieee_primary_10497909 crossref_citationtrail_10_1109_TITS_2024_3382837 crossref_primary_10_1109_TITS_2024_3382837 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 Scholar (ref8) 2021; 13 Skorseth (ref37) 2000 ref51 Vincent (ref117) 2010; 11 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 Ren (ref20); 28 Wang (ref158); 33 Buza (ref95); 810 ref49 (ref1) 2022 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 Redmon (ref115) 2018 Pidhorskyi (ref120) ref34 Nasrollahi (ref35) ref36 ref31 ref148 ref30 ref149 ref33 ref146 ref32 ref147 ref39 ref38 Yu (ref160) 2021 Djukic (ref77) 2007 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref24 ref23 ref26 ref25 ref159 ref22 ref157 ref21 (ref43) 2016 ref28 ref27 ref29 Arya (ref72) 2022 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 Chang (ref138) 2015 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref133 ref92 ref134 Salari (ref142) 2012 ref131 ref94 ref132 ref130 ref91 ref90 ref139 ref86 ref137 ref85 ref88 Oliveira (ref107) ref135 ref87 ref136 ref82 ref144 ref81 ref145 ref84 ref83 ref143 ref80 ref79 ref108 ref78 ref109 ref106 Kumar (ref89) 2017 ref75 ref104 Qi (ref141); 30 ref74 ref105 ref102 ref76 ref103 ref2 ref71 ref111 ref70 ref112 ref73 ref110 ref68 ref119 ref67 Qi (ref140) ref69 ref118 ref64 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref61 ref121 |
References_xml | – ident: ref30 doi: 10.1109/IGARSS.2014.6946574 – ident: ref131 doi: 10.1007/s00371-021-02103-8 – year: 2018 ident: ref115 article-title: YOLOv3: An incremental improvement publication-title: arXiv:1804.02767 – ident: ref122 doi: 10.23919/EUSIPCO.2017.8081567 – ident: ref113 doi: 10.l007/978-3-319-46448-0_2 – ident: ref12 doi: 10.1117/12.876724 – ident: ref24 doi: 10.1109/ICIP.2019.8803060 – ident: ref44 doi: 10.14257/astl.2018.150.35 – volume-title: Road Safety Statistics year: 2022 ident: ref1 – ident: ref105 doi: 10.1016/j.advengsoft.2006.06.002 – ident: ref88 doi: 10.1109/TIP.2017.2783621 – ident: ref63 doi: 10.1109/IC3I.2016.7917988 – ident: ref67 doi: 10.1016/j.autcon.2019.103018 – year: 2000 ident: ref37 publication-title: Gravel Roads: Maintenance and Design Manual – ident: ref45 doi: 10.1109/ICIP.2016.7533052 – ident: ref78 doi: 10.1016/0031-3203(95)00067-4 – year: 2012 ident: ref142 article-title: Pavement distress evaluation using 3D depth information from stereo vision – ident: ref82 doi: 10.1109/TII.2019.2917522 – ident: ref10 doi: 10.1061/(ASCE)CP.1943-5487.0000918 – ident: ref118 doi: 10.1109/TIM.2018.2868490 – ident: ref11 doi: 10.1016/j.autcon.2018.07.003 – ident: ref59 doi: 10.1016/j.cviu.2015.05.006 – ident: ref134 doi: 10.1016/j.engappai.2023.106452 – ident: ref34 doi: 10.1002/stc.2591 – ident: ref91 doi: 10.1109/DCABES.2010.115 – ident: ref79 doi: 10.1016/j.chemolab.2017.10.020 – ident: ref110 doi: 10.1016/j.conbuildmat.2022.126719 – ident: ref25 doi: 10.1109/TIP.2018.2878966 – ident: ref109 doi: 10.22260/ISARC2017/0066 – ident: ref54 doi: 10.1088/1742-6596/1486/7/072076 – ident: ref23 doi: 10.23919/EUSIPCO.2018.8553280 – ident: ref17 doi: 10.1155/2008/861701 – ident: ref75 doi: 10.1109/TIE.1930.896476 – ident: ref4 doi: 10.1080/15568318.2020.1821413 – ident: ref62 doi: 10.3389/fpls.2022.942040 – ident: ref87 doi: 10.1109/TIP.2010.2041397 – ident: ref111 doi: 10.1109/TITS.2022.3161960 – ident: ref33 doi: 10.1117/12.2573124 – ident: ref84 doi: 10.1109/ICIP.2012.6467040 – ident: ref97 doi: 10.1109/TIM.2023.3298391 – ident: ref32 doi: 10.1177/0020294019877490 – ident: ref150 doi: 10.1016/j.aei.2019.100936 – ident: ref100 doi: 10.1109/IV47402.2020.9304843 – ident: ref56 doi: 10.1109/ICASSP.2014.6853659 – ident: ref98 doi: 10.1109/TITS.2023.3234330 – ident: ref7 doi: 10.1007/s11831-016-9194-z – ident: ref146 doi: 10.3390/s21051581 – ident: ref103 doi: 10.1109/ACCESS.2020.3022786 – start-page: 652 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) ident: ref140 article-title: PointNet: Deep learning on point sets for 3D classification and segmentation – ident: ref2 doi: 10.1109/ICRA.2011.5980131 – ident: ref9 doi: 10.1109/ACCESS.2020.2966881 – ident: ref61 doi: 10.1155/2017/1604130 – volume: 28 start-page: 91 volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst. ident: ref20 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks – ident: ref102 doi: 10.1109/ACCESS.2020.2980086 – ident: ref159 doi: 10.1109/ICCV.2019.00925 – ident: ref15 doi: 10.1007/978-3-642-24728-6_40 – start-page: 12 volume-title: Proc. CSCE Annu. Conf. ident: ref35 article-title: Concrete surface defect detection using deep neural network based on LiDAR scanning – ident: ref57 doi: 10.1016/j.cag.2022.07.018 – ident: ref80 doi: 10.3390/met8030197 – ident: ref156 doi: 10.15607/rss.2018.xiv.019 – ident: ref39 doi: 10.1109/JSTARS.2018.2865528 – ident: ref48 doi: 10.1016/j.patrec.2011.11.004 – ident: ref139 doi: 10.1109/IROS.2015.7353481 – ident: ref46 doi: 10.1109/TITS.2016.2552248 – ident: ref114 doi: 10.1109/CVPR.2017.690 – ident: ref5 doi: 10.1080/15568318.2018.1519086 – ident: ref85 doi: 10.1016/S1006-706X(13)60102-8 – ident: ref73 doi: 10.1109/TIP.2018.2808770 – ident: ref49 doi: 10.1016/j.dsp.2020.102907 – start-page: 158 year: 2007 ident: ref77 article-title: Statistical discriminator of surface defects on hot rolled steel publication-title: Image Vis. Comput. – ident: ref154 doi: 10.1109/CVPR.2018.00033 – ident: ref47 doi: 10.1109/IJCNN.2017.7966101 – ident: ref129 doi: 10.1109/TITS.2019.2891167 – ident: ref68 doi: 10.1109/TITS.2021.3084809 – ident: ref99 doi: 10.1016/j.aei.2019.100933 – ident: ref124 doi: 10.1109/TITS.2016.2565698 – ident: ref127 doi: 10.1111/mice.12297 – ident: ref50 doi: 10.1016/j.conbuildmat.2020.119397 – ident: ref74 doi: 10.1117/12.872463 – volume: 33 start-page: 17721 volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst. ident: ref158 article-title: SOLOv2: Dynamic and fast instance segmentation – ident: ref28 doi: 10.1109/TITS.2020.2990703 – ident: ref16 doi: 10.1109/CISP.2010.5646923 – ident: ref21 doi: 10.1016/j.patcog.2020.107474 – ident: ref42 doi: 10.4028/www.scientific.net/AMM.204-208.1945 – ident: ref135 doi: 10.1109/JSTARS.2018.2857564 – ident: ref22 doi: 10.1109/BigData.2018.8622327 – ident: ref19 doi: 10.1109/TIE.2017.2764844 – ident: ref53 doi: 10.1109/IST.2018.8577119 – ident: ref106 doi: 10.1109/ICIP.2010.5653305 – ident: ref145 doi: 10.1109/TCYB.2021.3060461 – ident: ref126 doi: 10.1117/12.2514387 – ident: ref14 doi: 10.1109/IMCCC.2015.364 – ident: ref38 doi: 10.1016/j.trpro.2016.11.063 – ident: ref93 doi: 10.1109/ICCSCE47578.2019.9068551 – ident: ref101 doi: 10.1109/ICRA48891.2023.10161099 – ident: ref157 doi: 10.1007/s00138-018-0961-8 – year: 2017 ident: ref89 article-title: Automated defect detection in textured materials – volume: 810 start-page: 4853 volume-title: Proc. 2nd Int. Conf. Inf. Technol. Comput. Netw. ident: ref95 article-title: Pothole detection with image processing and spectral clustering – ident: ref86 doi: 10.1109/CVPR.2010.5540198 – ident: ref132 doi: 10.1109/ICSP51882.2021.9408874 – ident: ref31 doi: 10.1061/(asce)cp.1943-5487.0000726 – ident: ref128 doi: 10.1061/(asce)cp.1943-5487.0000775 – volume: 11 start-page: 3371 year: 2010 ident: ref117 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – ident: ref41 doi: 10.1007/978-1-4020-6754-9_16142 – ident: ref55 doi: 10.1109/NAECON.2018.8556809 – ident: ref144 doi: 10.1109/ITSC.2013.6728408 – ident: ref52 doi: 10.1088/1742-6596/1349/1/012020 – ident: ref27 doi: 10.48550/arXiv.1802.02611 – ident: ref153 doi: 10.1109/ICRA.2016.7487708 – ident: ref18 doi: 10.1016/S0020-7683(03)00147-1 – volume-title: Pothole Damage Costs Drivers $3 Billion Annually Nationwide year: 2016 ident: ref43 – ident: ref71 doi: 10.1109/BigData50022.2020.9377790 – ident: ref70 doi: 10.1111/mice.12561 – year: 2022 ident: ref72 article-title: RDD2022: A multi-national image dataset for automatic road damage detection publication-title: arXiv:2209.08538 – ident: ref92 doi: 10.1109/BEC.2010.5630750 – ident: ref121 doi: 10.1177/1687814019872650 – volume: 13 start-page: 6056 issue: 8 year: 2021 ident: ref8 article-title: Review and analysis of crack detection and classification techniques based on crack types publication-title: Int. J. Appl. Eng. Res. doi: 10.37622/IJAER/13.8.2018.6056-6062 – ident: ref108 doi: 10.1007/978-3-319-24574-4_28 – ident: ref133 doi: 10.1016/j.autcon.2023.105023 – ident: ref136 doi: 10.1109/TGRS.2014.2344714 – ident: ref137 doi: 10.1109/TITS.2014.2328589 – ident: ref65 doi: 10.1109/ACCESS.2019.2905845 – ident: ref83 doi: 10.1109/ICIT.2008.4608646 – ident: ref123 doi: 10.1080/10298436.2022.2057978 – ident: ref3 doi: 10.1109/TASE.2014.2354314 – ident: ref81 doi: 10.1109/ACCESS.2018.2881962 – ident: ref119 doi: 10.1109/CVPR.2019.00301 – ident: ref96 doi: 10.1016/j.autcon.2022.104537 – volume: 30 start-page: 4 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref141 article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space – ident: ref66 doi: 10.35490/EC3.2022.160 – ident: ref6 doi: 10.1155/2011/989354 – ident: ref147 doi: 10.1177/1475921720934758 – year: 2021 ident: ref160 article-title: Normality-calibrated autoencoder for unsupervised anomaly detection on data contamination publication-title: arXiv:2110.14825 – year: 2015 ident: ref138 article-title: ShapeNet: An information-rich 3D model repository publication-title: arXiv:1512.03012 – ident: ref155 doi: 10.1007/978-3-319-10584-0_23 – start-page: 6822 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref120 article-title: Generative probabilistic novelty detection with adversarial autoencoders – ident: ref36 doi: 10.11648/j.ijtet.20170302.12 – ident: ref26 doi: 10.1016/j.autcon.2020.103176 – ident: ref148 doi: 10.1109/CVPR.2019.00346 – ident: ref151 doi: 10.1109/JAS.2020.1003234 – ident: ref125 doi: 10.1016/j.optlastec.2017.06.015 – ident: ref143 doi: 10.1061/(ASCE)TE.1943-5436.0000353 – ident: ref40 doi: 10.1007/b101538 – ident: ref51 doi: 10.1155/2021/5573590 – ident: ref149 doi: 10.1111/mice.12041 – ident: ref152 doi: 10.1061/JCCEE5.CPENG-5009 – ident: ref58 doi: 10.1109/TIP.2019.2933750 – start-page: 622 volume-title: Proc. 17th Eur. Signal Process. Conf. ident: ref107 article-title: Automatic road crack segmentation using entropy and image dynamic thresholding – ident: ref64 doi: 10.1109/tmc.2022.3198089 – ident: ref94 doi: 10.1109/TITS.2012.2208630 – ident: ref69 doi: 10.1111/mice.12387 – ident: ref130 doi: 10.1109/TITS.2021.3099023 – ident: ref90 doi: 10.1504/IJISE.2014.061995 – ident: ref13 doi: 10.1109/AIPR.2011.6176378 – ident: ref76 doi: 10.1109/ICTEmSys.2019.8695928 – ident: ref104 doi: 10.1109/tits.2023.3267433 – ident: ref116 doi: 10.1016/j.conbuildmat.2020.119096 – ident: ref29 doi: 10.1016/j.neucom.2019.01.036 – ident: ref60 doi: 10.1061/(ASCE)CP.1943-5487.0000245 – ident: ref112 doi: 10.1109/CVPR.2016.91 |
SSID | ssj0014511 |
Score | 2.4887903 |
Snippet | Ensuring traffic safety is crucial, which necessitates the detection and prevention of road surface defects. As a result, there has been a growing interest in... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 10581 |
SubjectTerms | Asphalt crack detection deep learning Defect detection object detection object segmentation Road surface defect detection Roads Sensors Soil Surface cracks Surveys |
Title | Road Surface Defect Detection-From Image-Based to Non-Image-Based: A Survey |
URI | https://ieeexplore.ieee.org/document/10497909 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJzjwRoyXeuCElNI2adpwG49pA7ED26Tdqrx6gbVoapHg1-O03VSQQJzaWrEa2Wltx_YXhC6kTf-FhGMpGME09SWOlTLYGCX9SHFBfduc_DRigyl9mIWzplm96oUxxlTFZ8a1t1UuX-eqtFtl8IVTHnHbrrcOkVvdrLVKGVigrQocNaCYe-Eyhel7_GoynIwhFAyoCwGZhXv5ZoRap6pURqW_jUbL6dS1JC9uWUhXff5Aavz3fHfQVuNeOr16PeyiNZPtoc0W6OA-enzOhXbG5SIVyjh3xtZzwKWoarIy3F_kc2c4h98MvgELp50id0ZAb5GunZ7lfzcfB2jav5_cDnBzpAJWYIkLbBiDUFqnSgSR9gW8SGlGCFfwoIgQJNYKfDgRpx5RHigtSIVkMYsl19onghyiTpZn5gg54Er60mMi9FJJBRXSQHCkQkYiELIvoi7yljJOVIM3bo-9eE2quMPjiVVLYtWSNGrpossVy1sNtvHX4AMr8dbAWtjHv9BP0IZlr-vDTlGnWJTmDByKQp5XC-kLQgLGjQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QHIADzyHGswdOSBnN0qYNt_GYNrb1wDZptyqvXmArmjok-PU4bTcVJBCntlbSRnZa27X9GaEracN_PuVYCkaxlxCJQ6UMNkZJEiguPGKLkwcR64y9p4k_KYvV81oYY0yefGYa9jSP5etULeyvMnjDPR5wW663AYrfJ0W51ipoYKG2cnjUpoe56y-DmMTlN6PuaAjOYNNrgEtmAV--qaFKX5VcrbR3UbRcUJFN8tJYZLKhPn9gNf57xXtopzQwnVaxI_bRmpkdoO0K7OAh6j2nQjvDxTwRyjgPxmZ0wCHLs7JmuD1Pp053Ch8afAc6TjtZ6kRAr5BunZad_24-amjcfhzdd3DZVAEr0MUZNoyBM60TJZqBJgIepDSjlCu4UFQIGmoFVpwIE5cqF8TWTIRkIQsl15pQQY_Q-iydmWPkgDFJpMuE7ybSE56QBtwj5TMaAJOJCOrIXfI4ViXiuG188RrnnofLYyuW2IolLsVSR9erKW8F3MZfg2uW45WBBbNPfqFfos3OaNCP-92od4q27K2KbLEztJ7NF-YczItMXuSb6gvM98nW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Road+Surface+Defect+Detection-From+Image-Based+to+Non-Image-Based%3A+A+Survey&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Yu%2C+Jongmin&rft.au=Jiang%2C+Jiaqi&rft.au=Fichera%2C+Sebastiano&rft.au=Paoletti%2C+Paolo&rft.date=2024-09-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=25&rft.issue=9&rft.spage=10581&rft.epage=10603&rft_id=info:doi/10.1109%2FTITS.2024.3382837&rft.externalDocID=10497909 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |