Scheduling a Single-Arm Two-Cluster Tool With a Process Module Failure Subject to Wafer Residency Time Constraints

Multi-cluster tools are widely adopted in semiconductor manufacturing. When a process module (PM) at a step fails, a multi-cluster tool cannot complete the process recipe of work-in-process wafers and must be forced to enter a closedown process to be empty. To increase the throughput of a wafer fab,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 22; pp. 667 - 679
Main Authors Zhu, Qinghua, Yuan, Jun, Wang, Genghong, Hou, Yan
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-cluster tools are widely adopted in semiconductor manufacturing. When a process module (PM) at a step fails, a multi-cluster tool cannot complete the process recipe of work-in-process wafers and must be forced to enter a closedown process to be empty. To increase the throughput of a wafer fab, it is economically significant to shorten the failure-closedown process. However, due to the wafer residency time constraints, it is highly challenging to respond to a PM failure and find a corresponding optimal schedule. By assuming no parallel PM at a step, this work is the first to study this important issue for scheduling multi-cluster tools. We analyze the task sequences and synchronization conditions for robot activities to avoid deadlock in a shared buffer module. Upon these analyses, for process-dominant multi-cluster tools whose optimal steady-state schedule is known, algorithms are proposed to synthesize the proper sequences for robots in case of PM failures, then, a nonlinear program model is proposed to find an optimal schedule for the corresponding closedown process or decide no feasible solutions. The proposed model can uniformly deal with different scenarios of PM failures. Examples are given to illustrate the application of the proposed method. Note to Practitioners-In a wafer fab, there are hundreds, even thousands, of cluster tools. It is common that a failure of a processing module happens in a cluster tool. How to intelligently respond to such a random failure in a multi-cluster tool is an important issue in real-world production. This paper studies the scheduling problem of a multi-cluster tool in case of a failure at a PM. For a multi-cluster tool in case of a failure module, the proposed method can significantly reduce the loss of work-in-process wafers and shorten the closedown process.
AbstractList Multi-cluster tools are widely adopted in semiconductor manufacturing. When a process module (PM) at a step fails, a multi-cluster tool cannot complete the process recipe of work-in-process wafers and must be forced to enter a closedown process to be empty. To increase the throughput of a wafer fab, it is economically significant to shorten the failure-closedown process. However, due to the wafer residency time constraints, it is highly challenging to respond to a PM failure and find a corresponding optimal schedule. By assuming no parallel PM at a step, this work is the first to study this important issue for scheduling multi-cluster tools. We analyze the task sequences and synchronization conditions for robot activities to avoid deadlock in a shared buffer module. Upon these analyses, for process-dominant multi-cluster tools whose optimal steady-state schedule is known, algorithms are proposed to synthesize the proper sequences for robots in case of PM failures, then, a nonlinear program model is proposed to find an optimal schedule for the corresponding closedown process or decide no feasible solutions. The proposed model can uniformly deal with different scenarios of PM failures. Examples are given to illustrate the application of the proposed method. Note to Practitioners-In a wafer fab, there are hundreds, even thousands, of cluster tools. It is common that a failure of a processing module happens in a cluster tool. How to intelligently respond to such a random failure in a multi-cluster tool is an important issue in real-world production. This paper studies the scheduling problem of a multi-cluster tool in case of a failure at a PM. For a multi-cluster tool in case of a failure module, the proposed method can significantly reduce the loss of work-in-process wafers and shorten the closedown process.
Author Zhu, Qinghua
Wang, Genghong
Yuan, Jun
Hou, Yan
Author_xml – sequence: 1
  givenname: Qinghua
  orcidid: 0000-0002-2337-7041
  surname: Zhu
  fullname: Zhu, Qinghua
  email: zhuqh@gdut.edu.cn
  organization: School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
– sequence: 2
  givenname: Jun
  surname: Yuan
  fullname: Yuan, Jun
  email: qq82295550@163.com
  organization: School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
– sequence: 3
  givenname: Genghong
  surname: Wang
  fullname: Wang, Genghong
  email: 2111905110@mail2.gdut.edu.cn
  organization: School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
– sequence: 4
  givenname: Yan
  surname: Hou
  fullname: Hou, Yan
  email: houyan@gdut.edu.cn
  organization: School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
BookMark eNp9kc1Kw0AURgepYKs-gOBiXiB1fjKZZFlKq0JFMZEuw2RyY6ekGZmZIH17E9qFuHD13cV3LpdzZ2jS2Q4QuqNkTinJHopFvpozwvicMykk4RdoSoVIIy5TPhnnWEQiE-IKzbzfE8LiNCNT5HK9g7pvTfeJFc6HaCFauAMuvm20bHsfwOHC2hZvTdgNlTdnNXiPX-xAAV4r0_YOcN5Xe9ABB4u3qhmYd_Cmhk4fcWEOgJe288Ep0wV_gy4b1Xq4Pec1-liviuVTtHl9fF4uNpFmSRKius6ShHEZ6xSEripKleSsIamuGRVZBRlkNUiWCWCSxE2c1ARUk4hUkgQ48GskT3u1s947aEptggrGduMhbUlJOaorR3XlqK48qxtI-of8cuag3PFf5v7EGAD41adcDm_gP4LVfRM
CODEN ITASC7
CitedBy_id crossref_primary_10_1007_s10696_024_09565_7
crossref_primary_10_1177_09544089241239734
Cites_doi 10.1109/TSM.2003.810936
10.1109/TSM.2013.2281083
10.1109/TASE.2010.2046891
10.1109/TASE.2005.851236
10.1109/TSM.2018.2811125
10.1109/TSM.2003.815203
10.1007/s00291-006-0061-4
10.1109/66.641483
10.1109/TSMC.2020.2964032
10.1016/j.sysarc.2022.102788
10.1109/TSM.2014.2375880
10.1109/TASE.2018.2815157
10.1109/TSM.2019.2910399
10.1109/TSMC.2017.2755599
10.1109/TSMC.2019.2944866
10.1109/TASE.2012.2220355
10.1109/TASE.2010.2046893
10.1109/TSM.2017.2721970
10.1109/JAS.2020.1003150
10.1002/asjc.183
10.1109/TASE.2008.2008633
10.1109/TASE.2016.2531105
10.1109/TASE.2013.2292572
10.1080/00207543.2011.590949
10.1145/3570326
10.1109/TASE.2007.906678
10.1109/TSMC.2016.2598303
10.1109/tsm.2023.3239198
10.1109/TASE.2013.2296855
10.1109/JAS.2017.7510772
10.1109/TASE.2013.2293552
10.1109/TSM.2005.852103
10.1109/TSM.2008.2000425
10.1109/TSMC.2016.2587697
10.1109/TASE.2014.2312823
10.1109/16.108208
10.1109/TSM.2014.2340858
10.1109/TASE.2015.2443107
10.1109/TSM.2014.2315871
10.1109/TSM.2015.2415523
10.1109/70.964658
10.1080/00207543.2019.1593547
10.1109/TASE.2019.2930046
10.1109/TASE.2018.2874664
10.1109/LRA.2022.3157031
10.1109/TASE.2014.2311997
10.1109/TASE.2012.2217128
10.1109/TASE.2017.2771751
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2023.3275703
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 679
ExternalDocumentID 10_1109_TASE_2023_3275703
10137558
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province, China
  grantid: 2022A1515011310
  funderid: 10.13039/501100003453
– fundername: National Natural Science Foundation of China
  grantid: 61673123
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c266t-dd9662374c8e5cbb11a732f08cd2159be9e9de7295e2704f46d0eaf658706e3e3
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Tue Jul 01 02:56:33 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Wed Aug 27 01:55:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-dd9662374c8e5cbb11a732f08cd2159be9e9de7295e2704f46d0eaf658706e3e3
ORCID 0000-0002-2337-7041
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TASE_2023_3275703
crossref_primary_10_1109_TASE_2023_3275703
ieee_primary_10137558
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
Noh (ref5) 2017; 24
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Mulay (ref50) 2023
References_xml – ident: ref37
  doi: 10.1109/TSM.2003.810936
– ident: ref46
  doi: 10.1109/TSM.2013.2281083
– ident: ref6
  doi: 10.1109/TASE.2010.2046891
– volume: 24
  start-page: 232
  issue: 2
  year: 2017
  ident: ref5
  article-title: A schedule of cleaning processes for a single-armed cluster tool
  publication-title: Int. J. Ind. Eng. Theory, Appl. Pract.
– ident: ref21
  doi: 10.1109/TASE.2005.851236
– ident: ref27
  doi: 10.1109/TSM.2018.2811125
– ident: ref20
  doi: 10.1109/TSM.2003.815203
– ident: ref4
  doi: 10.1007/s00291-006-0061-4
– ident: ref22
  doi: 10.1109/66.641483
– ident: ref49
  doi: 10.1109/TSMC.2020.2964032
– ident: ref31
  doi: 10.1016/j.sysarc.2022.102788
– ident: ref40
  doi: 10.1109/TSM.2014.2375880
– ident: ref33
  doi: 10.1109/TASE.2018.2815157
– ident: ref34
  doi: 10.1109/TSM.2019.2910399
– ident: ref19
  doi: 10.1109/TSMC.2017.2755599
– ident: ref28
  doi: 10.1109/TSMC.2019.2944866
– ident: ref45
  doi: 10.1109/TASE.2012.2220355
– ident: ref9
  doi: 10.1109/TASE.2010.2046893
– ident: ref29
  doi: 10.1109/TSM.2017.2721970
– ident: ref18
  doi: 10.1109/JAS.2020.1003150
– ident: ref13
  doi: 10.1002/asjc.183
– ident: ref14
  doi: 10.1109/TASE.2008.2008633
– ident: ref24
  doi: 10.1109/TASE.2016.2531105
– ident: ref2
  doi: 10.1109/TASE.2013.2292572
– ident: ref44
  doi: 10.1080/00207543.2011.590949
– ident: ref36
  doi: 10.1145/3570326
– ident: ref8
  doi: 10.1109/TASE.2007.906678
– ident: ref23
  doi: 10.1109/TSMC.2016.2598303
– ident: ref30
  doi: 10.1109/tsm.2023.3239198
– ident: ref11
  doi: 10.1109/TASE.2013.2296855
– ident: ref39
  doi: 10.1109/JAS.2017.7510772
– ident: ref48
  doi: 10.1109/TASE.2013.2293552
– ident: ref15
  doi: 10.1109/TSM.2005.852103
– ident: ref12
  doi: 10.1109/TSM.2008.2000425
– ident: ref7
  doi: 10.1109/TSMC.2016.2587697
– ident: ref41
  doi: 10.1109/TASE.2014.2312823
– ident: ref1
  doi: 10.1109/16.108208
– ident: ref42
  doi: 10.1109/TSM.2014.2340858
– ident: ref43
  doi: 10.1109/TASE.2015.2443107
– ident: ref25
  doi: 10.1109/TSM.2014.2315871
– ident: ref32
  doi: 10.1109/TSM.2015.2415523
– volume-title: The Macroeconomics of 450 mm Wafers
  year: 2023
  ident: ref50
– ident: ref16
  doi: 10.1109/70.964658
– ident: ref26
  doi: 10.1080/00207543.2019.1593547
– ident: ref35
  doi: 10.1109/TASE.2019.2930046
– ident: ref17
  doi: 10.1109/TASE.2018.2874664
– ident: ref38
  doi: 10.1109/LRA.2022.3157031
– ident: ref3
  doi: 10.1109/TASE.2014.2311997
– ident: ref47
  doi: 10.1109/TASE.2012.2217128
– ident: ref10
  doi: 10.1109/TASE.2017.2771751
SSID ssj0024890
Score 2.4331074
Snippet Multi-cluster tools are widely adopted in semiconductor manufacturing. When a process module (PM) at a step fails, a multi-cluster tool cannot complete the...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 667
SubjectTerms Cluster tool
Job shop scheduling
module failure
Optimal scheduling
Robots
Schedules
scheduling
Semiconductor device modeling
Task analysis
Time factors
wafer fabrication
Title Scheduling a Single-Arm Two-Cluster Tool With a Process Module Failure Subject to Wafer Residency Time Constraints
URI https://ieeexplore.ieee.org/document/10137558
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6uJz34FtcXOXgSUtNHmuYo4iKCHtwVvZWkmerispXdLqK_3kxadRUUTy1lAoEvaWYmM99HyJFEPeNIS1Zk1rBEWMs0l4pxiESpkSMswW7kq-v04ja5vBf3bbO674UBAF98BgG--rt8WxUzTJW5HR7GUoisQzoucmuatb6I9TKfUEGXgAklRHuFGXJ1MjjtnweoEx7EkUTKqW-H0Jyqij9Ueqvk-mM6TS3JUzCrTVC8_WBq_Pd818hK617S02Y9rJMFGG-Q5TnSwU0y6TucLBagP1BN--4xAubwpoOXip2NZsicQAdVNaJ3w_rRmbS9BPSqcqOA9vQQS9mp--VgDofWFb3TpRtzA1OvUPpKsa-EohSoF6Cop1vktnc-OLtgrfICK9yBXTNrXRQUxTIpMhCFMWGoZRyVPCuscxGUAQXKgvPLBUSSJ2WSWg66dN6M5CnEEG-TxXE1hh1CQ6VjGZeap6pMsqQ0JrIGgzQMZiANu4R_QJEXLS05Tm6U-_CEqxzRyxG9vEWvS44_hzw3nBx_GW8hMHOGDSa7v3zfI0sRSvz6LMs-WawnMzhwfkdtDv16ewcHENMB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VcgAOfBZRPn2AC5KD48RxcuBQla62tNsDm6q9BTueQMVqg7pZVeW_8Ff4bXictCxIcKvEKVFkR4n9kpmxZ94DeKlJz1gazevcWZ4q57gRuuACpWoMcYSlVI08OcjGh-n7Y3W8Bt8va2EQMSSfYUSnYS_ftfWSlsr8Fx4nWql8yKHcw_MzH6Et3u6-89P5SsrRTrk95oOIAK-97em4c96hl4lO6xxVbW0cG53IRuS189ausFhg4dC7mAqlFmmTZk6gabxh1iLDBBN_32tw3TsaSvblYb-o_PKwhENOCFeFUsOmaSyKN-XWdCciZfIokZpIrn4zeys6LsGMje7Aj4sB6LNXvkTLzkb1tz-4If_bEboLtwcHmm31iL8Hazi_D7dWaBUfwOnUI9FRiv0nZtjUH2bIPaJZedby7dmSuCFY2bYzdnTSffZNhmoJNml9L2Qjc0LJ-sz_VGmVinUtOzKN7_MBF0GD9ZxR5QwjsdMgsdEtNuDwSl76IazP2zk-AhYXJtFJY0RWNGmeNtZKZykMpXANs3gTxMXUV_VAvE4PN6tCACaKitBSEVqqAS2b8Pqyy9eedeRfjTcICCsNeww8_sv1F3BjXE72q_3dg70ncFOSoHFYU3oK693pEp95L6uzzwPWGXy8auj8BOH2MIM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scheduling+a+Single-Arm+Two-Cluster+Tool+With+a+Process+Module+Failure+Subject+to+Wafer+Residency+Time+Constraints&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Zhu%2C+Qinghua&rft.au=Yuan%2C+Jun&rft.au=Wang%2C+Genghong&rft.au=Hou%2C+Yan&rft.date=2025&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=22&rft.spage=667&rft.epage=679&rft_id=info:doi/10.1109%2FTASE.2023.3275703&rft.externalDocID=10137558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon