Comparison of Canopy Cover and Leaf Area Index Estimation from Airborne LiDAR and Digital Aerial Photogrammetry in Tropical Forests

Digital aerial photogrammetry (DAP) has emerged as an alternative to airborne laser scanning (ALS) for forest inventory applications, as it offers a low-cost and flexible three-dimensional (3D) point cloud. Unlike the forest inventory attributes (e.g., tree height and diameter at breast height), the...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 19; p. 9882
Main Authors Li, Chenyun, Zheng, Yanfeng, Zhang, Xinjie, Wu, Fayun, Li, Linyuan, Jiang, Jingyi
Format Journal Article
LanguageEnglish
Published MDPI AG 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Digital aerial photogrammetry (DAP) has emerged as an alternative to airborne laser scanning (ALS) for forest inventory applications, as it offers a low-cost and flexible three-dimensional (3D) point cloud. Unlike the forest inventory attributes (e.g., tree height and diameter at breast height), the relative ability of DAP and ALS in predicting canopy structural variables (i.e., canopy cover and leaf area index (LAI)) has not been sufficiently investigated by previous studies. In this study, we comprehensively compared the canopy cover and LAI estimates using DAP- and ALS-based methods over 166 selected tropical forest sample plots with seven different tree species and forest types. We also explored the relationship between field-measured aboveground biomass (AGB) and the LAI estimates. The airborne LAI estimates were subsequently compared with the Sentinel-2-based LAI values that were retrieved using a one-dimensional radiative transfer model. The results demonstrated that the DAP-based method generally overestimated the two canopy variables compared to ALS-based methods but with relatively high correlations regardless of forest type and species (R2 of 0.80 for canopy cover and R2 of 0.76 for LAI). Under different forest types and species, the R2 of canopy cover and LAI range from 0.64 to 0.89 and from 0.54 to 0.87, respectively. Apparently, different correlations between AGB and LAI were found for different forest types and species where the mixed coniferous and broad-leaved forest shows the best correlation with R2 larger than 0.70 for both methods. The comparison with satellite retrievals verified that the ALS-based estimates are more consistent with Sentinel-2-based estimates than DAP-based estimates. We concluded that DAP data failed to provide analogous results to ALS data for canopy variable estimation in tropical forests.
AbstractList Digital aerial photogrammetry (DAP) has emerged as an alternative to airborne laser scanning (ALS) for forest inventory applications, as it offers a low-cost and flexible three-dimensional (3D) point cloud. Unlike the forest inventory attributes (e.g., tree height and diameter at breast height), the relative ability of DAP and ALS in predicting canopy structural variables (i.e., canopy cover and leaf area index (LAI)) has not been sufficiently investigated by previous studies. In this study, we comprehensively compared the canopy cover and LAI estimates using DAP- and ALS-based methods over 166 selected tropical forest sample plots with seven different tree species and forest types. We also explored the relationship between field-measured aboveground biomass (AGB) and the LAI estimates. The airborne LAI estimates were subsequently compared with the Sentinel-2-based LAI values that were retrieved using a one-dimensional radiative transfer model. The results demonstrated that the DAP-based method generally overestimated the two canopy variables compared to ALS-based methods but with relatively high correlations regardless of forest type and species (R2 of 0.80 for canopy cover and R2 of 0.76 for LAI). Under different forest types and species, the R2 of canopy cover and LAI range from 0.64 to 0.89 and from 0.54 to 0.87, respectively. Apparently, different correlations between AGB and LAI were found for different forest types and species where the mixed coniferous and broad-leaved forest shows the best correlation with R2 larger than 0.70 for both methods. The comparison with satellite retrievals verified that the ALS-based estimates are more consistent with Sentinel-2-based estimates than DAP-based estimates. We concluded that DAP data failed to provide analogous results to ALS data for canopy variable estimation in tropical forests.
Author Zheng, Yanfeng
Zhang, Xinjie
Li, Chenyun
Li, Linyuan
Wu, Fayun
Jiang, Jingyi
Author_xml – sequence: 1
  givenname: Chenyun
  surname: Li
  fullname: Li, Chenyun
– sequence: 2
  givenname: Yanfeng
  surname: Zheng
  fullname: Zheng, Yanfeng
– sequence: 3
  givenname: Xinjie
  surname: Zhang
  fullname: Zhang, Xinjie
– sequence: 4
  givenname: Fayun
  surname: Wu
  fullname: Wu, Fayun
– sequence: 5
  givenname: Linyuan
  surname: Li
  fullname: Li, Linyuan
– sequence: 6
  givenname: Jingyi
  surname: Jiang
  fullname: Jiang, Jingyi
BookMark eNptUU1LJDEQDeLCuupp_0DuMpp0uvNxbFpdBwYUcc9NdT7GyHSnqQTZOe8f3_YDEdm6vKLqvQf16gc5nNLkCfnJ2bkQhl3APPOKG6N1dUCOKqbkStRcHX7qv5PTnJ_YUoYLzdkR-dulcQaMOU00BdrBlOY97dKzRwqToxsPgbboga4n5__Qq1ziCCUu9IBppG3EIeHk6SZetvevksu4jQV2tPUYF7h7TCVtEcbRF9zTONEHTHO0y-o6oc8ln5BvAXbZn77jMfl9ffXQ3aw2t7_WXbtZ2UrKsnJgahOECN44kErZ0CjbOBe0rofgGybqYdBOcpAga8HtYEE2AaySTHHjxTFZv_m6BE_9jMshuO8TxP51kHDbA5Zod77ng65EoyujQlMzqcEF0UhvFLM-VMouXmdvXhZTzujDhx9n_cs7-k_vWNj8C9suEb2kWBDi7r-afwikkN4
CitedBy_id crossref_primary_10_1016_j_landurbplan_2025_105336
crossref_primary_10_3390_f14102084
crossref_primary_10_1016_j_rse_2024_114310
Cites_doi 10.1007/s40725-019-00094-3
10.1016/j.agrformet.2009.08.001
10.1029/97JD01107
10.1016/j.isprsjprs.2021.05.007
10.1016/0002-1571(71)90092-6
10.1016/j.rse.2009.06.010
10.1016/j.rse.2008.01.026
10.3390/f13071142
10.5589/m13-046
10.3390/rs12010004
10.3390/rs61111627
10.1080/17538947.2021.1921862
10.3390/rs12020298
10.1016/0034-4257(93)90072-6
10.1016/j.agrformet.2003.08.001
10.1016/j.rse.2013.02.021
10.3390/rs12203457
10.1016/j.rse.2010.12.011
10.1109/36.649788
10.1016/j.rse.2018.02.002
10.1016/j.rse.2019.03.027
10.1109/TGRS.2006.881743
10.1016/j.rse.2008.09.012
10.1016/j.rse.2012.02.001
10.1016/j.rse.2012.12.027
10.3390/rs11091073
10.1016/j.rse.2021.112304
10.1093/forestry/72.1.59
10.1007/978-1-4020-8506-2_14
10.1016/j.rse.2013.04.005
10.1093/oxfordjournals.aob.a083148
10.1016/j.rse.2019.111520
10.1109/TGRS.2018.2794504
10.1016/j.rse.2006.04.019
10.1016/j.rse.2009.03.006
10.1016/j.rse.2015.02.025
10.3390/f9050275
10.1016/0168-1923(86)90033-X
10.1016/j.rse.2018.09.002
10.1016/j.agrformet.2018.11.033
10.1016/j.rse.2005.10.006
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/app12199882
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_1b82358297f54068adf356e970cef27c
10_3390_app12199882
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PUEGO
ID FETCH-LOGICAL-c266t-da949f33fe9da677cf57c5ddf884bfe5034bb8d61a6a6431cbca65fac760719e3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:25:18 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Tue Jul 01 00:41:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-da949f33fe9da677cf57c5ddf884bfe5034bb8d61a6a6431cbca65fac760719e3
OpenAccessLink https://doaj.org/article/1b82358297f54068adf356e970cef27c
ParticipantIDs doaj_primary_oai_doaj_org_article_1b82358297f54068adf356e970cef27c
crossref_primary_10_3390_app12199882
crossref_citationtrail_10_3390_app12199882
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Fisher (ref_16) 2020; 237
Yan (ref_5) 2019; 265
Claverie (ref_37) 2018; 219
Korhonen (ref_2) 2011; 115
Hopkinson (ref_23) 2009; 113
Zhao (ref_39) 2009; 113
Watson (ref_9) 1947; 11
ref_11
ref_33
Iglhaut (ref_27) 2019; 5
ref_31
Verrelst (ref_43) 2021; 255
Vastaranta (ref_30) 2013; 39
Nilson (ref_35) 1971; 8
Dandois (ref_17) 2013; 136
Cai (ref_32) 2021; 14
Schlerf (ref_38) 2006; 100
Chen (ref_22) 1997; 102
Solberg (ref_41) 2009; 113
Hosoi (ref_19) 2006; 44
Alonzo (ref_24) 2015; 162
Bonan (ref_7) 1993; 43
Noordermeer (ref_26) 2019; 226
Lang (ref_40) 2017; 51
Baret (ref_8) 2013; 137
Morsdorf (ref_18) 2006; 104
ref_25
Li (ref_29) 2022; 107
Jennings (ref_4) 1999; 72
ref_21
Lang (ref_34) 2010; 150
Weiss (ref_1) 2004; 121
ref_20
Li (ref_44) 2021; 177
Myneni (ref_10) 1997; 35
Hornero (ref_28) 2014; 6
ref_3
Armston (ref_14) 2013; 134
Hu (ref_42) 2018; 56
Lang (ref_36) 1986; 37
Wulder (ref_13) 2012; 121
White (ref_15) 2018; 208
ref_6
Jacquemoud (ref_12) 2009; 113
References_xml – volume: 5
  start-page: 155
  year: 2019
  ident: ref_27
  article-title: Structure from Motion Photogrammetry in Forestry: A Review
  publication-title: Curr. For. Rep.
  doi: 10.1007/s40725-019-00094-3
– volume: 150
  start-page: 20
  year: 2010
  ident: ref_34
  article-title: Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2009.08.001
– volume: 102
  start-page: 29429
  year: 1997
  ident: ref_22
  article-title: Leaf area index of boreal forests: Theory, techniques, and measurements
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/97JD01107
– volume: 177
  start-page: 263
  year: 2021
  ident: ref_44
  article-title: Characterizing reflectance anisotropy of background soil in open-canopy plantations using UAV-based multiangular images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.05.007
– volume: 8
  start-page: 25
  year: 1971
  ident: ref_35
  article-title: A theoretical analysis of the frequency of gaps in plant stands
  publication-title: Agric. Meteorol.
  doi: 10.1016/0002-1571(71)90092-6
– volume: 113
  start-page: 2317
  year: 2009
  ident: ref_41
  article-title: Mapping LAI in a Norway spruce forest using airborne laser scanning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.06.010
– volume: 113
  start-page: S56
  year: 2009
  ident: ref_12
  article-title: PROSPECT + SAIL models: A review of use for vegetation characterization
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.01.026
– ident: ref_31
  doi: 10.3390/f13071142
– volume: 39
  start-page: 382
  year: 2013
  ident: ref_30
  article-title: Airborne laser scanning and digital stereo imagery measures of forest structure: Comparative results and implications to forest mapping and inventory update
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m13-046
– ident: ref_33
  doi: 10.3390/rs12010004
– volume: 6
  start-page: 11627
  year: 2014
  ident: ref_28
  article-title: A novel methodology to estimate single-tree biophysical parameters from 3D digital imagery compared to aerial laser scanner data
  publication-title: Remote Sens.
  doi: 10.3390/rs61111627
– volume: 14
  start-page: 1477
  year: 2021
  ident: ref_32
  article-title: Improving the estimation of canopy cover from UAV-LiDAR data using a pit-free CHM-based method
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2021.1921862
– ident: ref_3
  doi: 10.3390/rs12020298
– volume: 43
  start-page: 303
  year: 1993
  ident: ref_7
  article-title: Importance of leaf area index and forest type when estimating photosynthesis in boreal forests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(93)90072-6
– volume: 51
  start-page: 132
  year: 2017
  ident: ref_40
  article-title: Estimation of canopy cover in dense mixed-species forests using airborne lidar data
  publication-title: Eur. J. Remote Sens.
– volume: 121
  start-page: 37
  year: 2004
  ident: ref_1
  article-title: Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2003.08.001
– volume: 134
  start-page: 24
  year: 2013
  ident: ref_14
  article-title: Direct retrieval of canopy gap probability using airborne waveform lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.02.021
– ident: ref_21
– ident: ref_20
  doi: 10.3390/rs12203457
– volume: 115
  start-page: 1065
  year: 2011
  ident: ref_2
  article-title: Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.12.011
– volume: 35
  start-page: 1380
  year: 1997
  ident: ref_10
  article-title: Estimation of global leaf area index and absorbed PAR using radiative transfer models
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.649788
– volume: 208
  start-page: 1
  year: 2018
  ident: ref_15
  article-title: Comparison of airborne laser scanning and digital stereo imagery for characterizing forest canopy gaps in coastal temperate rainforests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.002
– volume: 226
  start-page: 26
  year: 2019
  ident: ref_26
  article-title: Comparing the accuracies of forest attributes predicted from airborne laser scanning and digital aerial photogrammetry in operational forest inventories
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.03.027
– volume: 44
  start-page: 3610
  year: 2006
  ident: ref_19
  article-title: Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.881743
– volume: 113
  start-page: 275
  year: 2009
  ident: ref_23
  article-title: Testing LiDAR models of fractional cover across multiple forest ecozones
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.09.012
– volume: 121
  start-page: 196
  year: 2012
  ident: ref_13
  article-title: Lidar sampling for large-area forest characterization: A review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.02.001
– volume: 137
  start-page: 299
  year: 2013
  ident: ref_8
  article-title: GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.027
– ident: ref_11
  doi: 10.3390/rs11091073
– volume: 255
  start-page: 112304
  year: 2021
  ident: ref_43
  article-title: Hybrid inversion of radiative transfer models based on high spatial resolution satellite reflectance data improves fractional vegetation cover retrieval in heterogeneous ecological systems after fire
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112304
– volume: 72
  start-page: 59
  year: 1999
  ident: ref_4
  article-title: Assessing forest canopies and understorey illumination: Canopy closure, canopy cover and other measures
  publication-title: Forestry
  doi: 10.1093/forestry/72.1.59
– ident: ref_6
  doi: 10.1007/978-1-4020-8506-2_14
– volume: 136
  start-page: 259
  year: 2013
  ident: ref_17
  article-title: High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.04.005
– volume: 11
  start-page: 41
  year: 1947
  ident: ref_9
  article-title: Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years
  publication-title: Ann. Bot.
  doi: 10.1093/oxfordjournals.aob.a083148
– volume: 237
  start-page: 111520
  year: 2020
  ident: ref_16
  article-title: Modelling canopy gap probability, foliage projective cover and crown projective cover from airborne lidar metrics in Australian forests and woodlands
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111520
– volume: 107
  start-page: 102686
  year: 2022
  ident: ref_29
  article-title: Ultrahigh-resolution boreal forest canopy mapping: Combining UAV imagery and photogrammetric point clouds in a deep-learning-based approach
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 56
  start-page: 3196
  year: 2018
  ident: ref_42
  article-title: Using Airborne Laser Scanner and Path Length Distribution Model to Quantify Clumping Effect and Estimate Leaf Area Index
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2794504
– volume: 104
  start-page: 50
  year: 2006
  ident: ref_18
  article-title: Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.04.019
– volume: 113
  start-page: 1628
  year: 2009
  ident: ref_39
  article-title: Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.03.006
– volume: 162
  start-page: 141
  year: 2015
  ident: ref_24
  article-title: Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.02.025
– ident: ref_25
  doi: 10.3390/f9050275
– volume: 37
  start-page: 229
  year: 1986
  ident: ref_36
  article-title: Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(86)90033-X
– volume: 219
  start-page: 145
  year: 2018
  ident: ref_37
  article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.002
– volume: 265
  start-page: 390
  year: 2019
  ident: ref_5
  article-title: Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.11.033
– volume: 100
  start-page: 281
  year: 2006
  ident: ref_38
  article-title: Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.006
SSID ssj0000913810
Score 2.2538686
Snippet Digital aerial photogrammetry (DAP) has emerged as an alternative to airborne laser scanning (ALS) for forest inventory applications, as it offers a low-cost...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 9882
SubjectTerms airborne laser scanning (ALS)
canopy cover
digital aerial photogrammetry (DAP)
leaf area index (LAI)
tropical forest
Title Comparison of Canopy Cover and Leaf Area Index Estimation from Airborne LiDAR and Digital Aerial Photogrammetry in Tropical Forests
URI https://doaj.org/article/1b82358297f54068adf356e970cef27c
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlvbSH0qQtTR9hDjmkBdO1bOtx3Gw2JCENISSQm9Fj1C6k9rLrHHLOH69GdhcXCr3kasbCaEaaGTzf9zG2j7lHo3iZFU7YrJTOZ9pQl1IInHDNER01it8vxMlNeXZb3Y6kvmgmrKcH7jfuW25VQnNqGWJxIZTxoagEajlxGLh0dPvGnDdqptIdrHOiruoBeUXs6-l_cM4JUKb4XyloxNSfUsrxa_ZqqAVh2n_DNnuGzQ57OWII3GHbw9lbw8FAEP3lDXucbcQDoQ0wM027fIAZDWOCaTycowlxVTRwSlyIMI_HuEcoAqFJYLpYRc83COeLo-lVeuVo8YPUQ2CaAhIuf7Zdmtv6hd3qARYNXK_aJfkTSMtz3a3fspvj-fXsJBvEFDIXc3CXeaNLHYoioPZGSOlCJV3lfVCqtAGrSVFaq7zIjTCxSsmddUZUwThJDHQai3dsq2kbfM9A6JBLiShl4GXl0Cpjg5e550UZnJrssq9_9rd2A9M4CV7c1bHjIGfUI2fssv2N8bIn2Pi32SE5amNCrNjpQYyVeoiV-n-x8uEpFvnIXnCCQKSBvk9sq1vd4-dYmHR2jz0_nF9cXu2lWPwNS9rjsw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Canopy+Cover+and+Leaf+Area+Index+Estimation+from+Airborne+LiDAR+and+Digital+Aerial+Photogrammetry+in+Tropical+Forests&rft.jtitle=Applied+sciences&rft.au=Li%2C+Chenyun&rft.au=Zheng%2C+Yanfeng&rft.au=Zhang%2C+Xinjie&rft.au=Wu%2C+Fayun&rft.date=2022-10-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=12&rft.issue=19&rft.spage=9882&rft_id=info:doi/10.3390%2Fapp12199882&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app12199882
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon