Comparison of Canopy Cover and Leaf Area Index Estimation from Airborne LiDAR and Digital Aerial Photogrammetry in Tropical Forests
Digital aerial photogrammetry (DAP) has emerged as an alternative to airborne laser scanning (ALS) for forest inventory applications, as it offers a low-cost and flexible three-dimensional (3D) point cloud. Unlike the forest inventory attributes (e.g., tree height and diameter at breast height), the...
Saved in:
Published in | Applied sciences Vol. 12; no. 19; p. 9882 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Digital aerial photogrammetry (DAP) has emerged as an alternative to airborne laser scanning (ALS) for forest inventory applications, as it offers a low-cost and flexible three-dimensional (3D) point cloud. Unlike the forest inventory attributes (e.g., tree height and diameter at breast height), the relative ability of DAP and ALS in predicting canopy structural variables (i.e., canopy cover and leaf area index (LAI)) has not been sufficiently investigated by previous studies. In this study, we comprehensively compared the canopy cover and LAI estimates using DAP- and ALS-based methods over 166 selected tropical forest sample plots with seven different tree species and forest types. We also explored the relationship between field-measured aboveground biomass (AGB) and the LAI estimates. The airborne LAI estimates were subsequently compared with the Sentinel-2-based LAI values that were retrieved using a one-dimensional radiative transfer model. The results demonstrated that the DAP-based method generally overestimated the two canopy variables compared to ALS-based methods but with relatively high correlations regardless of forest type and species (R2 of 0.80 for canopy cover and R2 of 0.76 for LAI). Under different forest types and species, the R2 of canopy cover and LAI range from 0.64 to 0.89 and from 0.54 to 0.87, respectively. Apparently, different correlations between AGB and LAI were found for different forest types and species where the mixed coniferous and broad-leaved forest shows the best correlation with R2 larger than 0.70 for both methods. The comparison with satellite retrievals verified that the ALS-based estimates are more consistent with Sentinel-2-based estimates than DAP-based estimates. We concluded that DAP data failed to provide analogous results to ALS data for canopy variable estimation in tropical forests. |
---|---|
AbstractList | Digital aerial photogrammetry (DAP) has emerged as an alternative to airborne laser scanning (ALS) for forest inventory applications, as it offers a low-cost and flexible three-dimensional (3D) point cloud. Unlike the forest inventory attributes (e.g., tree height and diameter at breast height), the relative ability of DAP and ALS in predicting canopy structural variables (i.e., canopy cover and leaf area index (LAI)) has not been sufficiently investigated by previous studies. In this study, we comprehensively compared the canopy cover and LAI estimates using DAP- and ALS-based methods over 166 selected tropical forest sample plots with seven different tree species and forest types. We also explored the relationship between field-measured aboveground biomass (AGB) and the LAI estimates. The airborne LAI estimates were subsequently compared with the Sentinel-2-based LAI values that were retrieved using a one-dimensional radiative transfer model. The results demonstrated that the DAP-based method generally overestimated the two canopy variables compared to ALS-based methods but with relatively high correlations regardless of forest type and species (R2 of 0.80 for canopy cover and R2 of 0.76 for LAI). Under different forest types and species, the R2 of canopy cover and LAI range from 0.64 to 0.89 and from 0.54 to 0.87, respectively. Apparently, different correlations between AGB and LAI were found for different forest types and species where the mixed coniferous and broad-leaved forest shows the best correlation with R2 larger than 0.70 for both methods. The comparison with satellite retrievals verified that the ALS-based estimates are more consistent with Sentinel-2-based estimates than DAP-based estimates. We concluded that DAP data failed to provide analogous results to ALS data for canopy variable estimation in tropical forests. |
Author | Zheng, Yanfeng Zhang, Xinjie Li, Chenyun Li, Linyuan Wu, Fayun Jiang, Jingyi |
Author_xml | – sequence: 1 givenname: Chenyun surname: Li fullname: Li, Chenyun – sequence: 2 givenname: Yanfeng surname: Zheng fullname: Zheng, Yanfeng – sequence: 3 givenname: Xinjie surname: Zhang fullname: Zhang, Xinjie – sequence: 4 givenname: Fayun surname: Wu fullname: Wu, Fayun – sequence: 5 givenname: Linyuan surname: Li fullname: Li, Linyuan – sequence: 6 givenname: Jingyi surname: Jiang fullname: Jiang, Jingyi |
BookMark | eNptUU1LJDEQDeLCuupp_0DuMpp0uvNxbFpdBwYUcc9NdT7GyHSnqQTZOe8f3_YDEdm6vKLqvQf16gc5nNLkCfnJ2bkQhl3APPOKG6N1dUCOKqbkStRcHX7qv5PTnJ_YUoYLzdkR-dulcQaMOU00BdrBlOY97dKzRwqToxsPgbboga4n5__Qq1ziCCUu9IBppG3EIeHk6SZetvevksu4jQV2tPUYF7h7TCVtEcbRF9zTONEHTHO0y-o6oc8ln5BvAXbZn77jMfl9ffXQ3aw2t7_WXbtZ2UrKsnJgahOECN44kErZ0CjbOBe0rofgGybqYdBOcpAga8HtYEE2AaySTHHjxTFZv_m6BE_9jMshuO8TxP51kHDbA5Zod77ng65EoyujQlMzqcEF0UhvFLM-VMouXmdvXhZTzujDhx9n_cs7-k_vWNj8C9suEb2kWBDi7r-afwikkN4 |
CitedBy_id | crossref_primary_10_1016_j_landurbplan_2025_105336 crossref_primary_10_3390_f14102084 crossref_primary_10_1016_j_rse_2024_114310 |
Cites_doi | 10.1007/s40725-019-00094-3 10.1016/j.agrformet.2009.08.001 10.1029/97JD01107 10.1016/j.isprsjprs.2021.05.007 10.1016/0002-1571(71)90092-6 10.1016/j.rse.2009.06.010 10.1016/j.rse.2008.01.026 10.3390/f13071142 10.5589/m13-046 10.3390/rs12010004 10.3390/rs61111627 10.1080/17538947.2021.1921862 10.3390/rs12020298 10.1016/0034-4257(93)90072-6 10.1016/j.agrformet.2003.08.001 10.1016/j.rse.2013.02.021 10.3390/rs12203457 10.1016/j.rse.2010.12.011 10.1109/36.649788 10.1016/j.rse.2018.02.002 10.1016/j.rse.2019.03.027 10.1109/TGRS.2006.881743 10.1016/j.rse.2008.09.012 10.1016/j.rse.2012.02.001 10.1016/j.rse.2012.12.027 10.3390/rs11091073 10.1016/j.rse.2021.112304 10.1093/forestry/72.1.59 10.1007/978-1-4020-8506-2_14 10.1016/j.rse.2013.04.005 10.1093/oxfordjournals.aob.a083148 10.1016/j.rse.2019.111520 10.1109/TGRS.2018.2794504 10.1016/j.rse.2006.04.019 10.1016/j.rse.2009.03.006 10.1016/j.rse.2015.02.025 10.3390/f9050275 10.1016/0168-1923(86)90033-X 10.1016/j.rse.2018.09.002 10.1016/j.agrformet.2018.11.033 10.1016/j.rse.2005.10.006 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/app12199882 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_1b82358297f54068adf356e970cef27c 10_3390_app12199882 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PUEGO |
ID | FETCH-LOGICAL-c266t-da949f33fe9da677cf57c5ddf884bfe5034bb8d61a6a6431cbca65fac760719e3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:25:18 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Tue Jul 01 00:41:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c266t-da949f33fe9da677cf57c5ddf884bfe5034bb8d61a6a6431cbca65fac760719e3 |
OpenAccessLink | https://doaj.org/article/1b82358297f54068adf356e970cef27c |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1b82358297f54068adf356e970cef27c crossref_primary_10_3390_app12199882 crossref_citationtrail_10_3390_app12199882 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Fisher (ref_16) 2020; 237 Yan (ref_5) 2019; 265 Claverie (ref_37) 2018; 219 Korhonen (ref_2) 2011; 115 Hopkinson (ref_23) 2009; 113 Zhao (ref_39) 2009; 113 Watson (ref_9) 1947; 11 ref_11 ref_33 Iglhaut (ref_27) 2019; 5 ref_31 Verrelst (ref_43) 2021; 255 Vastaranta (ref_30) 2013; 39 Nilson (ref_35) 1971; 8 Dandois (ref_17) 2013; 136 Cai (ref_32) 2021; 14 Schlerf (ref_38) 2006; 100 Chen (ref_22) 1997; 102 Solberg (ref_41) 2009; 113 Hosoi (ref_19) 2006; 44 Alonzo (ref_24) 2015; 162 Bonan (ref_7) 1993; 43 Noordermeer (ref_26) 2019; 226 Lang (ref_40) 2017; 51 Baret (ref_8) 2013; 137 Morsdorf (ref_18) 2006; 104 ref_25 Li (ref_29) 2022; 107 Jennings (ref_4) 1999; 72 ref_21 Lang (ref_34) 2010; 150 Weiss (ref_1) 2004; 121 ref_20 Li (ref_44) 2021; 177 Myneni (ref_10) 1997; 35 Hornero (ref_28) 2014; 6 ref_3 Armston (ref_14) 2013; 134 Hu (ref_42) 2018; 56 Lang (ref_36) 1986; 37 Wulder (ref_13) 2012; 121 White (ref_15) 2018; 208 ref_6 Jacquemoud (ref_12) 2009; 113 |
References_xml | – volume: 5 start-page: 155 year: 2019 ident: ref_27 article-title: Structure from Motion Photogrammetry in Forestry: A Review publication-title: Curr. For. Rep. doi: 10.1007/s40725-019-00094-3 – volume: 150 start-page: 20 year: 2010 ident: ref_34 article-title: Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2009.08.001 – volume: 102 start-page: 29429 year: 1997 ident: ref_22 article-title: Leaf area index of boreal forests: Theory, techniques, and measurements publication-title: J. Geophys. Res. Atmos. doi: 10.1029/97JD01107 – volume: 177 start-page: 263 year: 2021 ident: ref_44 article-title: Characterizing reflectance anisotropy of background soil in open-canopy plantations using UAV-based multiangular images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.05.007 – volume: 8 start-page: 25 year: 1971 ident: ref_35 article-title: A theoretical analysis of the frequency of gaps in plant stands publication-title: Agric. Meteorol. doi: 10.1016/0002-1571(71)90092-6 – volume: 113 start-page: 2317 year: 2009 ident: ref_41 article-title: Mapping LAI in a Norway spruce forest using airborne laser scanning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.06.010 – volume: 113 start-page: S56 year: 2009 ident: ref_12 article-title: PROSPECT + SAIL models: A review of use for vegetation characterization publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.01.026 – ident: ref_31 doi: 10.3390/f13071142 – volume: 39 start-page: 382 year: 2013 ident: ref_30 article-title: Airborne laser scanning and digital stereo imagery measures of forest structure: Comparative results and implications to forest mapping and inventory update publication-title: Can. J. Remote Sens. doi: 10.5589/m13-046 – ident: ref_33 doi: 10.3390/rs12010004 – volume: 6 start-page: 11627 year: 2014 ident: ref_28 article-title: A novel methodology to estimate single-tree biophysical parameters from 3D digital imagery compared to aerial laser scanner data publication-title: Remote Sens. doi: 10.3390/rs61111627 – volume: 14 start-page: 1477 year: 2021 ident: ref_32 article-title: Improving the estimation of canopy cover from UAV-LiDAR data using a pit-free CHM-based method publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2021.1921862 – ident: ref_3 doi: 10.3390/rs12020298 – volume: 43 start-page: 303 year: 1993 ident: ref_7 article-title: Importance of leaf area index and forest type when estimating photosynthesis in boreal forests publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(93)90072-6 – volume: 51 start-page: 132 year: 2017 ident: ref_40 article-title: Estimation of canopy cover in dense mixed-species forests using airborne lidar data publication-title: Eur. J. Remote Sens. – volume: 121 start-page: 37 year: 2004 ident: ref_1 article-title: Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2003.08.001 – volume: 134 start-page: 24 year: 2013 ident: ref_14 article-title: Direct retrieval of canopy gap probability using airborne waveform lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.02.021 – ident: ref_21 – ident: ref_20 doi: 10.3390/rs12203457 – volume: 115 start-page: 1065 year: 2011 ident: ref_2 article-title: Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.12.011 – volume: 35 start-page: 1380 year: 1997 ident: ref_10 article-title: Estimation of global leaf area index and absorbed PAR using radiative transfer models publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.649788 – volume: 208 start-page: 1 year: 2018 ident: ref_15 article-title: Comparison of airborne laser scanning and digital stereo imagery for characterizing forest canopy gaps in coastal temperate rainforests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.002 – volume: 226 start-page: 26 year: 2019 ident: ref_26 article-title: Comparing the accuracies of forest attributes predicted from airborne laser scanning and digital aerial photogrammetry in operational forest inventories publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.03.027 – volume: 44 start-page: 3610 year: 2006 ident: ref_19 article-title: Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.881743 – volume: 113 start-page: 275 year: 2009 ident: ref_23 article-title: Testing LiDAR models of fractional cover across multiple forest ecozones publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.09.012 – volume: 121 start-page: 196 year: 2012 ident: ref_13 article-title: Lidar sampling for large-area forest characterization: A review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.02.001 – volume: 137 start-page: 299 year: 2013 ident: ref_8 article-title: GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.027 – ident: ref_11 doi: 10.3390/rs11091073 – volume: 255 start-page: 112304 year: 2021 ident: ref_43 article-title: Hybrid inversion of radiative transfer models based on high spatial resolution satellite reflectance data improves fractional vegetation cover retrieval in heterogeneous ecological systems after fire publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112304 – volume: 72 start-page: 59 year: 1999 ident: ref_4 article-title: Assessing forest canopies and understorey illumination: Canopy closure, canopy cover and other measures publication-title: Forestry doi: 10.1093/forestry/72.1.59 – ident: ref_6 doi: 10.1007/978-1-4020-8506-2_14 – volume: 136 start-page: 259 year: 2013 ident: ref_17 article-title: High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.04.005 – volume: 11 start-page: 41 year: 1947 ident: ref_9 article-title: Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years publication-title: Ann. Bot. doi: 10.1093/oxfordjournals.aob.a083148 – volume: 237 start-page: 111520 year: 2020 ident: ref_16 article-title: Modelling canopy gap probability, foliage projective cover and crown projective cover from airborne lidar metrics in Australian forests and woodlands publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111520 – volume: 107 start-page: 102686 year: 2022 ident: ref_29 article-title: Ultrahigh-resolution boreal forest canopy mapping: Combining UAV imagery and photogrammetric point clouds in a deep-learning-based approach publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 56 start-page: 3196 year: 2018 ident: ref_42 article-title: Using Airborne Laser Scanner and Path Length Distribution Model to Quantify Clumping Effect and Estimate Leaf Area Index publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2794504 – volume: 104 start-page: 50 year: 2006 ident: ref_18 article-title: Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.04.019 – volume: 113 start-page: 1628 year: 2009 ident: ref_39 article-title: Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.03.006 – volume: 162 start-page: 141 year: 2015 ident: ref_24 article-title: Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.02.025 – ident: ref_25 doi: 10.3390/f9050275 – volume: 37 start-page: 229 year: 1986 ident: ref_36 article-title: Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(86)90033-X – volume: 219 start-page: 145 year: 2018 ident: ref_37 article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.002 – volume: 265 start-page: 390 year: 2019 ident: ref_5 article-title: Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.11.033 – volume: 100 start-page: 281 year: 2006 ident: ref_38 article-title: Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.006 |
SSID | ssj0000913810 |
Score | 2.2538686 |
Snippet | Digital aerial photogrammetry (DAP) has emerged as an alternative to airborne laser scanning (ALS) for forest inventory applications, as it offers a low-cost... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 9882 |
SubjectTerms | airborne laser scanning (ALS) canopy cover digital aerial photogrammetry (DAP) leaf area index (LAI) tropical forest |
Title | Comparison of Canopy Cover and Leaf Area Index Estimation from Airborne LiDAR and Digital Aerial Photogrammetry in Tropical Forests |
URI | https://doaj.org/article/1b82358297f54068adf356e970cef27c |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlvbSH0qQtTR9hDjmkBdO1bOtx3Gw2JCENISSQm9Fj1C6k9rLrHHLOH69GdhcXCr3kasbCaEaaGTzf9zG2j7lHo3iZFU7YrJTOZ9pQl1IInHDNER01it8vxMlNeXZb3Y6kvmgmrKcH7jfuW25VQnNqGWJxIZTxoagEajlxGLh0dPvGnDdqptIdrHOiruoBeUXs6-l_cM4JUKb4XyloxNSfUsrxa_ZqqAVh2n_DNnuGzQ57OWII3GHbw9lbw8FAEP3lDXucbcQDoQ0wM027fIAZDWOCaTycowlxVTRwSlyIMI_HuEcoAqFJYLpYRc83COeLo-lVeuVo8YPUQ2CaAhIuf7Zdmtv6hd3qARYNXK_aJfkTSMtz3a3fspvj-fXsJBvEFDIXc3CXeaNLHYoioPZGSOlCJV3lfVCqtAGrSVFaq7zIjTCxSsmddUZUwThJDHQai3dsq2kbfM9A6JBLiShl4GXl0Cpjg5e550UZnJrssq9_9rd2A9M4CV7c1bHjIGfUI2fssv2N8bIn2Pi32SE5amNCrNjpQYyVeoiV-n-x8uEpFvnIXnCCQKSBvk9sq1vd4-dYmHR2jz0_nF9cXu2lWPwNS9rjsw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Canopy+Cover+and+Leaf+Area+Index+Estimation+from+Airborne+LiDAR+and+Digital+Aerial+Photogrammetry+in+Tropical+Forests&rft.jtitle=Applied+sciences&rft.au=Li%2C+Chenyun&rft.au=Zheng%2C+Yanfeng&rft.au=Zhang%2C+Xinjie&rft.au=Wu%2C+Fayun&rft.date=2022-10-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=12&rft.issue=19&rft.spage=9882&rft_id=info:doi/10.3390%2Fapp12199882&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app12199882 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |