Task relevance driven adversarial learning for simultaneous detection, size grading, and quantification of hepatocellular carcinoma via integrating multi-modality MRI

•For the first time, our proposed TrdAL method provides a time-saving, reliable, and stable tool, which achieves simultaneous HCC detection, size grading, and multiindex quantification via integrating multi-modality MRI of in-phase, out-phase, T2FS, and DWI.•The proposed MaTrans encodes the position...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 81; p. 102554
Main Authors Xiao, Xiaojiao, Zhao, Jianfeng, Li, Shuo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2022
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2022.102554

Cover

Loading…
Abstract •For the first time, our proposed TrdAL method provides a time-saving, reliable, and stable tool, which achieves simultaneous HCC detection, size grading, and multiindex quantification via integrating multi-modality MRI of in-phase, out-phase, T2FS, and DWI.•The proposed MaTrans encodes the position of multi-modality MRI to capture the relevance among multi-modality MRI, which refines the feature fusion and selection.•The innovative Trd-Rg-D captures the internal high-order relationships among multitask to refine the performance of multi-task simultaneously. Moreover, adding the radiomics feature as the prior knowledge into Trd-Rg-D enhances the detailed feature extraction.•The TrdAL provides a constraint strategy of tasks interaction, which enforces the higher-order consistency among multi-task labels to achieve the united adversarial learning among multi-task of detection, size grading, and multi-index quantification. [Display omitted] Hepatocellular Carcinoma (HCC) detection, size grading, and quantification (i.e. the center point coordinates, max-diameter, and area) by using multi-modality magnetic resonance imaging (MRI) are clinically significant tasks for HCC assessment and treatment. However, delivering the three tasks simultaneously is extremely challenging due to: (1) the lack of effective an mechanism to capture the relevance among multi-modality MRI information for multi-modality feature fusion and selection; (2) the lack of effective mechanism and constraint strategy to achieve mutual promotion of multi-task. In this paper, we proposed a task relevance driven adversarial learning framework (TrdAL) for simultaneous HCC detection, size grading, and multi-index quantification using multi-modality MRI (i.e. in-phase, out-phase, T2FS, and DWI). The TrdAL first obtains expressive feature of dimension reduction via using a CNN-based encoder. Secondly, the proposed modality-aware Transformer is utilized for multi-modality MRI features fusion and selection, which solves the challenge of multi-modality information diversity via capturing the relevance among multi-modality MRI. Then, the innovative task relevance driven and radiomics guided discriminator (Trd-Rg-D) is used for united adversarial learning. The Trd-Rg-D captures the internal high-order relationships to refine the performance of multi-task simultaneously. Moreover, adding the radiomics feature as the prior knowledge into Trd-Rg-D enhances the detailed feature extraction. Lastly, a novel task interaction loss function is used for constraining the TrdAL, which enforces the higher-order consistency among multi-task labels to enhance mutual promotion. The TrdAL is validated on a corresponding multi-modality MRI of 135 subjects. The experiments demonstrate that TrdAL achieves high accuracy of (1) HCC detection: specificity of 93.71%, sensitivity of 93.15%, accuracy of 93.33%, and IoU of 82.93%; (2) size grading: accuracy of large size, medium size, small size, tiny size, and healthy subject are 90.38%, 87.74%, 80.68%, 77.78%, and 96.87%; (3) multi-index quantification: the mean absolute error of center point, max-diameter, and area are 2.74mm, 3.17mm, and 144.51mm2. All of these results indicate that the proposed TrdAL provides an efficient, accurate, and reliable tool for HCC diagnosis in clinical.
AbstractList Hepatocellular Carcinoma (HCC) detection, size grading, and quantification (i.e. the center point coordinates, max-diameter, and area) by using multi-modality magnetic resonance imaging (MRI) are clinically significant tasks for HCC assessment and treatment. However, delivering the three tasks simultaneously is extremely challenging due to: (1) the lack of effective an mechanism to capture the relevance among multi-modality MRI information for multi-modality feature fusion and selection; (2) the lack of effective mechanism and constraint strategy to achieve mutual promotion of multi-task. In this paper, we proposed a task relevance driven adversarial learning framework (TrdAL) for simultaneous HCC detection, size grading, and multi-index quantification using multi-modality MRI (i.e. in-phase, out-phase, T2FS, and DWI). The TrdAL first obtains expressive feature of dimension reduction via using a CNN-based encoder. Secondly, the proposed modality-aware Transformer is utilized for multi-modality MRI features fusion and selection, which solves the challenge of multi-modality information diversity via capturing the relevance among multi-modality MRI. Then, the innovative task relevance driven and radiomics guided discriminator (Trd-Rg-D) is used for united adversarial learning. The Trd-Rg-D captures the internal high-order relationships to refine the performance of multi-task simultaneously. Moreover, adding the radiomics feature as the prior knowledge into Trd-Rg-D enhances the detailed feature extraction. Lastly, a novel task interaction loss function is used for constraining the TrdAL, which enforces the higher-order consistency among multi-task labels to enhance mutual promotion. The TrdAL is validated on a corresponding multi-modality MRI of 135 subjects. The experiments demonstrate that TrdAL achieves high accuracy of (1) HCC detection: specificity of 93.71%, sensitivity of 93.15%, accuracy of 93.33%, and IoU of 82.93%; (2) size grading: accuracy of large size, medium size, small size, tiny size, and healthy subject are 90.38%, 87.74%, 80.68%, 77.78%, and 96.87%; (3) multi-index quantification: the mean absolute error of center point, max-diameter, and area are 2.74mm, 3.17mm, and 144.51mm2. All of these results indicate that the proposed TrdAL provides an efficient, accurate, and reliable tool for HCC diagnosis in clinical.Hepatocellular Carcinoma (HCC) detection, size grading, and quantification (i.e. the center point coordinates, max-diameter, and area) by using multi-modality magnetic resonance imaging (MRI) are clinically significant tasks for HCC assessment and treatment. However, delivering the three tasks simultaneously is extremely challenging due to: (1) the lack of effective an mechanism to capture the relevance among multi-modality MRI information for multi-modality feature fusion and selection; (2) the lack of effective mechanism and constraint strategy to achieve mutual promotion of multi-task. In this paper, we proposed a task relevance driven adversarial learning framework (TrdAL) for simultaneous HCC detection, size grading, and multi-index quantification using multi-modality MRI (i.e. in-phase, out-phase, T2FS, and DWI). The TrdAL first obtains expressive feature of dimension reduction via using a CNN-based encoder. Secondly, the proposed modality-aware Transformer is utilized for multi-modality MRI features fusion and selection, which solves the challenge of multi-modality information diversity via capturing the relevance among multi-modality MRI. Then, the innovative task relevance driven and radiomics guided discriminator (Trd-Rg-D) is used for united adversarial learning. The Trd-Rg-D captures the internal high-order relationships to refine the performance of multi-task simultaneously. Moreover, adding the radiomics feature as the prior knowledge into Trd-Rg-D enhances the detailed feature extraction. Lastly, a novel task interaction loss function is used for constraining the TrdAL, which enforces the higher-order consistency among multi-task labels to enhance mutual promotion. The TrdAL is validated on a corresponding multi-modality MRI of 135 subjects. The experiments demonstrate that TrdAL achieves high accuracy of (1) HCC detection: specificity of 93.71%, sensitivity of 93.15%, accuracy of 93.33%, and IoU of 82.93%; (2) size grading: accuracy of large size, medium size, small size, tiny size, and healthy subject are 90.38%, 87.74%, 80.68%, 77.78%, and 96.87%; (3) multi-index quantification: the mean absolute error of center point, max-diameter, and area are 2.74mm, 3.17mm, and 144.51mm2. All of these results indicate that the proposed TrdAL provides an efficient, accurate, and reliable tool for HCC diagnosis in clinical.
•For the first time, our proposed TrdAL method provides a time-saving, reliable, and stable tool, which achieves simultaneous HCC detection, size grading, and multiindex quantification via integrating multi-modality MRI of in-phase, out-phase, T2FS, and DWI.•The proposed MaTrans encodes the position of multi-modality MRI to capture the relevance among multi-modality MRI, which refines the feature fusion and selection.•The innovative Trd-Rg-D captures the internal high-order relationships among multitask to refine the performance of multi-task simultaneously. Moreover, adding the radiomics feature as the prior knowledge into Trd-Rg-D enhances the detailed feature extraction.•The TrdAL provides a constraint strategy of tasks interaction, which enforces the higher-order consistency among multi-task labels to achieve the united adversarial learning among multi-task of detection, size grading, and multi-index quantification. [Display omitted] Hepatocellular Carcinoma (HCC) detection, size grading, and quantification (i.e. the center point coordinates, max-diameter, and area) by using multi-modality magnetic resonance imaging (MRI) are clinically significant tasks for HCC assessment and treatment. However, delivering the three tasks simultaneously is extremely challenging due to: (1) the lack of effective an mechanism to capture the relevance among multi-modality MRI information for multi-modality feature fusion and selection; (2) the lack of effective mechanism and constraint strategy to achieve mutual promotion of multi-task. In this paper, we proposed a task relevance driven adversarial learning framework (TrdAL) for simultaneous HCC detection, size grading, and multi-index quantification using multi-modality MRI (i.e. in-phase, out-phase, T2FS, and DWI). The TrdAL first obtains expressive feature of dimension reduction via using a CNN-based encoder. Secondly, the proposed modality-aware Transformer is utilized for multi-modality MRI features fusion and selection, which solves the challenge of multi-modality information diversity via capturing the relevance among multi-modality MRI. Then, the innovative task relevance driven and radiomics guided discriminator (Trd-Rg-D) is used for united adversarial learning. The Trd-Rg-D captures the internal high-order relationships to refine the performance of multi-task simultaneously. Moreover, adding the radiomics feature as the prior knowledge into Trd-Rg-D enhances the detailed feature extraction. Lastly, a novel task interaction loss function is used for constraining the TrdAL, which enforces the higher-order consistency among multi-task labels to enhance mutual promotion. The TrdAL is validated on a corresponding multi-modality MRI of 135 subjects. The experiments demonstrate that TrdAL achieves high accuracy of (1) HCC detection: specificity of 93.71%, sensitivity of 93.15%, accuracy of 93.33%, and IoU of 82.93%; (2) size grading: accuracy of large size, medium size, small size, tiny size, and healthy subject are 90.38%, 87.74%, 80.68%, 77.78%, and 96.87%; (3) multi-index quantification: the mean absolute error of center point, max-diameter, and area are 2.74mm, 3.17mm, and 144.51mm2. All of these results indicate that the proposed TrdAL provides an efficient, accurate, and reliable tool for HCC diagnosis in clinical.
ArticleNumber 102554
Author Xiao, Xiaojiao
Zhao, Jianfeng
Li, Shuo
Author_xml – sequence: 1
  givenname: Xiaojiao
  surname: Xiao
  fullname: Xiao, Xiaojiao
  organization: College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi, China
– sequence: 2
  givenname: Jianfeng
  surname: Zhao
  fullname: Zhao, Jianfeng
  organization: Digital Imaging Group of London, London, ON, Canada
– sequence: 3
  givenname: Shuo
  orcidid: 0000-0002-5184-3230
  surname: Li
  fullname: Li, Shuo
  email: slishuo@gmail.com, sli287@uwo.ca
  organization: Digital Imaging Group of London, London, ON, Canada
BookMark eNqFkctu1TAQhiNUJNrCE7DxkkVz8CVxTxYsUMWlUhESKmtrYk_KHBL71HYilQfiOXEaxIIFrMYa_Z_H4--sOvHBY1W9FHwnuNCvD7sJHcFOcilLR7Zt86Q6FUqLet9IdfLnLNpn1VlKB875ZdPw0-rnLaTvLOKIC3iLzEVa0DNwC8YEkWBkI0L05O_YECJLNM1jBo9hTsxhRpsp-IvS_4HsLoIrwQsG3rH7GXymgSysCRYG9g2PkIPFcZxHiMxCtOTDBGwhYOQzFj6vg9YRVE_BwUj5gX36cv28ejrAmPDF73pefX3_7vbqY33z-cP11dub2kqtc907japTSgrOW-j2QnTYDL3GgfNBusZJ5dqubfpO475vxeXQ8nawvSy116pR59Wr7d5jDPczpmwmSuuLt42N1N1eK94JXaLdFrUxpBRxMJby4645Ao1GcLO6MQfz6MasbszmprDqL_YYaYL48B_qzUZh-YGFMJpkCYs1R7F4MC7QP_lfJu-vlg
CitedBy_id crossref_primary_10_3390_cancers15235701
crossref_primary_10_1016_j_acra_2023_07_024
crossref_primary_10_1016_j_compmedimag_2024_102422
crossref_primary_10_1109_TCI_2024_3516574
crossref_primary_10_1007_s10462_024_10992_z
crossref_primary_10_1016_j_compmedimag_2023_102246
crossref_primary_10_1016_j_dld_2022_12_015
crossref_primary_10_1016_j_knosys_2025_113021
crossref_primary_10_1158_1078_0432_CCR_22_2784
Cites_doi 10.1148/rg.336135511
10.1007/s00432-010-0909-5
10.1158/0008-5472.CAN-17-0339
10.1186/s12880-019-0321-9
10.1016/j.neuroimage.2006.01.015
10.1016/j.media.2019.101593
10.1016/j.media.2019.101568
10.1016/j.media.2020.101918
10.3348/kjr.2019.0447
10.1109/TIP.2020.3023609
10.1007/s00066-016-1028-2
10.1186/s12957-020-01963-z
10.1016/j.jhep.2018.03.019
10.1016/j.media.2020.101667
10.1016/j.media.2021.102154
10.1002/jso.24099
10.1109/TMI.2017.2709251
10.1109/TMI.2019.2955436
10.1016/j.media.2019.04.012
10.1016/j.patcog.2020.107502
10.1016/j.media.2020.101721
10.2214/AJR.12.10375
10.2147/CMAR.S177663
10.1109/JBHI.2020.2977224
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.media.2022.102554
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 10_1016_j_media_2022_102554
S1361841522002018
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7X8
ID FETCH-LOGICAL-c266t-bd6e393321005a98119e4fb6ef00f2d4d23d5954b96e8b517f505fcb2f50b6343
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Fri Jul 11 09:57:14 EDT 2025
Thu Apr 24 22:52:57 EDT 2025
Tue Jul 01 02:49:32 EDT 2025
Fri Feb 23 02:35:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Modality-aware transformer
Multi-task
Multi-modality
41A10
65D05
Hepatocellular carcinoma
65D17
Adversarial learning
41A05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-bd6e393321005a98119e4fb6ef00f2d4d23d5954b96e8b517f505fcb2f50b6343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5184-3230
PQID 2698630916
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2698630916
crossref_citationtrail_10_1016_j_media_2022_102554
crossref_primary_10_1016_j_media_2022_102554
elsevier_sciencedirect_doi_10_1016_j_media_2022_102554
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Medical image analysis
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Sun, Liu, Wang, Zheng, Wang (bib0018) 2019
Liang, Lin, Chen, Hu, Zhang, Chen, Iwamoto, Han, Chen, Tong (bib0019) 2019
Wu, Wu, Wang, Zhu, Shi, Ding (bib0035) 2018; 10
Zhao, Li (bib0045) 2020; 60
He, Gkioxari, Dollár, Girshick (bib0010) 2017
Wu, Liu, Cui, Chen, Song, Xie (bib0036) 2019; 19
He, Zhang, Ren, Sun (bib0011) 2016
Liver (bib0022) 2018; 69
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0033) 2017
Jaderberg, Simonyan, Zisserman (bib0013) 2015; 28
Kim, Kim, Yoon, Kang, Lee, Kim, Kim, Lee, Park, Jang (bib0014) 2016; 192
Wang, Girshick, Gupta, He (bib0034) 2018
Park, Kim, Kim, Choi, Huh, Kim, Kim, Lee (bib0026) 2020; 21
Huang, Liu, Van Der Maaten, Weinberger (bib0012) 2017
Xiao, Zhao, Qiang, Chong, Yang, Kazihise, Chen, Li (bib0037) 2019
Gao, Zhou, Metaxas (bib0005) 2021
Xu, Howey, Ohorodnyk, Roth, Zhang, Li (bib0038) 2020; 59
Lu, Xi, Lau, Dong, Xian, Yu, Zhu, Shen, Wu, Cong (bib0023) 2011; 137
Van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan, Beets-Tan, Fillion-Robin, Pieper, Aerts (bib0032) 2017; 77
Ruan, Li, Marshall, Miao, Cossetto, Chan, Daher, Accorsi, Goela, Li (bib0028) 2020; 64
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Zhao, Li, Xiao, Chong, Chen, Li (bib0044) 2021
Arnab, Jayasumana, Zheng, Torr (bib0001) 2016
Liu, Yang, Chen, Wang, Huang, Zeng, Lin, Zeng, Guo, Zhou (bib0021) 2020; 18
Zhao, Li, Kassam, Howey, Chong, Chen, Li (bib0043) 2020; 63
Zhao, Feng, Li, Li (bib0042) 2020; 34
Luc, P., Couprie, C., Chintala, S., Verbeek, J., 2016. Semantic segmentation using adversarial networks. arXiv preprint arXiv:1611.08408.
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0009) 2014; 27
Bi, Feng, Fulham, Kim (bib0002) 2020; 107
Kingma, D. P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Tian, Shen, Chen, He (bib0030) 2019
Xue, Islam, Bhaduri, Li (bib0039) 2017; 36
Gonzalez-Guindalini, Botelho, Harmath, Sandrasegaran, Miller, Salem, Yaghmai (bib0008) 2013; 33
Goh, Teo, Chan, Lee, Jeyaraj, Cheow, Chow, Ooi, Chung (bib0007) 2016; 113
Lee, Nagy, Weaver, Newman-Toker (bib0017) 2013; 201
Ren, He, Girshick, Sun (bib0027) 2015; 28
Ge, Yang, Chen, Luo, Feng, Ma, Ren, Li (bib0006) 2019; 39
Zhang, Huang, Zhang, Han, Han, Wang, Yu (bib0041) 2020; 29
Chen, Lu, Yu, Luo, Adeli, Wang, Lu, Yuille, Zhou (bib0003) 2021
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (bib0004) 2020
Pang, Su, Leung, Nachum, Chen, Feng, Li (bib0025) 2019; 55
Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bib0040) 2006; 31
Usta, Kayaalp (bib0031) 2020
Le, Yamazaki, Quach, Truong, Savvides (bib0016) 2021
Lin, Tao, Pang, Su, Lu, Li, Feng, Chen (bib0020) 2020; 24
Zhou, Chen, Li, Liu, Xu, Wang, Yap, Shen (bib0046) 2021; 70
Li (10.1016/j.media.2022.102554_bib0018) 2019
Xiao (10.1016/j.media.2022.102554_bib0037) 2019
Xue (10.1016/j.media.2022.102554_bib0039) 2017; 36
10.1016/j.media.2022.102554_bib0015
Tian (10.1016/j.media.2022.102554_bib0030) 2019
Wang (10.1016/j.media.2022.102554_bib0034) 2018
Gao (10.1016/j.media.2022.102554_bib0005) 2021
Ge (10.1016/j.media.2022.102554_bib0006) 2019; 39
Park (10.1016/j.media.2022.102554_bib0026) 2020; 21
Goodfellow (10.1016/j.media.2022.102554_bib0009) 2014; 27
Vaswani (10.1016/j.media.2022.102554_bib0033) 2017
Liu (10.1016/j.media.2022.102554_bib0021) 2020; 18
Zhou (10.1016/j.media.2022.102554_bib0046) 2021; 70
Le (10.1016/j.media.2022.102554_bib0016) 2021
Xu (10.1016/j.media.2022.102554_bib0038) 2020; 59
Jaderberg (10.1016/j.media.2022.102554_bib0013) 2015; 28
Dosovitskiy (10.1016/j.media.2022.102554_bib0004) 2020
He (10.1016/j.media.2022.102554_bib0010) 2017
Lu (10.1016/j.media.2022.102554_bib0023) 2011; 137
Ren (10.1016/j.media.2022.102554_bib0027) 2015; 28
Pang (10.1016/j.media.2022.102554_bib0025) 2019; 55
10.1016/j.media.2022.102554_bib0029
Zhao (10.1016/j.media.2022.102554_bib0045) 2020; 60
Lin (10.1016/j.media.2022.102554_bib0020) 2020; 24
10.1016/j.media.2022.102554_bib0024
Zhang (10.1016/j.media.2022.102554_bib0041) 2020; 29
Goh (10.1016/j.media.2022.102554_bib0007) 2016; 113
Huang (10.1016/j.media.2022.102554_bib0012) 2017
Zhao (10.1016/j.media.2022.102554_bib0042) 2020; 34
Kim (10.1016/j.media.2022.102554_bib0014) 2016; 192
Gonzalez-Guindalini (10.1016/j.media.2022.102554_bib0008) 2013; 33
Van Griethuysen (10.1016/j.media.2022.102554_bib0032) 2017; 77
Liang (10.1016/j.media.2022.102554_bib0019) 2019
Wu (10.1016/j.media.2022.102554_bib0035) 2018; 10
Yushkevich (10.1016/j.media.2022.102554_bib0040) 2006; 31
Usta (10.1016/j.media.2022.102554_bib0031) 2020
Wu (10.1016/j.media.2022.102554_bib0036) 2019; 19
He (10.1016/j.media.2022.102554_bib0011) 2016
Liver (10.1016/j.media.2022.102554_bib0022) 2018; 69
Zhao (10.1016/j.media.2022.102554_bib0043) 2020; 63
Lee (10.1016/j.media.2022.102554_bib0017) 2013; 201
Bi (10.1016/j.media.2022.102554_bib0002) 2020; 107
Zhao (10.1016/j.media.2022.102554_bib0044) 2021
Arnab (10.1016/j.media.2022.102554_bib0001) 2016
Ruan (10.1016/j.media.2022.102554_bib0028) 2020; 64
Chen (10.1016/j.media.2022.102554_bib0003) 2021
References_xml – start-page: 102154
  year: 2021
  ident: bib0044
  article-title: United adversarial learning for liver tumor segmentation and detection of multi-modality non-contrast MRI
  publication-title: Med. Image Anal.
– start-page: 9627
  year: 2019
  end-page: 9636
  ident: bib0030
  article-title: Fcos: fully convolutional one-stage object detection
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 1
  year: 2020
  end-page: 4
  ident: bib0031
  article-title: Tumor diameter for hepatocellular carcinoma: why should size matter?
  publication-title: J. Gastrointest. Cancer
– volume: 59
  start-page: 101568
  year: 2020
  ident: bib0038
  article-title: Segmentation and quantification of infarction without contrast agents via spatiotemporal generative adversarial learning
  publication-title: Med. Image Anal.
– volume: 10
  start-page: 4401
  year: 2018
  ident: bib0035
  article-title: Importance of tumor size at diagnosis as a prognostic factor for hepatocellular carcinoma survival: a population-based study
  publication-title: Cancer Manag. Res.
– volume: 70
  start-page: 101918
  year: 2021
  ident: bib0046
  article-title: Multi-task learning for segmentation and classification of tumors in 3d automated breast ultrasound images
  publication-title: Med. Image Anal.
– volume: 77
  start-page: e104
  year: 2017
  end-page: e107
  ident: bib0032
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res.
– volume: 64
  start-page: 101721
  year: 2020
  ident: bib0028
  article-title: Mb-fsgan: joint segmentation and quantification of kidney tumor on ct by the multi-branch feature sharing generative adversarial network
  publication-title: Med. Image Anal.
– volume: 69
  start-page: 182
  year: 2018
  end-page: 236
  ident: bib0022
  article-title: Easl clinical practice guidelines: management of hepatocellular carcinoma
  publication-title: J. Hepatol.
– reference: Kingma, D. P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
– start-page: 794
  year: 2019
  end-page: 798
  ident: bib0019
  article-title: Multi-stream scale-insensitive convolutional and recurrent neural networks for liver tumor detection in dynamic ct images
  publication-title: 2019 IEEE International Conference on Image Processing (ICIP)
– volume: 36
  start-page: 2057
  year: 2017
  end-page: 2067
  ident: bib0039
  article-title: Direct multitype cardiac indices estimation via joint representation and regression learning
  publication-title: IEEE Trans. Med. Imaging
– volume: 192
  start-page: 714
  year: 2016
  end-page: 721
  ident: bib0014
  article-title: Interobserver variability in gross tumor volume delineation for hepatocellular carcinoma
  publication-title: Strahlenther. Onkol.
– start-page: 237
  year: 2019
  end-page: 245
  ident: bib0037
  article-title: Radiomics-guided GAN for segmentation of liver tumor without contrast agents
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 5998
  year: 2017
  end-page: 6008
  ident: bib0033
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– year: 2020
  ident: bib0004
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: arXiv preprint arXiv:2010.11929
– start-page: 57
  year: 2019
  end-page: 65
  ident: bib0018
  article-title: Learning cross-modal deep representations for multi-modal mr image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 28
  start-page: 2017
  year: 2015
  end-page: 2025
  ident: bib0013
  article-title: Spatial transformer networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: bib0040
  article-title: User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
– volume: 39
  start-page: 1690
  year: 2019
  end-page: 1702
  ident: bib0006
  article-title: K-Net: integrate left ventricle segmentation and direct quantification of paired echo sequence
  publication-title: IEEE Trans. Med. Imaging
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib0012
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 61
  year: 2021
  end-page: 71
  ident: bib0005
  article-title: Utnet: a hybrid transformer architecture for medical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 201
  start-page: 611
  year: 2013
  end-page: 617
  ident: bib0017
  article-title: Cognitive and system factors contributing to diagnostic errors in radiology
  publication-title: Am. J. Roentgenol.
– volume: 18
  start-page: 1
  year: 2020
  end-page: 10
  ident: bib0021
  article-title: Reclassification of tumor size for solitary hbv-related hepatocellular carcinoma by minimum p value method: a large retrospective study
  publication-title: World J. Surg. Oncol.
– volume: 21
  start-page: 280
  year: 2020
  end-page: 289
  ident: bib0026
  article-title: Characterizing computed tomography-detected arterial hyperenhancing-only lesions in patients at risk of hepatocellular carcinoma: can non-contrast magnetic resonance imaging be used for sequential imaging?
  publication-title: Korean J. Radiol.
– reference: Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
– volume: 19
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib0036
  article-title: Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images
  publication-title: BMC Med. Imaging
– start-page: 2961
  year: 2017
  end-page: 2969
  ident: bib0010
  article-title: Mask R-CNN
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 28
  start-page: 91
  year: 2015
  end-page: 99
  ident: bib0027
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 27
  year: 2014
  ident: bib0009
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 29
  start-page: 9032
  year: 2020
  end-page: 9043
  ident: bib0041
  article-title: Exploring task structure for brain tumor segmentation from multi-modality mr images
  publication-title: IEEE Trans. Image Process.
– reference: Luc, P., Couprie, C., Chintala, S., Verbeek, J., 2016. Semantic segmentation using adversarial networks. arXiv preprint arXiv:1611.08408.
– start-page: 7794
  year: 2018
  end-page: 7803
  ident: bib0034
  article-title: Non-local neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 113
  start-page: 89
  year: 2016
  end-page: 93
  ident: bib0007
  article-title: Importance of tumor size as a prognostic factor after partial liver resection for solitary hepatocellular carcinoma: implications on the current AJCC staging system
  publication-title: J. Surg. Oncol.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0011
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 5943
  year: 2021
  end-page: 5950
  ident: bib0016
  article-title: A multi-task contextual atrous residual network for brain tumor detection & segmentation
  publication-title: 2020 25th International Conference on Pattern Recognition (ICPR)
– volume: 24
  start-page: 3248
  year: 2020
  end-page: 3257
  ident: bib0020
  article-title: Multiple axial spine indices estimation via dense enhancing network with cross-space distance-preserving regularization
  publication-title: IEEE J. Biomed. Health Inform.
– year: 2021
  ident: bib0003
  article-title: Transunet: Transformers make strong encoders for medical image segmentation
  publication-title: arXiv preprint arXiv:2102.04306
– volume: 60
  start-page: 101593
  year: 2020
  ident: bib0045
  article-title: Multi-indices quantification of optic nerve head in fundus image via multitask collaborative learning
  publication-title: Med. Image Anal.
– volume: 137
  start-page: 567
  year: 2011
  end-page: 575
  ident: bib0023
  article-title: Pathobiological features of small hepatocellular carcinoma: correlation between tumor size and biological behavior
  publication-title: J. Cancer Res. Clin. Oncol.
– volume: 55
  start-page: 103
  year: 2019
  end-page: 115
  ident: bib0025
  article-title: Direct automated quantitative measurement of spine by cascade amplifier regression network with manifold regularization
  publication-title: Med. Image Anal.
– volume: 34
  start-page: 1218
  year: 2020
  end-page: 1225
  ident: bib0042
  article-title: Of-MSRN: optical flow-auxiliary multi-task regression network for direct quantitative measurement, segmentation and motion estimation
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 63
  start-page: 101667
  year: 2020
  ident: bib0043
  article-title: Tripartite-GAN: synthesizing liver contrast-enhanced MRI to improve tumor detection
  publication-title: Med. Image Anal.
– start-page: 524
  year: 2016
  end-page: 540
  ident: bib0001
  article-title: Higher order conditional random fields in deep neural networks
  publication-title: European Conference on Computer Vision
– volume: 107
  start-page: 107502
  year: 2020
  ident: bib0002
  article-title: Multi-label classification of multi-modality skin lesion via hyper-connected convolutional neural network
  publication-title: Pattern Recognit.
– volume: 33
  start-page: 1781
  year: 2013
  end-page: 1800
  ident: bib0008
  article-title: Assessment of liver tumor response to therapy: role of quantitative imaging
  publication-title: Radiographics
– ident: 10.1016/j.media.2022.102554_bib0029
– start-page: 9627
  year: 2019
  ident: 10.1016/j.media.2022.102554_bib0030
  article-title: Fcos: fully convolutional one-stage object detection
– volume: 33
  start-page: 1781
  issue: 6
  year: 2013
  ident: 10.1016/j.media.2022.102554_bib0008
  article-title: Assessment of liver tumor response to therapy: role of quantitative imaging
  publication-title: Radiographics
  doi: 10.1148/rg.336135511
– volume: 27
  year: 2014
  ident: 10.1016/j.media.2022.102554_bib0009
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 4700
  year: 2017
  ident: 10.1016/j.media.2022.102554_bib0012
  article-title: Densely connected convolutional networks
– start-page: 5998
  year: 2017
  ident: 10.1016/j.media.2022.102554_bib0033
  article-title: Attention is all you need
– start-page: 237
  year: 2019
  ident: 10.1016/j.media.2022.102554_bib0037
  article-title: Radiomics-guided GAN for segmentation of liver tumor without contrast agents
– volume: 137
  start-page: 567
  issue: 4
  year: 2011
  ident: 10.1016/j.media.2022.102554_bib0023
  article-title: Pathobiological features of small hepatocellular carcinoma: correlation between tumor size and biological behavior
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-010-0909-5
– year: 2020
  ident: 10.1016/j.media.2022.102554_bib0004
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: arXiv preprint arXiv:2010.11929
– volume: 77
  start-page: e104
  issue: 21
  year: 2017
  ident: 10.1016/j.media.2022.102554_bib0032
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0339
– volume: 19
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.media.2022.102554_bib0036
  article-title: Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-019-0321-9
– volume: 34
  start-page: 1218
  year: 2020
  ident: 10.1016/j.media.2022.102554_bib0042
  article-title: Of-MSRN: optical flow-auxiliary multi-task regression network for direct quantitative measurement, segmentation and motion estimation
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  ident: 10.1016/j.media.2022.102554_bib0040
  article-title: User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 28
  start-page: 2017
  year: 2015
  ident: 10.1016/j.media.2022.102554_bib0013
  article-title: Spatial transformer networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 28
  start-page: 91
  year: 2015
  ident: 10.1016/j.media.2022.102554_bib0027
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1
  year: 2020
  ident: 10.1016/j.media.2022.102554_bib0031
  article-title: Tumor diameter for hepatocellular carcinoma: why should size matter?
  publication-title: J. Gastrointest. Cancer
– volume: 60
  start-page: 101593
  year: 2020
  ident: 10.1016/j.media.2022.102554_bib0045
  article-title: Multi-indices quantification of optic nerve head in fundus image via multitask collaborative learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101593
– volume: 59
  start-page: 101568
  year: 2020
  ident: 10.1016/j.media.2022.102554_bib0038
  article-title: Segmentation and quantification of infarction without contrast agents via spatiotemporal generative adversarial learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101568
– volume: 70
  start-page: 101918
  year: 2021
  ident: 10.1016/j.media.2022.102554_bib0046
  article-title: Multi-task learning for segmentation and classification of tumors in 3d automated breast ultrasound images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101918
– start-page: 524
  year: 2016
  ident: 10.1016/j.media.2022.102554_bib0001
  article-title: Higher order conditional random fields in deep neural networks
– volume: 21
  start-page: 280
  issue: 3
  year: 2020
  ident: 10.1016/j.media.2022.102554_bib0026
  article-title: Characterizing computed tomography-detected arterial hyperenhancing-only lesions in patients at risk of hepatocellular carcinoma: can non-contrast magnetic resonance imaging be used for sequential imaging?
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2019.0447
– volume: 29
  start-page: 9032
  year: 2020
  ident: 10.1016/j.media.2022.102554_bib0041
  article-title: Exploring task structure for brain tumor segmentation from multi-modality mr images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3023609
– volume: 192
  start-page: 714
  issue: 10
  year: 2016
  ident: 10.1016/j.media.2022.102554_bib0014
  article-title: Interobserver variability in gross tumor volume delineation for hepatocellular carcinoma
  publication-title: Strahlenther. Onkol.
  doi: 10.1007/s00066-016-1028-2
– start-page: 5943
  year: 2021
  ident: 10.1016/j.media.2022.102554_bib0016
  article-title: A multi-task contextual atrous residual network for brain tumor detection & segmentation
– volume: 18
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.media.2022.102554_bib0021
  article-title: Reclassification of tumor size for solitary hbv-related hepatocellular carcinoma by minimum p value method: a large retrospective study
  publication-title: World J. Surg. Oncol.
  doi: 10.1186/s12957-020-01963-z
– volume: 69
  start-page: 182
  issue: 1
  year: 2018
  ident: 10.1016/j.media.2022.102554_bib0022
  article-title: Easl clinical practice guidelines: management of hepatocellular carcinoma
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2018.03.019
– volume: 63
  start-page: 101667
  year: 2020
  ident: 10.1016/j.media.2022.102554_bib0043
  article-title: Tripartite-GAN: synthesizing liver contrast-enhanced MRI to improve tumor detection
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101667
– start-page: 102154
  year: 2021
  ident: 10.1016/j.media.2022.102554_bib0044
  article-title: United adversarial learning for liver tumor segmentation and detection of multi-modality non-contrast MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102154
– start-page: 61
  year: 2021
  ident: 10.1016/j.media.2022.102554_bib0005
  article-title: Utnet: a hybrid transformer architecture for medical image segmentation
– start-page: 794
  year: 2019
  ident: 10.1016/j.media.2022.102554_bib0019
  article-title: Multi-stream scale-insensitive convolutional and recurrent neural networks for liver tumor detection in dynamic ct images
– volume: 113
  start-page: 89
  issue: 1
  year: 2016
  ident: 10.1016/j.media.2022.102554_bib0007
  article-title: Importance of tumor size as a prognostic factor after partial liver resection for solitary hepatocellular carcinoma: implications on the current AJCC staging system
  publication-title: J. Surg. Oncol.
  doi: 10.1002/jso.24099
– volume: 36
  start-page: 2057
  issue: 10
  year: 2017
  ident: 10.1016/j.media.2022.102554_bib0039
  article-title: Direct multitype cardiac indices estimation via joint representation and regression learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2709251
– volume: 39
  start-page: 1690
  issue: 5
  year: 2019
  ident: 10.1016/j.media.2022.102554_bib0006
  article-title: K-Net: integrate left ventricle segmentation and direct quantification of paired echo sequence
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2955436
– year: 2021
  ident: 10.1016/j.media.2022.102554_bib0003
  article-title: Transunet: Transformers make strong encoders for medical image segmentation
  publication-title: arXiv preprint arXiv:2102.04306
– volume: 55
  start-page: 103
  year: 2019
  ident: 10.1016/j.media.2022.102554_bib0025
  article-title: Direct automated quantitative measurement of spine by cascade amplifier regression network with manifold regularization
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.04.012
– volume: 107
  start-page: 107502
  year: 2020
  ident: 10.1016/j.media.2022.102554_bib0002
  article-title: Multi-label classification of multi-modality skin lesion via hyper-connected convolutional neural network
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107502
– ident: 10.1016/j.media.2022.102554_bib0015
– volume: 64
  start-page: 101721
  year: 2020
  ident: 10.1016/j.media.2022.102554_bib0028
  article-title: Mb-fsgan: joint segmentation and quantification of kidney tumor on ct by the multi-branch feature sharing generative adversarial network
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101721
– volume: 201
  start-page: 611
  issue: 3
  year: 2013
  ident: 10.1016/j.media.2022.102554_bib0017
  article-title: Cognitive and system factors contributing to diagnostic errors in radiology
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.12.10375
– start-page: 7794
  year: 2018
  ident: 10.1016/j.media.2022.102554_bib0034
  article-title: Non-local neural networks
– start-page: 57
  year: 2019
  ident: 10.1016/j.media.2022.102554_bib0018
  article-title: Learning cross-modal deep representations for multi-modal mr image segmentation
– ident: 10.1016/j.media.2022.102554_bib0024
– volume: 10
  start-page: 4401
  year: 2018
  ident: 10.1016/j.media.2022.102554_bib0035
  article-title: Importance of tumor size at diagnosis as a prognostic factor for hepatocellular carcinoma survival: a population-based study
  publication-title: Cancer Manag. Res.
  doi: 10.2147/CMAR.S177663
– start-page: 2961
  year: 2017
  ident: 10.1016/j.media.2022.102554_bib0010
  article-title: Mask R-CNN
– start-page: 770
  year: 2016
  ident: 10.1016/j.media.2022.102554_bib0011
  article-title: Deep residual learning for image recognition
– volume: 24
  start-page: 3248
  issue: 11
  year: 2020
  ident: 10.1016/j.media.2022.102554_bib0020
  article-title: Multiple axial spine indices estimation via dense enhancing network with cross-space distance-preserving regularization
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2977224
SSID ssj0007440
Score 2.430251
Snippet •For the first time, our proposed TrdAL method provides a time-saving, reliable, and stable tool, which achieves simultaneous HCC detection, size grading, and...
Hepatocellular Carcinoma (HCC) detection, size grading, and quantification (i.e. the center point coordinates, max-diameter, and area) by using multi-modality...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102554
SubjectTerms Adversarial learning
Hepatocellular carcinoma
Modality-aware transformer
Multi-modality
Multi-task
Title Task relevance driven adversarial learning for simultaneous detection, size grading, and quantification of hepatocellular carcinoma via integrating multi-modality MRI
URI https://dx.doi.org/10.1016/j.media.2022.102554
https://www.proquest.com/docview/2698630916
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiE4IFpAlEc1SBzXbPzc5LitWrbA9gAt6s2yY6cs0KTsZjn0wM_hd-JxEl4SPXCykthJ5JnMjONvviHkuSh5rrLM0qCsozKvLM3LvKCSuyCUC5IFXCjOj_XsVL46U2cbZH_IhUFYZW_7O5uerHV_ZtzP5vhysRi_YwKLlUT_gziDjGHCr5QT1PIX337BPJAAr8u9YhR7D8xDCeOVsjPiIpFzpDBQSv7LO_1lp5PzObxL7vRRI0y7F9siG6HeJrd_4xLcJjfn_S75PfL9xK4-AVZDSfv74Jdo0sBi7eWVRY2DvljEOcSYFVYLhBXaOjTrFfjQJnRWPYrnrwKcLxPKfgS29vBlbTtwUZInNBV8iO6sbfD3P-JZocTSRHVzYeHrwsLARYEPSshFetH4FPjD_O3RfXJ6eHCyP6N9PQZaRjfeUud1EIXArJ9M2SJnrAiycjpUWVZxLz0XXhVKukKH3Ck2qWJ4VZWOx9ZpIcUDslk3dXhIQDjvSu2CSjuvIl4OYsJYKDJpy2hTdggf5GDKnqwca2Z8NgMq7aNJwjMoPNMJb4eMfg667Lg6ru-uBwGbP1TORG9y_cBngzqY-DHiFHciMlwXuRYxBNOP_vfmj8ktPOrwgk_IZrtch6cx7mndblLsXXJjevR6dhzbl3tv3k9_AJ5mBno
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrcTjgKCAKE8jcdxo42eTY1VR7dLuHmAr9WbZsVMWaFJ2sxz4QfxOPI5TARI9cIpkx0nkmcyMNd98A_CWV6yQeW4yL43NRFGbrKiKMhPMei6tF9TjQXG-UNMz8f5cnu_A0VALg7DKZPt7mx6tdRqZpN2cXK1Wk4-UY7OS4H8QZ5DT4hbsIjuVHMHu4exkurg2yMiB15df0QwXDORDEeYVCzTCOZExZDGQUvzLQf1lqqP_OX4A91PgSA77b3sIO77Zg3u_0Qnuwe15SpQ_gp9Ls_lCsCFKTPETt0arRgy2X94YVDqS-kVckBC2ks0KkYWm8e12Q5zvIkCrGYfxH55crCPQfkxM48i3renxRVGkpK3Jp-DRuhYzAAhpJRV2J2raS0O-rwwZ6CjwRRG8mF22Lsb-ZP5h9hjOjt8tj6ZZasmQVcGTd5l1yvOSY-FPLk1ZUFp6UVvl6zyvmROOcSdLKWypfGElPahDhFVXloWrVVzwJzBq2sY_BcKts5WyXsbkKw_Tnh9Q6stcmCqYlX1ggxx0lfjKsW3GVz0A0z7rKDyNwtO98PZhfL3oqqfruPl2NQhY_6F1OjiUmxe-GdRBh_8Rt7gXkWaqLBQPUZh69r8Pfw13psv5qT6dLU6ew12c6eGDL2DUrbf-ZQiDOvsqqfkvVSIHnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+relevance+driven+adversarial+learning+for+simultaneous+detection%2C+size+grading%2C+and+quantification+of+hepatocellular+carcinoma+via+integrating+multi-modality+MRI&rft.jtitle=Medical+image+analysis&rft.au=Xiao%2C+Xiaojiao&rft.au=Zhao%2C+Jianfeng&rft.au=Li%2C+Shuo&rft.date=2022-10-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=81&rft.spage=102554&rft_id=info:doi/10.1016%2Fj.media.2022.102554&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon