Spectroscopic and fluorescence properties of Sm3+-doped zincfluorophosphate glasses
Optical absorption and fluorescence spectra of Sm3+-doped zincfluorophosphate glasses with molar composition of 44P2O5+17K20+9Al2O3+(30-χ)ZnF2+χSm2O3 (χ=0.01 mol.%, 0.05 mol.%, 0.1 mol.%, 0.5 mol.%, 1.0 mol.%, 2.0 and 3.0 mol.%) referred as PKAZFSm were prepared by melt quenching technique and were...
Saved in:
Published in | Journal of rare earths Vol. 32; no. 10; pp. 918 - 926 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Optical absorption and fluorescence spectra of Sm3+-doped zincfluorophosphate glasses with molar composition of 44P2O5+17K20+9Al2O3+(30-χ)ZnF2+χSm2O3 (χ=0.01 mol.%, 0.05 mol.%, 0.1 mol.%, 0.5 mol.%, 1.0 mol.%, 2.0 and 3.0 mol.%) referred as PKAZFSm were prepared by melt quenching technique and were characterized through Raman, absorption, emission and decay curve analysis. From the absorption spectra, Judd-Ofelt intensity parameters were determined and were used to predict radiative properties such as transition probabilities (AR, radiative lifetimes (τR), branching ratios (βR), effective bandwidths (△λeff) and stimulated emission cross-section (σ(λp)) for the excited 4G5/2 luminescent level. The decay curve for the 4G5/2 level was single exponential for lower concentration and became non-exponential for higher concentrations. The non-exponential nature of the decay curves of the 4G5/2 level increased with increase in Sm3+ ions concentration accompanied by decrease in lifetime due to energy transfer processes among the Sm3+ ions. The non-exponential decay curves was well fitted to the generalized Inokuti-Hirayama model for S=6, indicating that the energy transfer among optically active ions was of dipole-dipole interaction. The cross-relaxation mechanism responsible for the quenching of lifetimes and the effect of variation of concentration on the spectroscopic properties were also discussed. |
---|---|
Bibliography: | 11-2788/TF Optical absorption and fluorescence spectra of Sm3+-doped zincfluorophosphate glasses with molar composition of 44P2O5+17K20+9Al2O3+(30-χ)ZnF2+χSm2O3 (χ=0.01 mol.%, 0.05 mol.%, 0.1 mol.%, 0.5 mol.%, 1.0 mol.%, 2.0 and 3.0 mol.%) referred as PKAZFSm were prepared by melt quenching technique and were characterized through Raman, absorption, emission and decay curve analysis. From the absorption spectra, Judd-Ofelt intensity parameters were determined and were used to predict radiative properties such as transition probabilities (AR, radiative lifetimes (τR), branching ratios (βR), effective bandwidths (△λeff) and stimulated emission cross-section (σ(λp)) for the excited 4G5/2 luminescent level. The decay curve for the 4G5/2 level was single exponential for lower concentration and became non-exponential for higher concentrations. The non-exponential nature of the decay curves of the 4G5/2 level increased with increase in Sm3+ ions concentration accompanied by decrease in lifetime due to energy transfer processes among the Sm3+ ions. The non-exponential decay curves was well fitted to the generalized Inokuti-Hirayama model for S=6, indicating that the energy transfer among optically active ions was of dipole-dipole interaction. The cross-relaxation mechanism responsible for the quenching of lifetimes and the effect of variation of concentration on the spectroscopic properties were also discussed. V.B. Sreedhar, Ch. Basavapoomima, C.K. Jayasankar ( Department of Physics, Sri Venkateswara University, Tirupati - 517 502, India; Department of Physics, Nattbnal Degree and P. G. College, Nandyal - 518 501, India) zincfluorophosphate glasses; samarium; Raman spectrum; optical properties; fluorescence properties; rare earths |
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/S1002-0721(14)60163-0 |