Learning-Based Resilient FCS-MPC for Power Converters Under Actuator FDI Attacks

In this literature, we concentrate on investigating a learning-based resilient predictive control framework using variable-step event-triggered mechanism, which aims to avoid unnecessary events and enhance the system robustness subject to actuator false data injection (FDI) attacks. To be more preci...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 39; no. 10; pp. 12716 - 12728
Main Authors Liu, Xing, Qiu, Lin, Rodriguez, Jose, Wang, Kui, Li, Yongdong, Fang, Youtong
Format Journal Article
LanguageEnglish
Published IEEE 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this literature, we concentrate on investigating a learning-based resilient predictive control framework using variable-step event-triggered mechanism, which aims to avoid unnecessary events and enhance the system robustness subject to actuator false data injection (FDI) attacks. To be more precise, to improve the robust performance of the controlled system under both actuator attacks and parametric uncertainties, a learning-based robust model predictive control (MPC) architecture is developed. In this control architecture, an online learning strategy is incorporated into a neural network weight update policy, which can provide a reinforced structure and accelerate the learning process. Meanwhile, in order to circumvent the unnecessary triggering and commutation behavior, a tentative verification of a triggering condition and a delayed triggering with a variable-step waiting horizon are embedded into the suggested event-triggered mechanism. The main feature of our development is that it not only enhances the control property under the actuator FDI attacks, but also attenuates the inherent issues of unnecessary switching losses and parametric uncertainties affecting the system, opening a wide research field for resilient finite control-set MPC. Finally, we highlight its advantages with a case study.
AbstractList In this literature, we concentrate on investigating a learning-based resilient predictive control framework using variable-step event-triggered mechanism, which aims to avoid unnecessary events and enhance the system robustness subject to actuator false data injection (FDI) attacks. To be more precise, to improve the robust performance of the controlled system under both actuator attacks and parametric uncertainties, a learning-based robust model predictive control (MPC) architecture is developed. In this control architecture, an online learning strategy is incorporated into a neural network weight update policy, which can provide a reinforced structure and accelerate the learning process. Meanwhile, in order to circumvent the unnecessary triggering and commutation behavior, a tentative verification of a triggering condition and a delayed triggering with a variable-step waiting horizon are embedded into the suggested event-triggered mechanism. The main feature of our development is that it not only enhances the control property under the actuator FDI attacks, but also attenuates the inherent issues of unnecessary switching losses and parametric uncertainties affecting the system, opening a wide research field for resilient finite control-set MPC. Finally, we highlight its advantages with a case study.
Author Qiu, Lin
Wang, Kui
Liu, Xing
Fang, Youtong
Rodriguez, Jose
Li, Yongdong
Author_xml – sequence: 1
  givenname: Xing
  orcidid: 0000-0001-9685-2862
  surname: Liu
  fullname: Liu, Xing
  email: xingldl@zju.edu.cn
  organization: College of Electrical Engineering, Shanghai Dianji University, Shanghai, China
– sequence: 2
  givenname: Lin
  orcidid: 0000-0003-1236-2191
  surname: Qiu
  fullname: Qiu, Lin
  email: qiu_lin@zju.edu.cn
  organization: College of Electrical Engineering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Jose
  orcidid: 0000-0002-1410-4121
  surname: Rodriguez
  fullname: Rodriguez, Jose
  email: jose.rodriguezp@uss.cl
  organization: Faculty of Engineering, Universidad San Sebastian Santiago, Santiago, Chile
– sequence: 4
  givenname: Kui
  orcidid: 0000-0003-3928-9318
  surname: Wang
  fullname: Wang, Kui
  email: wangkui@tsinghua.edu.cn
  organization: State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Yongdong
  surname: Li
  fullname: Li, Yongdong
  email: liyd@tsinghua.edu.cn
  organization: College of Electrical Engineering, Zhejiang University, Hangzhou, China
– sequence: 6
  givenname: Youtong
  orcidid: 0000-0002-8521-4184
  surname: Fang
  fullname: Fang, Youtong
  email: youtong@zju.edu.cn
  organization: State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, China
BookMark eNp9kEFOwzAQRS1UJNrCAZBY5AIpYztOk2UJLVQKIoJ2HU2dCTIUB9mGituTql0gFqy-NH_eX7wRG9jOEmOXHCacQ369qublRIBIJjLhqcjFCRvyPOExcJgO2BCyTMVZnsszNvL-FYAnCviQVSWhs8a-xDfoqYmeyJutIRuiRfEcP1RF1HYuqroduajo7Be5QM5Ha9v0h5kOnxj6fnG7jGYhoH7z5-y0xa2ni2OO2XoxXxX3cfl4tyxmZaxFmoYYUQgpE8ExU02GrSKhU8UBdatTIASFkGuupdpA0iQIctMiCdD5BtVUkhyz6WFXu857R22tTcBgOhscmm3Nod6Lqfdi6r2Y-iimJ_kf8sOZd3Tf_zJXB8YQ0a9_lfY9lz-EJnBY
CODEN ITPEE8
CitedBy_id crossref_primary_10_1016_j_ijepes_2025_110472
crossref_primary_10_1007_s00202_024_02863_1
crossref_primary_10_3390_electronics13244969
Cites_doi 10.1109/TPEL.2020.2995584
10.1109/TIE.2023.3303626
10.1109/TNSE.2021.3130081
10.1109/TIE.2019.2962489
10.1109/TFUZZ.2022.3160614
10.1109/TCSI.2021.3069741
10.1109/TSMC.2020.3042876
10.1109/TPEL.2021.3125985
10.1109/TPEL.2022.3194518
10.1109/TIE.2023.3303646
10.1109/TIE.2022.3208594
10.1109/TII.2019.2896618
10.1109/TIA.2015.2437351
10.1109/TII.2021.3049643
10.1109/TAC.2017.2753466
10.1109/TNNLS.2012.2234133
10.1109/TCYB.2020.2979694
10.1080/00207179.2013.810345
10.1109/TII.2021.3108876
10.1109/TPEL.2021.3106808
10.1109/TIE.2016.2625238
10.1109/TIE.2020.3036214
10.1109/TII.2013.2284558
10.1109/TPEL.2021.3091587
10.1109/TCYB.2021.3107302
10.1109/TII.2019.2963294
10.1109/TCSI.2015.2468997
10.1109/TNNLS.2019.2955132
10.1109/TPEL.2022.3200857
10.1109/TIE.2022.3167135
10.1109/TCYB.2020.2977318
10.1109/TIE.2021.3094447
10.1109/TIE.2020.3038064
10.1109/TCYB.2020.3026321
10.1109/TAC.2021.3084237
10.1109/tte.2023.3327744
10.1109/TII.2019.2894282
10.1109/TIE.2023.3239865
10.1109/TAC.2022.3145632
10.1109/TSG.2020.3022094
10.1109/TII.2022.3191652
10.1109/TIE.2011.2157284
10.1109/TAC.2023.3282066
10.1109/TAC.2022.3170370
10.1109/TAC.2014.2363603
10.1109/TSG.2022.3174250
10.1109/TAC.2020.3029342
10.1109/TPEL.2022.3171100
10.1109/TIE.2020.3000098
10.1109/TPEL.2023.3318178
10.1109/TIE.2020.2969116
10.1109/TAC.2019.2945285
10.1109/TNNLS.2017.2768820
10.1109/TAC.2022.3209399
10.1109/TPEL.2021.3053845
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TPEL.2024.3416292
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0107
EndPage 12728
ExternalDocumentID 10_1109_TPEL_2024_3416292
10561621
Genre orig-research
GrantInformation_xml – fundername: State Key Laboratory of High-speed Maglev Transportation Technology
  grantid: SKLM-SFCF-2023-020
– fundername: Agencia Nacional de Investigación y Desarrollo; ANID
  grantid: FB0008; 1210208; 1221293
  funderid: 10.13039/501100020884
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LY22E070003; LZ23E070003
  funderid: 10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 52293424
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2022YFB4201600
GroupedDBID -~X
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c266t-aa2233421a85d8af5e2c6510acfc60ea05a09c1c35b04d4a03bfae20c9ba573e3
IEDL.DBID RIE
ISSN 0885-8993
IngestDate Thu Apr 24 23:11:11 EDT 2025
Tue Jul 01 02:39:42 EDT 2025
Wed Aug 27 02:03:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-aa2233421a85d8af5e2c6510acfc60ea05a09c1c35b04d4a03bfae20c9ba573e3
ORCID 0000-0002-8521-4184
0000-0001-9685-2862
0000-0002-1410-4121
0000-0003-1236-2191
0000-0003-3928-9318
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TPEL_2024_3416292
crossref_primary_10_1109_TPEL_2024_3416292
ieee_primary_10561621
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on power electronics
PublicationTitleAbbrev TPEL
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref1
  doi: 10.1109/TPEL.2020.2995584
– ident: ref46
  doi: 10.1109/TIE.2023.3303626
– ident: ref37
  doi: 10.1109/TNSE.2021.3130081
– ident: ref43
  doi: 10.1109/TIE.2019.2962489
– ident: ref15
  doi: 10.1109/TFUZZ.2022.3160614
– ident: ref26
  doi: 10.1109/TCSI.2021.3069741
– ident: ref38
  doi: 10.1109/TSMC.2020.3042876
– ident: ref4
  doi: 10.1109/TPEL.2021.3125985
– ident: ref16
  doi: 10.1109/TPEL.2022.3194518
– ident: ref28
  doi: 10.1109/TIE.2023.3303646
– ident: ref51
  doi: 10.1109/TIE.2022.3208594
– ident: ref12
  doi: 10.1109/TII.2019.2896618
– ident: ref42
  doi: 10.1109/TIA.2015.2437351
– ident: ref14
  doi: 10.1109/TII.2021.3049643
– ident: ref32
  doi: 10.1109/TAC.2017.2753466
– ident: ref47
  doi: 10.1109/TNNLS.2012.2234133
– ident: ref31
  doi: 10.1109/TCYB.2020.2979694
– ident: ref36
  doi: 10.1080/00207179.2013.810345
– ident: ref6
  doi: 10.1109/TII.2021.3108876
– ident: ref52
  doi: 10.1109/TPEL.2021.3106808
– ident: ref29
  doi: 10.1109/TIE.2016.2625238
– ident: ref13
  doi: 10.1109/TIE.2020.3036214
– ident: ref48
  doi: 10.1109/TII.2013.2284558
– ident: ref2
  doi: 10.1109/TPEL.2021.3091587
– ident: ref35
  doi: 10.1109/TCYB.2021.3107302
– ident: ref8
  doi: 10.1109/TII.2019.2963294
– ident: ref25
  doi: 10.1109/TCSI.2015.2468997
– ident: ref5
  doi: 10.1109/TNNLS.2019.2955132
– ident: ref20
  doi: 10.1109/TPEL.2022.3200857
– ident: ref23
  doi: 10.1109/TIE.2022.3167135
– ident: ref40
  doi: 10.1109/TCYB.2020.2977318
– ident: ref22
  doi: 10.1109/TIE.2021.3094447
– ident: ref50
  doi: 10.1109/TIE.2020.3038064
– ident: ref7
  doi: 10.1109/TCYB.2020.3026321
– ident: ref3
  doi: 10.1109/TAC.2021.3084237
– ident: ref18
  doi: 10.1109/tte.2023.3327744
– ident: ref39
  doi: 10.1109/TII.2019.2894282
– ident: ref45
  doi: 10.1109/TIE.2023.3239865
– ident: ref54
  doi: 10.1109/TAC.2022.3145632
– ident: ref10
  doi: 10.1109/TSG.2020.3022094
– ident: ref34
  doi: 10.1109/TII.2022.3191652
– ident: ref49
  doi: 10.1109/TIE.2011.2157284
– ident: ref27
  doi: 10.1109/TAC.2023.3282066
– ident: ref21
  doi: 10.1109/TAC.2022.3170370
– ident: ref44
  doi: 10.1109/TAC.2014.2363603
– ident: ref11
  doi: 10.1109/TSG.2022.3174250
– ident: ref33
  doi: 10.1109/TAC.2020.3029342
– ident: ref17
  doi: 10.1109/TPEL.2022.3171100
– ident: ref19
  doi: 10.1109/TIE.2020.3000098
– ident: ref30
  doi: 10.1109/TPEL.2023.3318178
– ident: ref55
  doi: 10.1109/TIE.2020.2969116
– ident: ref24
  doi: 10.1109/TAC.2019.2945285
– ident: ref41
  doi: 10.1109/TNNLS.2017.2768820
– ident: ref9
  doi: 10.1109/TAC.2022.3209399
– ident: ref53
  doi: 10.1109/TPEL.2021.3053845
SSID ssj0014501
Score 2.491479
Snippet In this literature, we concentrate on investigating a learning-based resilient predictive control framework using variable-step event-triggered mechanism,...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 12716
SubjectTerms Actuators
Adaptive systems
Capacitors
Control systems
Event-triggered mechanism
false data injection (FDI) attacks
finite control-set model predictive control (MPC)
low switching frequency (SF)
neural network (NN)
Power system dynamics
Predictive control
resilient predictive control
Uncertainty
Title Learning-Based Resilient FCS-MPC for Power Converters Under Actuator FDI Attacks
URI https://ieeexplore.ieee.org/document/10561621
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Ukx58YsRXevBkUih97LJHXCFohBCFhNum7bbGSMDIcvHX29ldCJpovDWbNmlm2p2ZznzzIXStQmp1GHISCaOIcAH1o5Yj3ArtQgcMF_A00B8EvbF4mMhJCVbPsTDW2rz4zNZhmOfy07lZwlNZA1jimwHAxrd95FaAtdYpAyFzrmN_ayTxQQQvU5hNGjVGw86jDwWZqPt_dsAi9s0IbbCq5Ealu48Gq-0UtSRv9WWm6-bzR6fGf-_3AO2V7iVuF-fhEG3Z2RHa3Wg6eIyGZUvVF3LrLViKn-zidQqoSNyNn0l_GGPvx-IhsKfhGGrSoehzgXOCJNwGvIkP03H37h63swwQ-lU07nZGcY-UvArEeHOcEaW8T8AFa6qWTFvKSctM4O-mMs4E1CoqFY1M03CpqUiFolw7ZRk1kVYy5JafoMpsPrOnCDPtVRoEoZBWCaZCJTmNUuai1DknQ11DdCXoxJRNx4H7YprkwQeNEtBNArpJSt3U0M16yXvRceOvyVUQ-8bEQuJnv3w_RzuwvKjGu0CV7GNpL71Xkemr_DR9AT-mxxg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QHIADb8SbHDghZaR5tOtxDKoB21TBkLhVSZogBNoQ6y78euK2mwYSiFtUpVVkJ7Ud-_OH0JmKqNVRxEksjCLChdSPmo5wK7SLHDBcwNVArx92HsXtk3yqweolFsZaWxaf2QYMy1x-PjITuCq7AJb4IATY-JI3_DKo4FqzpIGQJduxPzeS-DCC10nMgMYXg_S664NBJhr-rx2ymH0zQ3O8KqVZSdZRf7qgqprktTEpdMN8_ujV-O8Vb6C12sHErWpHbKIFO9xCq3NtB7dRWjdVfSaX3obl-N6OX94AF4mT9gPppW3sPVmcAn8abkNVOpR9jnFJkYRbgDjxgTpOrm5wqygAo7-DHpPrQbtDamYFYrxBLohS3ivgggWqKfOmctIyE_rTqYwzIbWKSkVjExguNRW5UJRrpyyjJtZKRtzyXbQ4HA3tHsJMe6WGYSSkVYKpSElO45y5OHfOyUjvIzoVdGbqtuPAfvGWleEHjTPQTQa6yWrd7KPz2SvvVc-NvybvgNjnJlYSP_jl-Sla7gx63ax70787RCvwqao27wgtFh8Te-x9jEKflDvrC9HmymE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-Based+Resilient+FCS-MPC+for+Power+Converters+Under+Actuator+FDI+Attacks&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Liu%2C+Xing&rft.au=Qiu%2C+Lin&rft.au=Rodriguez%2C+Jose&rft.au=Wang%2C+Kui&rft.date=2024-10-01&rft.pub=IEEE&rft.issn=0885-8993&rft.volume=39&rft.issue=10&rft.spage=12716&rft.epage=12728&rft_id=info:doi/10.1109%2FTPEL.2024.3416292&rft.externalDocID=10561621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon