Learning-Based Resilient FCS-MPC for Power Converters Under Actuator FDI Attacks
In this literature, we concentrate on investigating a learning-based resilient predictive control framework using variable-step event-triggered mechanism, which aims to avoid unnecessary events and enhance the system robustness subject to actuator false data injection (FDI) attacks. To be more preci...
Saved in:
Published in | IEEE transactions on power electronics Vol. 39; no. 10; pp. 12716 - 12728 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this literature, we concentrate on investigating a learning-based resilient predictive control framework using variable-step event-triggered mechanism, which aims to avoid unnecessary events and enhance the system robustness subject to actuator false data injection (FDI) attacks. To be more precise, to improve the robust performance of the controlled system under both actuator attacks and parametric uncertainties, a learning-based robust model predictive control (MPC) architecture is developed. In this control architecture, an online learning strategy is incorporated into a neural network weight update policy, which can provide a reinforced structure and accelerate the learning process. Meanwhile, in order to circumvent the unnecessary triggering and commutation behavior, a tentative verification of a triggering condition and a delayed triggering with a variable-step waiting horizon are embedded into the suggested event-triggered mechanism. The main feature of our development is that it not only enhances the control property under the actuator FDI attacks, but also attenuates the inherent issues of unnecessary switching losses and parametric uncertainties affecting the system, opening a wide research field for resilient finite control-set MPC. Finally, we highlight its advantages with a case study. |
---|---|
AbstractList | In this literature, we concentrate on investigating a learning-based resilient predictive control framework using variable-step event-triggered mechanism, which aims to avoid unnecessary events and enhance the system robustness subject to actuator false data injection (FDI) attacks. To be more precise, to improve the robust performance of the controlled system under both actuator attacks and parametric uncertainties, a learning-based robust model predictive control (MPC) architecture is developed. In this control architecture, an online learning strategy is incorporated into a neural network weight update policy, which can provide a reinforced structure and accelerate the learning process. Meanwhile, in order to circumvent the unnecessary triggering and commutation behavior, a tentative verification of a triggering condition and a delayed triggering with a variable-step waiting horizon are embedded into the suggested event-triggered mechanism. The main feature of our development is that it not only enhances the control property under the actuator FDI attacks, but also attenuates the inherent issues of unnecessary switching losses and parametric uncertainties affecting the system, opening a wide research field for resilient finite control-set MPC. Finally, we highlight its advantages with a case study. |
Author | Qiu, Lin Wang, Kui Liu, Xing Fang, Youtong Rodriguez, Jose Li, Yongdong |
Author_xml | – sequence: 1 givenname: Xing orcidid: 0000-0001-9685-2862 surname: Liu fullname: Liu, Xing email: xingldl@zju.edu.cn organization: College of Electrical Engineering, Shanghai Dianji University, Shanghai, China – sequence: 2 givenname: Lin orcidid: 0000-0003-1236-2191 surname: Qiu fullname: Qiu, Lin email: qiu_lin@zju.edu.cn organization: College of Electrical Engineering, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Jose orcidid: 0000-0002-1410-4121 surname: Rodriguez fullname: Rodriguez, Jose email: jose.rodriguezp@uss.cl organization: Faculty of Engineering, Universidad San Sebastian Santiago, Santiago, Chile – sequence: 4 givenname: Kui orcidid: 0000-0003-3928-9318 surname: Wang fullname: Wang, Kui email: wangkui@tsinghua.edu.cn organization: State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, China – sequence: 5 givenname: Yongdong surname: Li fullname: Li, Yongdong email: liyd@tsinghua.edu.cn organization: College of Electrical Engineering, Zhejiang University, Hangzhou, China – sequence: 6 givenname: Youtong orcidid: 0000-0002-8521-4184 surname: Fang fullname: Fang, Youtong email: youtong@zju.edu.cn organization: State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, China |
BookMark | eNp9kEFOwzAQRS1UJNrCAZBY5AIpYztOk2UJLVQKIoJ2HU2dCTIUB9mGituTql0gFqy-NH_eX7wRG9jOEmOXHCacQ369qublRIBIJjLhqcjFCRvyPOExcJgO2BCyTMVZnsszNvL-FYAnCviQVSWhs8a-xDfoqYmeyJutIRuiRfEcP1RF1HYuqroduajo7Be5QM5Ha9v0h5kOnxj6fnG7jGYhoH7z5-y0xa2ni2OO2XoxXxX3cfl4tyxmZaxFmoYYUQgpE8ExU02GrSKhU8UBdatTIASFkGuupdpA0iQIctMiCdD5BtVUkhyz6WFXu857R22tTcBgOhscmm3Nod6Lqfdi6r2Y-iimJ_kf8sOZd3Tf_zJXB8YQ0a9_lfY9lz-EJnBY |
CODEN | ITPEE8 |
CitedBy_id | crossref_primary_10_1016_j_ijepes_2025_110472 crossref_primary_10_1007_s00202_024_02863_1 crossref_primary_10_3390_electronics13244969 |
Cites_doi | 10.1109/TPEL.2020.2995584 10.1109/TIE.2023.3303626 10.1109/TNSE.2021.3130081 10.1109/TIE.2019.2962489 10.1109/TFUZZ.2022.3160614 10.1109/TCSI.2021.3069741 10.1109/TSMC.2020.3042876 10.1109/TPEL.2021.3125985 10.1109/TPEL.2022.3194518 10.1109/TIE.2023.3303646 10.1109/TIE.2022.3208594 10.1109/TII.2019.2896618 10.1109/TIA.2015.2437351 10.1109/TII.2021.3049643 10.1109/TAC.2017.2753466 10.1109/TNNLS.2012.2234133 10.1109/TCYB.2020.2979694 10.1080/00207179.2013.810345 10.1109/TII.2021.3108876 10.1109/TPEL.2021.3106808 10.1109/TIE.2016.2625238 10.1109/TIE.2020.3036214 10.1109/TII.2013.2284558 10.1109/TPEL.2021.3091587 10.1109/TCYB.2021.3107302 10.1109/TII.2019.2963294 10.1109/TCSI.2015.2468997 10.1109/TNNLS.2019.2955132 10.1109/TPEL.2022.3200857 10.1109/TIE.2022.3167135 10.1109/TCYB.2020.2977318 10.1109/TIE.2021.3094447 10.1109/TIE.2020.3038064 10.1109/TCYB.2020.3026321 10.1109/TAC.2021.3084237 10.1109/tte.2023.3327744 10.1109/TII.2019.2894282 10.1109/TIE.2023.3239865 10.1109/TAC.2022.3145632 10.1109/TSG.2020.3022094 10.1109/TII.2022.3191652 10.1109/TIE.2011.2157284 10.1109/TAC.2023.3282066 10.1109/TAC.2022.3170370 10.1109/TAC.2014.2363603 10.1109/TSG.2022.3174250 10.1109/TAC.2020.3029342 10.1109/TPEL.2022.3171100 10.1109/TIE.2020.3000098 10.1109/TPEL.2023.3318178 10.1109/TIE.2020.2969116 10.1109/TAC.2019.2945285 10.1109/TNNLS.2017.2768820 10.1109/TAC.2022.3209399 10.1109/TPEL.2021.3053845 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TPEL.2024.3416292 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0107 |
EndPage | 12728 |
ExternalDocumentID | 10_1109_TPEL_2024_3416292 10561621 |
Genre | orig-research |
GrantInformation_xml | – fundername: State Key Laboratory of High-speed Maglev Transportation Technology grantid: SKLM-SFCF-2023-020 – fundername: Agencia Nacional de Investigación y Desarrollo; ANID grantid: FB0008; 1210208; 1221293 funderid: 10.13039/501100020884 – fundername: Natural Science Foundation of Zhejiang Province grantid: LY22E070003; LZ23E070003 funderid: 10.13039/501100004731 – fundername: National Natural Science Foundation of China grantid: 52293424 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2022YFB4201600 |
GroupedDBID | -~X 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TAF TN5 VH1 VJK AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c266t-aa2233421a85d8af5e2c6510acfc60ea05a09c1c35b04d4a03bfae20c9ba573e3 |
IEDL.DBID | RIE |
ISSN | 0885-8993 |
IngestDate | Thu Apr 24 23:11:11 EDT 2025 Tue Jul 01 02:39:42 EDT 2025 Wed Aug 27 02:03:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c266t-aa2233421a85d8af5e2c6510acfc60ea05a09c1c35b04d4a03bfae20c9ba573e3 |
ORCID | 0000-0002-8521-4184 0000-0001-9685-2862 0000-0002-1410-4121 0000-0003-1236-2191 0000-0003-3928-9318 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TPEL_2024_3416292 crossref_primary_10_1109_TPEL_2024_3416292 ieee_primary_10561621 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on power electronics |
PublicationTitleAbbrev | TPEL |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref1 doi: 10.1109/TPEL.2020.2995584 – ident: ref46 doi: 10.1109/TIE.2023.3303626 – ident: ref37 doi: 10.1109/TNSE.2021.3130081 – ident: ref43 doi: 10.1109/TIE.2019.2962489 – ident: ref15 doi: 10.1109/TFUZZ.2022.3160614 – ident: ref26 doi: 10.1109/TCSI.2021.3069741 – ident: ref38 doi: 10.1109/TSMC.2020.3042876 – ident: ref4 doi: 10.1109/TPEL.2021.3125985 – ident: ref16 doi: 10.1109/TPEL.2022.3194518 – ident: ref28 doi: 10.1109/TIE.2023.3303646 – ident: ref51 doi: 10.1109/TIE.2022.3208594 – ident: ref12 doi: 10.1109/TII.2019.2896618 – ident: ref42 doi: 10.1109/TIA.2015.2437351 – ident: ref14 doi: 10.1109/TII.2021.3049643 – ident: ref32 doi: 10.1109/TAC.2017.2753466 – ident: ref47 doi: 10.1109/TNNLS.2012.2234133 – ident: ref31 doi: 10.1109/TCYB.2020.2979694 – ident: ref36 doi: 10.1080/00207179.2013.810345 – ident: ref6 doi: 10.1109/TII.2021.3108876 – ident: ref52 doi: 10.1109/TPEL.2021.3106808 – ident: ref29 doi: 10.1109/TIE.2016.2625238 – ident: ref13 doi: 10.1109/TIE.2020.3036214 – ident: ref48 doi: 10.1109/TII.2013.2284558 – ident: ref2 doi: 10.1109/TPEL.2021.3091587 – ident: ref35 doi: 10.1109/TCYB.2021.3107302 – ident: ref8 doi: 10.1109/TII.2019.2963294 – ident: ref25 doi: 10.1109/TCSI.2015.2468997 – ident: ref5 doi: 10.1109/TNNLS.2019.2955132 – ident: ref20 doi: 10.1109/TPEL.2022.3200857 – ident: ref23 doi: 10.1109/TIE.2022.3167135 – ident: ref40 doi: 10.1109/TCYB.2020.2977318 – ident: ref22 doi: 10.1109/TIE.2021.3094447 – ident: ref50 doi: 10.1109/TIE.2020.3038064 – ident: ref7 doi: 10.1109/TCYB.2020.3026321 – ident: ref3 doi: 10.1109/TAC.2021.3084237 – ident: ref18 doi: 10.1109/tte.2023.3327744 – ident: ref39 doi: 10.1109/TII.2019.2894282 – ident: ref45 doi: 10.1109/TIE.2023.3239865 – ident: ref54 doi: 10.1109/TAC.2022.3145632 – ident: ref10 doi: 10.1109/TSG.2020.3022094 – ident: ref34 doi: 10.1109/TII.2022.3191652 – ident: ref49 doi: 10.1109/TIE.2011.2157284 – ident: ref27 doi: 10.1109/TAC.2023.3282066 – ident: ref21 doi: 10.1109/TAC.2022.3170370 – ident: ref44 doi: 10.1109/TAC.2014.2363603 – ident: ref11 doi: 10.1109/TSG.2022.3174250 – ident: ref33 doi: 10.1109/TAC.2020.3029342 – ident: ref17 doi: 10.1109/TPEL.2022.3171100 – ident: ref19 doi: 10.1109/TIE.2020.3000098 – ident: ref30 doi: 10.1109/TPEL.2023.3318178 – ident: ref55 doi: 10.1109/TIE.2020.2969116 – ident: ref24 doi: 10.1109/TAC.2019.2945285 – ident: ref41 doi: 10.1109/TNNLS.2017.2768820 – ident: ref9 doi: 10.1109/TAC.2022.3209399 – ident: ref53 doi: 10.1109/TPEL.2021.3053845 |
SSID | ssj0014501 |
Score | 2.491479 |
Snippet | In this literature, we concentrate on investigating a learning-based resilient predictive control framework using variable-step event-triggered mechanism,... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 12716 |
SubjectTerms | Actuators Adaptive systems Capacitors Control systems Event-triggered mechanism false data injection (FDI) attacks finite control-set model predictive control (MPC) low switching frequency (SF) neural network (NN) Power system dynamics Predictive control resilient predictive control Uncertainty |
Title | Learning-Based Resilient FCS-MPC for Power Converters Under Actuator FDI Attacks |
URI | https://ieeexplore.ieee.org/document/10561621 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Ukx58YsRXevBkUih97LJHXCFohBCFhNum7bbGSMDIcvHX29ldCJpovDWbNmlm2p2ZznzzIXStQmp1GHISCaOIcAH1o5Yj3ArtQgcMF_A00B8EvbF4mMhJCVbPsTDW2rz4zNZhmOfy07lZwlNZA1jimwHAxrd95FaAtdYpAyFzrmN_ayTxQQQvU5hNGjVGw86jDwWZqPt_dsAi9s0IbbCq5Ealu48Gq-0UtSRv9WWm6-bzR6fGf-_3AO2V7iVuF-fhEG3Z2RHa3Wg6eIyGZUvVF3LrLViKn-zidQqoSNyNn0l_GGPvx-IhsKfhGGrSoehzgXOCJNwGvIkP03H37h63swwQ-lU07nZGcY-UvArEeHOcEaW8T8AFa6qWTFvKSctM4O-mMs4E1CoqFY1M03CpqUiFolw7ZRk1kVYy5JafoMpsPrOnCDPtVRoEoZBWCaZCJTmNUuai1DknQ11DdCXoxJRNx4H7YprkwQeNEtBNArpJSt3U0M16yXvRceOvyVUQ-8bEQuJnv3w_RzuwvKjGu0CV7GNpL71Xkemr_DR9AT-mxxg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QHIADb8SbHDghZaR5tOtxDKoB21TBkLhVSZogBNoQ6y78euK2mwYSiFtUpVVkJ7Ud-_OH0JmKqNVRxEksjCLChdSPmo5wK7SLHDBcwNVArx92HsXtk3yqweolFsZaWxaf2QYMy1x-PjITuCq7AJb4IATY-JI3_DKo4FqzpIGQJduxPzeS-DCC10nMgMYXg_S664NBJhr-rx2ymH0zQ3O8KqVZSdZRf7qgqprktTEpdMN8_ujV-O8Vb6C12sHErWpHbKIFO9xCq3NtB7dRWjdVfSaX3obl-N6OX94AF4mT9gPppW3sPVmcAn8abkNVOpR9jnFJkYRbgDjxgTpOrm5wqygAo7-DHpPrQbtDamYFYrxBLohS3ivgggWqKfOmctIyE_rTqYwzIbWKSkVjExguNRW5UJRrpyyjJtZKRtzyXbQ4HA3tHsJMe6WGYSSkVYKpSElO45y5OHfOyUjvIzoVdGbqtuPAfvGWleEHjTPQTQa6yWrd7KPz2SvvVc-NvybvgNjnJlYSP_jl-Sla7gx63ax70787RCvwqao27wgtFh8Te-x9jEKflDvrC9HmymE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-Based+Resilient+FCS-MPC+for+Power+Converters+Under+Actuator+FDI+Attacks&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Liu%2C+Xing&rft.au=Qiu%2C+Lin&rft.au=Rodriguez%2C+Jose&rft.au=Wang%2C+Kui&rft.date=2024-10-01&rft.pub=IEEE&rft.issn=0885-8993&rft.volume=39&rft.issue=10&rft.spage=12716&rft.epage=12728&rft_id=info:doi/10.1109%2FTPEL.2024.3416292&rft.externalDocID=10561621 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon |