Virtual Cell-Based Scheduling Approach to Single-Robotic-Arm Cluster Tools Subject to Wafer Residency Time Constraints
Scheduling single-robotic-arm cluster tools subject to wafer residency time constraints has received much attention. Compared to some scheduling strategies that use all processing modules (PMs) to process wafers, it is much more challenging to schedule a more general case whose optimal scheduling st...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 22; pp. 240 - 251 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Scheduling single-robotic-arm cluster tools subject to wafer residency time constraints has received much attention. Compared to some scheduling strategies that use all processing modules (PMs) to process wafers, it is much more challenging to schedule a more general case whose optimal scheduling strategy is not limited to the case of using all PMs. The strategy of only adjusting the robot's waiting time may fail to produce a desired schedule. When a tool using all PMs is not schedulable, it may become schedulable if only some PMs of a type are used. Therefore, it is very important to select an appropriate number of PMs to process wafers. This work studies the cyclic scheduling problem of wafer-residency-time-constrained single-robotic-arm cluster tools by simultaneously adjusting the number of PMs and robot waiting time. We build a virtual cell that includes an appropriate number of PMs to process wafers with the maximal productivity. We establish sufficient and necessary conditions under which the system is schedulable. The schedulability conditions are less conservative than the state-of-the-art one. A polynomial algorithm is developed to find the optimal cyclic schedule, a virtual cell's configuration, and robot waiting time. We illustrate the practicability of the proposed algorithm via several examples, and its superiority over the existing one. Note to Practitioners-This paper addresses the optimal cyclic scheduling problem of wafer-residency-time-constrained single-robotic-arm cluster tools that are used in every wafer fabrication factory. This work for the first time simultaneously adjusts the number of PMs and the robot waiting time given such a cluster tool such that it can be scheduled with the highest productivity. It presents the optimal scheduling method with polynomial complexity. We confirm that the proposed approach can improve schedulability of single-robotic-arm cluster tools over existing methods by using multiple examples. It can thus be readily applied to industrial wafer fabrication. |
---|---|
AbstractList | Scheduling single-robotic-arm cluster tools subject to wafer residency time constraints has received much attention. Compared to some scheduling strategies that use all processing modules (PMs) to process wafers, it is much more challenging to schedule a more general case whose optimal scheduling strategy is not limited to the case of using all PMs. The strategy of only adjusting the robot's waiting time may fail to produce a desired schedule. When a tool using all PMs is not schedulable, it may become schedulable if only some PMs of a type are used. Therefore, it is very important to select an appropriate number of PMs to process wafers. This work studies the cyclic scheduling problem of wafer-residency-time-constrained single-robotic-arm cluster tools by simultaneously adjusting the number of PMs and robot waiting time. We build a virtual cell that includes an appropriate number of PMs to process wafers with the maximal productivity. We establish sufficient and necessary conditions under which the system is schedulable. The schedulability conditions are less conservative than the state-of-the-art one. A polynomial algorithm is developed to find the optimal cyclic schedule, a virtual cell's configuration, and robot waiting time. We illustrate the practicability of the proposed algorithm via several examples, and its superiority over the existing one. Note to Practitioners-This paper addresses the optimal cyclic scheduling problem of wafer-residency-time-constrained single-robotic-arm cluster tools that are used in every wafer fabrication factory. This work for the first time simultaneously adjusts the number of PMs and the robot waiting time given such a cluster tool such that it can be scheduled with the highest productivity. It presents the optimal scheduling method with polynomial complexity. We confirm that the proposed approach can improve schedulability of single-robotic-arm cluster tools over existing methods by using multiple examples. It can thus be readily applied to industrial wafer fabrication. |
Author | Zhou, MengChu Wang, Jufeng Liu, Chunfeng Abusorrah, Abdullah |
Author_xml | – sequence: 1 givenname: Jufeng orcidid: 0000-0001-6088-0474 surname: Wang fullname: Wang, Jufeng email: wang_jufeng@163.com organization: Department of Data Science, China Jiliang University, Hangzhou, China – sequence: 2 givenname: Chunfeng orcidid: 0000-0003-1792-1714 surname: Liu fullname: Liu, Chunfeng email: lcf_spring@163.com organization: School of Management, Hangzhou Dianzi University, Hangzhou, China – sequence: 3 givenname: MengChu orcidid: 0000-0002-5408-8752 surname: Zhou fullname: Zhou, MengChu email: zhou@njit.edu organization: Helen and John C. Hartmann Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA – sequence: 4 givenname: Abdullah orcidid: 0000-0001-8025-0453 surname: Abusorrah fullname: Abusorrah, Abdullah email: aabusorrah@kau.edu.sa organization: K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, Jeddah, Saudi Arabia |
BookMark | eNp9kM1KAzEURoMo2FYfQHCRF5iaTCbTybIO9QcKQlt1OWSSG5uSTkqSCn17O7QLceHqXj6-c7mcIbrsfAcI3VEyppSIh9V0ORvnJC_GjBWCVeQCDSjnVcYmFbvs94JnXHB-jYYxbsixWQkyQN8fNqS9dLgG57JHGUHjpVqD3jvbfeHpbhe8VGucPF4eAwfZwrc-WZVNwxbXbh8TBLzy3kW83LcbUKnvfkpzjBcQrYZOHfDKbgHXvospSNuleIOujHQRbs9zhN6fZqv6JZu_Pb_W03mm8rJM2cRUeQ5CUmYEa0lpckKNoZUwplStaUuthSkLzYUoNeHASaGNzCVAKelEczZCk9NdFXyMAUyjbJLJ-q5_xDWUNL2-ptfX9Pqas74jSf-Qu2C3Mhz-Ze5PjAWAX_2CFoRS9gPbUn-1 |
CODEN | ITASC7 |
CitedBy_id | crossref_primary_10_1109_TSMC_2024_3466991 crossref_primary_10_1007_s10696_024_09565_7 |
Cites_doi | 10.1109/TSMC.2015.2501232 10.1109/TSM.2003.810936 10.1109/JAS.2020.1003069 10.1109/tase.2023.3332551 10.1109/TASE.2018.2878063 10.1109/TASE.2018.2868004 10.1109/TASE.2018.2878653 10.1109/JAS.2019.1911411 10.1109/TASE.2021.3061140 10.1109/TSM.2014.2312192 10.1109/TSMC.2017.2755599 10.1109/TSMC.2015.2507140 10.1109/tase.2022.3188858 10.1109/TASE.2017.2682271 10.1109/JAS.2017.7510772 10.1109/TASE.2020.3014078 10.1080/00207543.2021.1926568 10.1109/TSM.2006.879414 10.1109/TSM.2006.873402 10.1109/TSM.2018.2811125 10.1109/ACCESS.2023.3238663 10.1109/JSYST.2019.2963222 10.1109/LRA.2022.3157031 10.1109/TSMC.2017.2721979 10.1109/TSMC.2016.2531697 10.1109/TASE.2010.2046893 10.1109/TSMC.2018.2852724 10.1109/TASE.2010.2046891 10.1109/TSMC.2014.2327051 10.1109/TASE.2016.2642997 10.1109/TASE.2013.2296855 10.1109/TASE.2010.2046736 10.1109/70.964662 10.1109/TSM.2008.2000425 10.1109/TASE.2019.2930046 10.1109/TSMC.2014.2318679 10.1109/TSM.2003.815203 10.1109/TSMC.2023.3253471 10.1109/TSM.2023.3239198 10.1109/JAS.2020.1003150 10.1109/TSMCA.2012.2230440 10.1109/66.641483 10.1109/TASE.2008.2008633 10.1109/TASE.2012.2220355 10.1016/j.cor.2014.03.024 10.1016/j.cor.2008.09.002 10.1109/TSMC.2014.2347928 10.1109/TSM.2013.2278378 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TASE.2024.3349380 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-3783 |
EndPage | 251 |
ExternalDocumentID | 10_1109_TASE_2024_3349380 10414011 |
Genre | orig-research |
GrantInformation_xml | – fundername: Lam Research Foundation’s Unlock Ideas Program – fundername: Institutional Fund Projects from the Ministry of Education and King Abdulaziz University (KAU), DSR, Jeddah, Saudi Arabia grantid: IFPIP-1705-611-1443 – fundername: Humanities and Social Sciences Planned Foundation of the People’s Republic of China (PRC) Ministry of Education grantid: 22YJA630088 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c266t-7f822e9a13f93b06f201ff189ff6cbfb6dd9f64d5996d05e504dfa2aee6a17d53 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Thu Apr 24 23:05:02 EDT 2025 Tue Jul 01 02:56:35 EDT 2025 Wed Aug 27 01:55:50 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c266t-7f822e9a13f93b06f201ff189ff6cbfb6dd9f64d5996d05e504dfa2aee6a17d53 |
ORCID | 0000-0001-6088-0474 0000-0003-1792-1714 0000-0002-5408-8752 0000-0001-8025-0453 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TASE_2024_3349380 ieee_primary_10414011 crossref_citationtrail_10_1109_TASE_2024_3349380 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref25 doi: 10.1109/TSMC.2015.2501232 – ident: ref36 doi: 10.1109/TSM.2003.810936 – ident: ref40 doi: 10.1109/JAS.2020.1003069 – ident: ref1 doi: 10.1109/tase.2023.3332551 – ident: ref48 doi: 10.1109/TASE.2018.2878063 – ident: ref13 doi: 10.1109/TASE.2018.2868004 – ident: ref51 doi: 10.1109/TASE.2018.2878653 – ident: ref12 doi: 10.1109/JAS.2019.1911411 – ident: ref28 doi: 10.1109/TASE.2021.3061140 – ident: ref22 doi: 10.1109/TSM.2014.2312192 – ident: ref39 doi: 10.1109/TSMC.2017.2755599 – ident: ref45 doi: 10.1109/TSMC.2015.2507140 – ident: ref31 doi: 10.1109/tase.2022.3188858 – ident: ref49 doi: 10.1109/TASE.2017.2682271 – ident: ref32 doi: 10.1109/JAS.2017.7510772 – ident: ref9 doi: 10.1109/TASE.2020.3014078 – ident: ref38 doi: 10.1080/00207543.2021.1926568 – ident: ref27 doi: 10.1109/TSM.2006.879414 – ident: ref41 doi: 10.1109/TSM.2006.873402 – ident: ref46 doi: 10.1109/TSM.2018.2811125 – ident: ref2 doi: 10.1109/ACCESS.2023.3238663 – ident: ref4 doi: 10.1109/JSYST.2019.2963222 – ident: ref30 doi: 10.1109/LRA.2022.3157031 – ident: ref20 doi: 10.1109/TSMC.2017.2721979 – ident: ref17 doi: 10.1109/TSMC.2016.2531697 – ident: ref26 doi: 10.1109/TASE.2010.2046893 – ident: ref42 doi: 10.1109/TSMC.2018.2852724 – ident: ref24 doi: 10.1109/TASE.2010.2046891 – ident: ref10 doi: 10.1109/TASE.2017.2682271 – ident: ref33 doi: 10.1109/TSMC.2014.2327051 – ident: ref7 doi: 10.1109/TASE.2016.2642997 – ident: ref11 doi: 10.1109/TASE.2013.2296855 – ident: ref44 doi: 10.1109/TASE.2010.2046736 – ident: ref8 doi: 10.1109/TASE.2018.2878063 – ident: ref14 doi: 10.1109/70.964662 – ident: ref35 doi: 10.1109/TSM.2008.2000425 – ident: ref43 doi: 10.1109/TASE.2019.2930046 – ident: ref6 doi: 10.1109/TASE.2013.2296855 – ident: ref21 doi: 10.1109/TSMC.2014.2318679 – ident: ref15 doi: 10.1109/TSM.2003.815203 – ident: ref3 doi: 10.1109/TSMC.2023.3253471 – ident: ref50 doi: 10.1109/TSM.2023.3239198 – ident: ref29 doi: 10.1109/JAS.2020.1003150 – ident: ref19 doi: 10.1109/TSMCA.2012.2230440 – ident: ref37 doi: 10.1109/66.641483 – ident: ref34 doi: 10.1109/TASE.2016.2642997 – ident: ref16 doi: 10.1109/TASE.2008.2008633 – ident: ref5 doi: 10.1109/TASE.2012.2220355 – ident: ref23 doi: 10.1016/j.cor.2014.03.024 – ident: ref52 doi: 10.1016/j.cor.2008.09.002 – ident: ref18 doi: 10.1109/TSMC.2014.2347928 – ident: ref47 doi: 10.1109/TSM.2013.2278378 |
SSID | ssj0024890 |
Score | 2.4475677 |
Snippet | Scheduling single-robotic-arm cluster tools subject to wafer residency time constraints has received much attention. Compared to some scheduling strategies... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 240 |
SubjectTerms | Cluster tools Job shop scheduling Optimal scheduling Petri nets Robots Schedules scheduling Semiconductor device modeling Time factors virtual cell wafer fabrication |
Title | Virtual Cell-Based Scheduling Approach to Single-Robotic-Arm Cluster Tools Subject to Wafer Residency Time Constraints |
URI | https://ieeexplore.ieee.org/document/10414011 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7qSQ_-nDh_kYMnIbNr0qw5zqEMwR3cpruVtElELKu4TtC_3vfSToegeCshLYHvpd97L3nfI-QMOMdlKbcMjEUwYHzNtBIBc-g840lnR2Lt8O1A9sfiZhJN6mJ1XwtjrfWXz2wLH_1ZvimyOabKYIcLjAcg2FmFyK0q1voW1ot9QgVdAhapKKqPMNuBuhh1h1cQCoaixblQHCUgl0hoqauKJ5XrLTJYLKe6S_LcmpdpK_v4odT47_Vuk83avaTdyh52yIqd7pKNJdHBPfJ2__SKRSO0Z_OcXQKLGToE6AzeSX-k3VpknJYFHcJAbtldkRbwPQZGQXv5HKUV6Kgo8hmF3w7mcXDug3YwfGdnvkvpO8XaEortQH0TinLWIOPrq1Gvz-ruCywD0i5ZxwGOVuk2d4qngXTgKjjXjpVzMktdKo1RTgqD-i4miGwUCON0qK2Vut0xEd8na9Niag8IdSLMwliHRhsnJE9jbYA8MxmFTsY65k0SLOBIslqaHBeXJz5ECVSCCCaIYFIj2CTnX6-8VLocf01uIDhLEytcDn8ZPyLrIbb59ZmWY7JWvs7tCfgeZXrqbe4TiRTVWg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELYQHIADj4UVb3zgtJK7afxofCwVqLx6oIXlFjmxvVoRNYimSPDrmXECVEisuEWWE1n6xvlmxp5vCDkCzvF5xh0DYxEMGN8wo0XEPDrPeNLZUVg7fDVQ_RtxfifvmmL1UAvjnAuXz1wLH8NZvi3zKabKYIcLjAcg2FkA4pdxXa71Ia2XhJQKOgVMaimbQ8x2pH-PusMTCAZj0eJcaI4ikDM0NNNXJdDK6SoZvC2ovk1y35pWWSt_-aTV-O0Vr5GVxsGk3doi1smcG_8gyzOygxvk6fbfI5aN0J4rCnYMPGbpEMCzeCv9L-02MuO0KukQBgrHrsushO8xMAvaK6YorkBHZVlMKPx4MJODc_8YD8PXbhL6lD5TrC6h2BA0tKGoJpvk5vRk1Ouzpv8Cy4G2K9bxgKTTps295lmkPDgL3rcT7b3KM58pa7VXwqLCi42kk5Gw3sTGOWXaHSv5TzI_Lsdui1Av4jxOTGyN9ULxLDEW6DNXMvYqMQnfJtEbHGneiJPj4oo0BCmRThHBFBFMGwS3ya_3Vx5qZY7_Td5EcGYm1rjsfDF-SBb7o6vL9PJscLFLlmJs-hvyLntkvnqcun3wRKrsINjfK9Wa2KQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+Cell-Based+Scheduling+Approach+to+Single-Robotic-Arm+Cluster+Tools+Subject+to+Wafer+Residency+Time+Constraints&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Wang%2C+Jufeng&rft.au=Liu%2C+Chunfeng&rft.au=Zhou%2C+MengChu&rft.au=Abusorrah%2C+Abdullah&rft.date=2025&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=22&rft.spage=240&rft.epage=251&rft_id=info:doi/10.1109%2FTASE.2024.3349380&rft.externalDocID=10414011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |