Virtually constrained generalized relative motion modeling and a control parameter optimizer for automatic carrier landing
Purpose This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircra...
Saved in:
Published in | Aircraft engineering Vol. 96; no. 3; pp. 448 - 457 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bradford
Emerald Publishing Limited
16.04.2024
Emerald Group Publishing Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1748-8842 1758-4213 1748-8842 |
DOI | 10.1108/AEAT-08-2023-0217 |
Cover
Abstract | Purpose
This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircraft. Consequently, the automatic carrier landing system raises the need for a control scheme that combines high robustness, rapidity and accuracy. In addition, to exploit the capability of the proposed control scheme and alleviate the difficulty of manual parameter tuning, a control parameter optimizer is constructed.
Design/methodology/approach
A novel reference model is constructed by considering the desired state and the actual state as constrained generalized relative motion, which works as a virtual terminal spring-damper system. An improved particle swarm optimization algorithm with dynamic boundary adjustment and Pareto set analysis is introduced to optimize the control parameters.
Findings
The control parameter optimizer makes it efficient and effective to obtain well-tuned control parameters. Furthermore, the proposed control scheme with the optimized parameters can achieve safe carrier landings under various severe sea conditions.
Originality/value
The proposed control scheme shows stronger robustness, accuracy and rapidity than sliding-mode control and Proportion-integration-differentiation (PID). Also, the small number and efficiency of control parameters make this paper realize the first simultaneous optimization of all control parameters in the field of flight control. |
---|---|
AbstractList | Purpose
This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircraft. Consequently, the automatic carrier landing system raises the need for a control scheme that combines high robustness, rapidity and accuracy. In addition, to exploit the capability of the proposed control scheme and alleviate the difficulty of manual parameter tuning, a control parameter optimizer is constructed.
Design/methodology/approach
A novel reference model is constructed by considering the desired state and the actual state as constrained generalized relative motion, which works as a virtual terminal spring-damper system. An improved particle swarm optimization algorithm with dynamic boundary adjustment and Pareto set analysis is introduced to optimize the control parameters.
Findings
The control parameter optimizer makes it efficient and effective to obtain well-tuned control parameters. Furthermore, the proposed control scheme with the optimized parameters can achieve safe carrier landings under various severe sea conditions.
Originality/value
The proposed control scheme shows stronger robustness, accuracy and rapidity than sliding-mode control and Proportion-integration-differentiation (PID). Also, the small number and efficiency of control parameters make this paper realize the first simultaneous optimization of all control parameters in the field of flight control. PurposeThis paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircraft. Consequently, the automatic carrier landing system raises the need for a control scheme that combines high robustness, rapidity and accuracy. In addition, to exploit the capability of the proposed control scheme and alleviate the difficulty of manual parameter tuning, a control parameter optimizer is constructed.Design/methodology/approachA novel reference model is constructed by considering the desired state and the actual state as constrained generalized relative motion, which works as a virtual terminal spring-damper system. An improved particle swarm optimization algorithm with dynamic boundary adjustment and Pareto set analysis is introduced to optimize the control parameters.FindingsThe control parameter optimizer makes it efficient and effective to obtain well-tuned control parameters. Furthermore, the proposed control scheme with the optimized parameters can achieve safe carrier landings under various severe sea conditions.Originality/valueThe proposed control scheme shows stronger robustness, accuracy and rapidity than sliding-mode control and Proportion-integration-differentiation (PID). Also, the small number and efficiency of control parameters make this paper realize the first simultaneous optimization of all control parameters in the field of flight control. |
Author | Yao, Zhuoer Li, Daochun Xiang, Jinwu Zhang, Yiwei Kan, Zi |
Author_xml | – sequence: 1 givenname: Yiwei surname: Zhang fullname: Zhang, Yiwei email: zhangyiwei@buaa.edu.cn – sequence: 2 givenname: Daochun surname: Li fullname: Li, Daochun email: lidc@buaa.edu.cn – sequence: 3 givenname: Zi surname: Kan fullname: Kan, Zi email: kanzi2017@buaa.edu.cn – sequence: 4 givenname: Zhuoer surname: Yao fullname: Yao, Zhuoer email: yzebuaa@buaa.edu.cn – sequence: 5 givenname: Jinwu surname: Xiang fullname: Xiang, Jinwu email: xiangjw@buaa.edu.cn |
BookMark | eNptkU1LxDAQhoMo-PkDvAU8VydJt8keF_ELBC_qtcymU4m0yTrNCvrrTVkvgszhHcI8E3jmWOzHFEmIcwWXSoG7Wt2snitwlQZtKtDK7okjZReuqrUy-3Nfu8q5Wh-K42l6B1DNAsyR-H4NnLc4DF_SpzhlxhCpk28UiXEI36VnGjCHT5JjyiHFEh0NIb5JjJ3EGcucBrlBxpEysUybHMaCsuwTS9zmNJYFXnpkDuV1KGDhT8VBj8NEZ795Il5ub56v76vHp7uH69Vj5XXT5MpCD9r21HmzJgK_RFBWN85o6B3WTq_Bw9qUqr3FvsG-qx3RGjvj7RLInIiL3d4Np48tTbl9T1uO5cvWgLFWLxbLpkyp3ZTnNE1MfbvhMCJ_tQraWXE7K25LzorbWXFhYMfQONvq_kX-XMX8AMaRgtU |
Cites_doi | 10.1016/j.ast.2016.11.012 10.1155/2016/7345056 10.1016/j.ast.2019.06.030 10.1108/AEAT-11-2020-0269 10.1108/IJIUS-09-2020-0041 10.2514/6.2016-3527 10.1016/j.ast.2020.106403 10.3390/drones7030194 10.1007/s11012-019-01012-4 10.1177/0142331218780962 10.1109/TAES.2022.3168247 10.1109/TAES.2022.3202142 10.1109/ICEC.1998.699146 10.1109/TAES.2022.3156070 10.1016/j.ast.2015.01.017 10.1016/j.ast.2018.07.039 10.1109/TAES.2018.2886612 10.1109/TEVC.2019.2921598 10.1108/COMPEL-08-2016-0352 10.1007/s40435-020-00665-4 10.1109/AERO.2001.931220 10.1080/0305215X.2018.1435646 10.1016/j.cja.2022.08.018 10.1016/j.ast.2021.106616 10.1007/s11071-018-4427-3 10.1108/IJICC-04-2022-0118 10.1016/j.ast.2022.107392 |
ContentType | Journal Article |
Copyright | Emerald Publishing Limited Emerald Publishing Limited. |
Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited. |
DBID | AAYXX CITATION 7RQ 7TB 7WY 7XB 8AF 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU D1I DWQXO F28 FR3 GNUQQ H8D HCIFZ K6~ KB. L.- L6V L7M M0F M1Q M2P M7S P5Z P62 PDBOC PHGZM PHGZT PKEHL PQBIZ PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1108/AEAT-08-2023-0217 |
DatabaseName | CrossRef Career & Technical Education Database Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ProQuest Central (purchase pre-March 2016) STEM Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database SciTech Premium Collection ProQuest Business Collection Materials Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace ABI/INFORM Trade & Industry (OCUL) Military Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest One Business ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest AP Science SciTech Premium Collection ProQuest One Community College ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences Aerospace Database ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Business Premium Collection Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest Career and Technical Education ProQuest One Academic UKI Edition Materials Science & Engineering Collection ABI/INFORM Trade & Industry Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | ProQuest One Business |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1758-4213 1748-8842 |
EndPage | 457 |
ExternalDocumentID | 10_1108_AEAT_08_2023_0217 10.1108/AEAT-08-2023-0217 |
GroupedDBID | 23M 4.4 490 5GY 6J9 7RQ 7WY AAIKC AAMNW AATHL ABJCF ACBEA ACGOD ACIWK ADFRT AENEX ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR EBS GEI GQ. HCIFZ H~9 IJT J1Y M0F P2P RIG TN5 UNMZH V1G 8AF 8FE 8FG 8FW AAYXX AFKRA AFZLO AZQEC BEZIV BGLVJ BPHCQ CCPQU CITATION CZ9 D1I DWQXO GNUQQ K6~ KB. KC. L6V M1Q M2P M2Q M42 M7S P62 PDBOC PHGZM PHGZT PQBIZ PQGLB PQQKQ PROAC PTHSS SBBZN 0R~ 70U 7TB 7XB 8FD 8R4 8R5 AAMCF AAUDR ABIJV ABJNI ABKQV ABSDC ABYQI ACGFS ACZLT ADOMW AEBZA AFYHH AIDUJ AJEBP AODMV AUCOK CS3 ECCUG F28 FNNZZ FR3 GEL H13 H8D HZ~ JI- JL0 KBGRL L.- L7M O9- PKEHL PQEST PQUKI PRINS Q2X Q9U RWL SC5 TAE |
ID | FETCH-LOGICAL-c266t-70f027fedc3bee0c9a017268320f8a482b0c0b3b3b4c7af6afd48eebad3c790e3 |
IEDL.DBID | 8FG |
ISSN | 1748-8842 |
IngestDate | Sat Aug 16 22:22:14 EDT 2025 Thu Jul 31 00:03:59 EDT 2025 Sun Apr 14 01:42:55 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Control parameter optimization Virtually constrained generalized relative motion Automatic carrier landing system Particle swarm optimization algorithm |
Language | English |
License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c266t-70f027fedc3bee0c9a017268320f8a482b0c0b3b3b4c7af6afd48eebad3c790e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3037725596 |
PQPubID | 32113 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1108_AEAT_08_2023_0217 proquest_journals_3037725596 emerald_primary_10_1108_AEAT-08-2023-0217 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-16 |
PublicationDateYYYYMMDD | 2024-04-16 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Bradford |
PublicationPlace_xml | – name: Bradford |
PublicationTitle | Aircraft engineering |
PublicationYear | 2024 |
Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
References | (key2024041306192925000_ref027) 2019; 92 (key2024041306192925000_ref003) 2021; 9 (key2024041306192925000_ref020) 1998 (key2024041306192925000_ref001) 2018; 50 (key2024041306192925000_ref016) 2023; 16 (key2024041306192925000_ref008) 2021; 112 (key2024041306192925000_ref015) 2015; 42 (key2024041306192925000_ref026) 2018; 81 (key2024041306192925000_ref012) 2020; 24 (key2024041306192925000_ref010) 2021; 108 (key2024041306192925000_ref007) 2022; 58 (key2024041306192925000_ref013) 2019; 54 (key2024041306192925000_ref018) 2001 (key2024041306192925000_ref005) 2019; 55 (key2024041306192925000_ref009) 2018; 94 (key2024041306192925000_ref019) 2021; 93 (key2024041306192925000_ref025) 2016 (key2024041306192925000_ref006) 2022; 58 (key2024041306192925000_ref004) 2017; 61 (key2024041306192925000_ref011) 2021; 9 (key2024041306192925000_ref017) 2023; 36 (key2024041306192925000_ref022) 2016; 2016 (key2024041306192925000_ref024) 2022 (key2024041306192925000_ref023) 2023; 7 (key2024041306192925000_ref014) 2018; 37 (key2024041306192925000_ref021) 2019; 41 (key2024041306192925000_ref002) 2022; 122 |
References_xml | – volume: 61 start-page: 11 year: 2017 ident: key2024041306192925000_ref004 article-title: Lévy flight based pigeon-inspired optimization for control parameters optimization in automatic carrier landing system publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2016.11.012 – volume: 2016 start-page: 1 year: 2016 ident: key2024041306192925000_ref022 article-title: Adaptive disturbance rejection control for automatic carrier landing system publication-title: Mathematical Problems in Engineering doi: 10.1155/2016/7345056 – volume: 92 start-page: 714 year: 2019 ident: key2024041306192925000_ref027 article-title: A multivariable adaptive control scheme for automatic carrier landing of UAV publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2019.06.030 – volume: 93 start-page: 1460 issue: 9 year: 2021 ident: key2024041306192925000_ref019 article-title: Unmanned aircraft automatic flight control algorithm in an immelmann manoeuvre publication-title: Aircraft Engineering and Aerospace Technology doi: 10.1108/AEAT-11-2020-0269 – volume: 9 start-page: 204 issue: 3 year: 2021 ident: key2024041306192925000_ref011 article-title: Application of robust H-infinity controller in transition flight modeling of autonomous VTOL convertible quad tiltrotor UAV publication-title: International Journal of Intelligent Unmanned Systems doi: 10.1108/IJIUS-09-2020-0041 – volume-title: AIAA Modeling and Simulation Technologies Conference year: 2016 ident: key2024041306192925000_ref025 article-title: Design and simulation of F/A-18A automatic carrier landing guidance controller doi: 10.2514/6.2016-3527 – volume: 108 start-page: 106403 year: 2021 ident: key2024041306192925000_ref010 article-title: Fixed-time control for automatic carrier landing with disturbance publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2020.106403 – volume: 7 start-page: 194 issue: 3 year: 2023 ident: key2024041306192925000_ref023 article-title: Fault-Tolerant control for Carrier-Based UAV based on sliding mode method publication-title: Drones doi: 10.3390/drones7030194 – volume: 54 start-page: 1203 issue: 8 year: 2019 ident: key2024041306192925000_ref013 article-title: Adaptive back stepping fast terminal sliding mode control of robot manipulators actuated by pneumatic artificial muscles: continuum modelling, dynamic formulation and controller design publication-title: Meccanica doi: 10.1007/s11012-019-01012-4 – volume: 41 start-page: 2205 issue: 8 year: 2019 ident: key2024041306192925000_ref021 article-title: Flight control and Airwake suppression algorithm for carrier landing based on model predictive control publication-title: Transactions of the Institute of Measurement and Control doi: 10.1177/0142331218780962 – volume: 58 start-page: 5276 issue: 6 year: 2022 ident: key2024041306192925000_ref006 article-title: Automatic landing for Carrier-Based aircraft under the conditions of deck motion and carrier Airwake disturbances publication-title: IEEE Transactions on Aerospace and Electronic Systems doi: 10.1109/TAES.2022.3168247 – start-page: 1 year: 2022 ident: key2024041306192925000_ref024 article-title: Automatic carrier landing control with external disturbance and input constraint publication-title: IEEE Transactions on Aerospace and Electronic Systems doi: 10.1109/TAES.2022.3202142 – start-page: 69 volume-title: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).IEEE year: 1998 ident: key2024041306192925000_ref020 article-title: A modified particle swarm optimizer doi: 10.1109/ICEC.1998.699146 – volume: 58 start-page: 3586 issue: 4 year: 2022 ident: key2024041306192925000_ref007 article-title: Automatic carrier landing system with fixed time control publication-title: IEEE Transactions on Aerospace and Electronic Systems doi: 10.1109/TAES.2022.3156070 – volume: 42 start-page: 187 year: 2015 ident: key2024041306192925000_ref015 article-title: Simplified brain storm optimization approach to control parameter optimization in F/A-18 automatic carrier landing system publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2015.01.017 – volume: 81 start-page: 99 year: 2018 ident: key2024041306192925000_ref026 article-title: Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2018.07.039 – volume: 55 start-page: 2347 issue: 5 year: 2019 ident: key2024041306192925000_ref005 article-title: Predator-Prey Pigeon-Inspired optimization for UAV ALS longitudinal parameters tuning publication-title: IEEE Transactions on Aerospace and Electronic Systems doi: 10.1109/TAES.2018.2886612 – volume: 24 start-page: 201 issue: 2 year: 2020 ident: key2024041306192925000_ref012 article-title: A survey of automatic parameter tuning methods for metaheuristics publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2019.2921598 – volume: 37 start-page: 98 issue: 1 year: 2018 ident: key2024041306192925000_ref014 article-title: A dynamic particle swarm optimization method applied to global optimizations of engineering inverse problem publication-title: COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering doi: 10.1108/COMPEL-08-2016-0352 – volume: 9 start-page: 818 issue: 2 year: 2021 ident: key2024041306192925000_ref003 article-title: A review of PID control, tuning methods and applications publication-title: International Journal of Dynamics and Control doi: 10.1007/s40435-020-00665-4 – start-page: 2593 volume-title: 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542) year: 2001 ident: key2024041306192925000_ref018 article-title: Flight testing of the F/A-18E/F automatic carrier landing system doi: 10.1109/AERO.2001.931220 – volume: 50 start-page: 1914 issue: 11 year: 2018 ident: key2024041306192925000_ref001 article-title: Control parameter tuning for aircraft crosswind landing via multi-solution particle swarm optimization publication-title: Engineering Optimization doi: 10.1080/0305215X.2018.1435646 – volume: 36 start-page: 409 issue: 4 year: 2023 ident: key2024041306192925000_ref017 article-title: Control-oriented modeling of a high-aspect-ratio flying wing with coupled flight dynamics publication-title: Chinese Journal of Aeronautics doi: 10.1016/j.cja.2022.08.018 – volume: 112 start-page: 106616 year: 2021 ident: key2024041306192925000_ref008 article-title: Adaptive super-twisting non-singular terminal sliding mode control for tracking of quadrotor with bounded disturbances publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2021.106616 – volume: 94 start-page: 1335 issue: 2 year: 2018 ident: key2024041306192925000_ref009 article-title: Prescribed performance control for automatic carrier landing with disturbance publication-title: Nonlinear Dynamics doi: 10.1007/s11071-018-4427-3 – volume: 16 start-page: 250 issue: 2 year: 2023 ident: key2024041306192925000_ref016 article-title: Multi-objective particle swarm optimization algorithm using cauchy mutation and improved crowding distance publication-title: International Journal of Intelligent Computing and Cybernetics doi: 10.1108/IJICC-04-2022-0118 – volume: 122 start-page: 107392 year: 2022 ident: key2024041306192925000_ref002 article-title: A fitness sharing based ant clustering method for multimodal optimization of the aircraft longitudinal automatic carrier landing system publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2022.107392 |
SSID | ssj0016503 ssj0000497 |
Score | 2.3052957 |
Snippet | Purpose
This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing... PurposeThis paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing... |
SourceID | proquest crossref emerald |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 448 |
SubjectTerms | Accuracy Aircraft Algorithms Automatic landing control Design optimization Design parameters Flight control Heuristic Landing aids Mathematical models Optimization Particle swarm optimization Proportional integral derivative Robust control Robustness Sliding mode control |
Title | Virtually constrained generalized relative motion modeling and a control parameter optimizer for automatic carrier landing |
URI | https://www.emerald.com/insight/content/doi/10.1108/AEAT-08-2023-0217/full/html https://www.proquest.com/docview/3037725596 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA66veiD-BOnU_Lgi0IwXWObPsmUzSE4RFR8K0l6EWFuOjdB_3rv2oypiPShhTZ9uEsu313u7mPsIPKZdx5A-JZXQqVaCpt5KxJEB97GBhxQaOCqn_Tu1OXDyUMIuL2FtMqZTSwNdTFyFCM_RlOLQBDxb3L68iqINYpOVwOFxiKrR7jT0DzX3Yu5JVYVuUqqtNBatcKpJjHftDvtWwoNEnu4IFz-Y1_6VZw7N9DlrtNdZSsBLvJ2pd81tgDDdbb8rYngBvu8fxpTEcjggzsCe8T5AAV_rPpJP33ic1Ww8g684uzhJf0NDuZmWHDDQ7o6pzbgz5Qew0doSJ5x6JgjpuVmOhmVnV25M2NiuOODqhhmk911O7fnPREYFYRD8UxEKj26oR4KF1sA6TJDLmCCq1p6bZRuWemkjfFSLjU-Mb5QGsCaInZpJiHeYrXhaAjbjMdOK6NPvFIeXZgEssgWhQQc05IxRK7BjmbyzF-qxhl56XBInZPwc7yT8HMSfoMdBon_-e0PRTVYc6aTPKy3t3w-O3b-f73LlvBPZe5NlDRZbTKewh7CiondL-fOPqufdfrXN1-vds6A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7aFwQNCHWCjgQzlQyao3cRPngNACW21fq6raVr2ltjNGK7W7ZbsFtT-K38hMHlqKUG9VDomU2IfxZOYbe2Y-gI1OyIIPiDJEQUudGiVdFpxMCB0EF1v0yFsDh4Okf6L3zrbPFuB3UwvDaZWNTSwNdTHxvEe-RaaWgCDh3-Tz1Q_JrFF8utpQaFRqsY-3vyhku_60-43W90MU7fSGX_uyZhWQnpzRTKYqUCgWsPCxQ1Q-sxwGJaTZKhirTeSUVy6mS_vUhsSGQhtEZ4vYp5nCmOZ9AouaK1pbsPilNzg6ntt-XdG5pNpIY3RUn6My10631x3yZiTzlUuOBO55wn_KgecuofRzOy_geQ1QRbfSqJewgONlePZX28IVuDsdTbns5OJWeIaXzDKBhfhedbAe3dFzVSLzE0XFEiRKwh0aLOy4EFbUCfKCG49fckKOmJDpuqShU0EoWtib2aTsJSu8nTKnnrioym9W4eRRpL0GrfFkjK9AxN5oa7aD1oGCpgSzjisKhTQmUjF2fBs2G3nmV1WrjrwMcZTJWfg53Vn4OQu_DR9rif_323sL1Yb1Zk3y-g-_zuf6-Prh1-9hqT88PMgPdgf7b-ApzVpm_nSSdWjNpjf4lkDNzL2rNUnA-WMr7x9RiA0i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtually+constrained+generalized+relative+motion+modeling+and+a+control+parameter+optimizer+for+automatic+carrier+landing&rft.jtitle=Aircraft+engineering&rft.au=Zhang%2C+Yiwei&rft.au=Li%2C+Daochun&rft.au=Kan%2C+Zi&rft.au=Yao%2C+Zhuoer&rft.date=2024-04-16&rft.pub=Emerald+Group+Publishing+Limited&rft.issn=1748-8842&rft.eissn=1758-4213&rft.volume=96&rft.issue=3&rft.spage=448&rft.epage=457&rft_id=info:doi/10.1108%2FAEAT-08-2023-0217 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-8842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-8842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-8842&client=summon |