Model-Free H Prescribed Performance Control of Adaptive Cruise Control Systems via Policy Learning
Model-free control does not require precise system dynamic information, but rather meets performance requirements by directly designing a control law. This method is particularly suitable for adaptive cruise control (ACC) systems in cyber-physical system (CPS) environments, as it can effectively han...
Saved in:
Published in | IEEE transactions on intelligent transportation systems pp. 1 - 11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Model-free control does not require precise system dynamic information, but rather meets performance requirements by directly designing a control law. This method is particularly suitable for adaptive cruise control (ACC) systems in cyber-physical system (CPS) environments, as it can effectively handle the dynamic uncertainty and external disturbances of the system. Thus, this paper develops a novel online adaptive <inline-formula> <tex-math notation="LaTeX">H_{\infty}</tex-math> </inline-formula> control scheme for ACC systems. The main contribution of our study lies in achieving model-free learning by using the homotopy strategy, removing the necessity of prior model knowledge of initial stabilizing control policies, which has been a significant challenge in existing policy learning and ACC studies. This resolves a long-standing issue and enhances the applicability of our findings. For this purpose, a continuous time ACC system is first constructed with unknown system dynamics. Then, based a designed offline policy learning algorithm, a novel online policy algorithm based on system input-output data is introduced to solve the Riccati equation without any model information. Finally, experimental results demonstrate that the proposed control method significantly improves system performance, especially in terms of computational speed, it has improved by about <inline-formula> <tex-math notation="LaTeX">45\%</tex-math> </inline-formula> compared to classical reinforcement learning (RL) algorithm. |
---|---|
AbstractList | Model-free control does not require precise system dynamic information, but rather meets performance requirements by directly designing a control law. This method is particularly suitable for adaptive cruise control (ACC) systems in cyber-physical system (CPS) environments, as it can effectively handle the dynamic uncertainty and external disturbances of the system. Thus, this paper develops a novel online adaptive <inline-formula> <tex-math notation="LaTeX">H_{\infty}</tex-math> </inline-formula> control scheme for ACC systems. The main contribution of our study lies in achieving model-free learning by using the homotopy strategy, removing the necessity of prior model knowledge of initial stabilizing control policies, which has been a significant challenge in existing policy learning and ACC studies. This resolves a long-standing issue and enhances the applicability of our findings. For this purpose, a continuous time ACC system is first constructed with unknown system dynamics. Then, based a designed offline policy learning algorithm, a novel online policy algorithm based on system input-output data is introduced to solve the Riccati equation without any model information. Finally, experimental results demonstrate that the proposed control method significantly improves system performance, especially in terms of computational speed, it has improved by about <inline-formula> <tex-math notation="LaTeX">45\%</tex-math> </inline-formula> compared to classical reinforcement learning (RL) algorithm. |
Author | Zhao, Jun Jia, Bingyi Zhao, Ziliang |
Author_xml | – sequence: 1 givenname: Jun orcidid: junzhao1993@163.com surname: Zhao fullname: Zhao, Jun organization: College of Transportation and Shandong Key Laboratory of Hydrogen Electric Hybrid Power System Control and Safety, Shandong University of Science and Technology, Qingdao, China – sequence: 2 givenname: Bingyi orcidid: bingyi.jia@sdust.edu.cn surname: Jia fullname: Jia, Bingyi organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China – sequence: 3 givenname: Ziliang orcidid: zhaoziliang1@sdust.edu.cn surname: Zhao fullname: Zhao, Ziliang organization: College of Transportation and Shandong Key Laboratory of Hydrogen Electric Hybrid Power System Control and Safety, Shandong University of Science and Technology, Qingdao, China |
BookMark | eNp9kM9KAzEQh4NUsK0-gOAhL7A1_zd7LMXaQsVC63nJZicS2W5Ksgp9e3dpQfHgaYYZvhl-3wSN2tACQveUzCglxeN-vd_NGGFixoWWlPArNKZS6owQqkZDz0RWEElu0CSlj34qJKVjVL2EGppsGQHwCm8jJBt9BTXeQnQhHkxrAS9C28XQ4ODwvDbHzn_1s_jp089qd0odHBL-8gZvQ-PtCW_AxNa377fo2pkmwd2lTtHb8mm_WGWb1-f1Yr7JLFOqy5RRNcm54iQvlK4KbbVWwBkVtOaSgiUuZ1Yoox3rc1S5kEwWQA3TrnbM8Cmi57s2hpQiuPIY_cHEU0lJOUgqB0nlIKm8SOqZ_A9jfWc6P6QyvvmXfDiTHgB-fcqFYkLxbw7adqU |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_3390_machines12120875 crossref_primary_10_3390_mti8120110 crossref_primary_10_1016_j_oceaneng_2025_120641 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TITS.2024.3485103 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 11 |
ExternalDocumentID | 10_1109_TITS_2024_3485103 10746246 |
Genre | orig-research |
GrantInformation_xml | – fundername: Anhui Province Key Laboratory of Advanced Numerical Control Servo Technology grantid: XJSK202301 – fundername: Natural Science Foundation of Shandong Provincial grantid: ZR2022QF011 – fundername: Young Talent of Lifting Engineering for Science and Technology, Shandong, China grantid: SDAST2024QTA075 – fundername: Development Plan for Youth Innovation Teams in Higher Education Institutions, Shandong grantid: 2023KJ094 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX AETIX AGSQL AIBXA CITATION EJD H~9 RIG ZY4 |
ID | FETCH-LOGICAL-c266t-6a6d0736307968b98c886e32141d351ec0f72c46a8f2050b745259e1a28fdf2a3 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Thu Apr 24 23:05:37 EDT 2025 Tue Jul 01 04:29:18 EDT 2025 Wed Aug 27 03:07:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c266t-6a6d0736307968b98c886e32141d351ec0f72c46a8f2050b745259e1a28fdf2a3 |
ORCID | bingyi.jia@sdust.edu.cn zhaoziliang1@sdust.edu.cn junzhao1993@163.com |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TITS_2024_3485103 crossref_citationtrail_10_1109_TITS_2024_3485103 ieee_primary_10746246 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0014511 |
Score | 2.4170446 |
Snippet | Model-free control does not require precise system dynamic information, but rather meets performance requirements by directly designing a control law. This... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> H_{\infty}</tex-math> </inline-formula> control Adaptation models adaptive cruise control system Computational modeling Cruise control cyber-physical system Heuristic algorithms Mathematical models model-free control Policy learning reinforcement learning Safety System dynamics Uncertainty Vehicle dynamics Vehicles |
Title | Model-Free H Prescribed Performance Control of Adaptive Cruise Control Systems via Policy Learning |
URI | https://ieeexplore.ieee.org/document/10746246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGA9uJz34nDhf5OBJSNemaZoex3BMwSG4wW4laRIZyjZm68G_3nxt91BQvIU8IORL8r1_H0I3WgnluAInXMWSsFBGJJFMkiAIRRRpRq0Gg_7jkA_G7GESTepk9TIXxhhTBp8ZD5qlL1_PswJMZR0IHuSU8QZqOM2tStZauwwAaKsER6WMJH60cmEGftIZ3Y-enSpImRcyARBy35jQVlWVkqn0D9BwtZ0qluTVK3LlZZ8_kBr_vd9DtF-Ll7hb3YcjtGNmx2hvC3TwBCkof_ZG-ktj8ABDCIb7OJTR-GmTQ4B7VQQ7nlvc1XIBfyLuLYvp-2aoxjrHH1OJK3RhXIO1vrTQuH836g1IXWmBZI5B54RLrt1b5-7BJ1yoRGRCcAM1jAIdRoHJfBvTjHEpLHVHq2LwhiYmkFRYbakMT1FzNp-ZM4RlrKWTkbgJMspiGyhlExnGoQXgOBWxNvJXR59mNQw5VMN4S0t1xE9SoFYK1EprarXR7XrJosLg-GtyCwixNbGiwfkv_RdoF5ZXVpVL1MyXhblyckaursv79QXjlszz |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA4-DurBZ8W3OXgS0m6y2Wz2KMXSalsEK3hbkk0ixdKW2nrw15vZ3dYqKN6W3WQJmSQzmfnmG4SujJbaawVBhI4V4aGKSKK4IpSGMooMZ86AQ7_TFc0nfvccPZfJ6nkujLU2B5_ZKjzmsXwzymbgKqsBeFAwLlbRulf8ES3StRZBA6DayulRGSdJEM2DmDRIar1W79FfBhmvhlwCidw3NbRUVyVXK40d1J0PqECTvFZnU13NPn5wNf57xLtouzQw8U2xIvbQih3uo60l2sEDpKEA2oA0JtbiJgYQhj86tDX44SuLANcLDDseOXxj1BhORVyfzPpvX59KtnP83le44BfGJV3rSwU9NW579SYpay2QzKvoKRFKGL_bhd_yiZA6kZmUwkIVI2rCiNoscDHLuFDSMT-1OoZ4aGKpYtIZx1R4iNaGo6E9QljFRnkrSViaMR47qrVLVBiHDqjjdMSPUTCf-jQricihHsYgzS8kQZKCtFKQVlpK6xhdL7qMCxaOvxpXQBBLDQsZnPzy_hJtNHuddtpude9P0Sb8qvCxnKG16WRmz73VMdUX-Vr7BMKz0Dw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Free+%24H_%7B%5Cinfty%7D%24+Prescribed+Performance+Control+of+Adaptive+Cruise+Control+Systems+via+Policy+Learning&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Zhao%2C+Jun&rft.au=Jia%2C+Bingyi&rft.au=Zhao%2C+Ziliang&rft.date=2024&rft.issn=1524-9050&rft.eissn=1558-0016&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTITS.2024.3485103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2024_3485103 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |