Model-Free H Prescribed Performance Control of Adaptive Cruise Control Systems via Policy Learning

Model-free control does not require precise system dynamic information, but rather meets performance requirements by directly designing a control law. This method is particularly suitable for adaptive cruise control (ACC) systems in cyber-physical system (CPS) environments, as it can effectively han...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems pp. 1 - 11
Main Authors Zhao, Jun, Jia, Bingyi, Zhao, Ziliang
Format Journal Article
LanguageEnglish
Published IEEE 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Model-free control does not require precise system dynamic information, but rather meets performance requirements by directly designing a control law. This method is particularly suitable for adaptive cruise control (ACC) systems in cyber-physical system (CPS) environments, as it can effectively handle the dynamic uncertainty and external disturbances of the system. Thus, this paper develops a novel online adaptive <inline-formula> <tex-math notation="LaTeX">H_{\infty}</tex-math> </inline-formula> control scheme for ACC systems. The main contribution of our study lies in achieving model-free learning by using the homotopy strategy, removing the necessity of prior model knowledge of initial stabilizing control policies, which has been a significant challenge in existing policy learning and ACC studies. This resolves a long-standing issue and enhances the applicability of our findings. For this purpose, a continuous time ACC system is first constructed with unknown system dynamics. Then, based a designed offline policy learning algorithm, a novel online policy algorithm based on system input-output data is introduced to solve the Riccati equation without any model information. Finally, experimental results demonstrate that the proposed control method significantly improves system performance, especially in terms of computational speed, it has improved by about <inline-formula> <tex-math notation="LaTeX">45\%</tex-math> </inline-formula> compared to classical reinforcement learning (RL) algorithm.
AbstractList Model-free control does not require precise system dynamic information, but rather meets performance requirements by directly designing a control law. This method is particularly suitable for adaptive cruise control (ACC) systems in cyber-physical system (CPS) environments, as it can effectively handle the dynamic uncertainty and external disturbances of the system. Thus, this paper develops a novel online adaptive <inline-formula> <tex-math notation="LaTeX">H_{\infty}</tex-math> </inline-formula> control scheme for ACC systems. The main contribution of our study lies in achieving model-free learning by using the homotopy strategy, removing the necessity of prior model knowledge of initial stabilizing control policies, which has been a significant challenge in existing policy learning and ACC studies. This resolves a long-standing issue and enhances the applicability of our findings. For this purpose, a continuous time ACC system is first constructed with unknown system dynamics. Then, based a designed offline policy learning algorithm, a novel online policy algorithm based on system input-output data is introduced to solve the Riccati equation without any model information. Finally, experimental results demonstrate that the proposed control method significantly improves system performance, especially in terms of computational speed, it has improved by about <inline-formula> <tex-math notation="LaTeX">45\%</tex-math> </inline-formula> compared to classical reinforcement learning (RL) algorithm.
Author Zhao, Jun
Jia, Bingyi
Zhao, Ziliang
Author_xml – sequence: 1
  givenname: Jun
  orcidid: junzhao1993@163.com
  surname: Zhao
  fullname: Zhao, Jun
  organization: College of Transportation and Shandong Key Laboratory of Hydrogen Electric Hybrid Power System Control and Safety, Shandong University of Science and Technology, Qingdao, China
– sequence: 2
  givenname: Bingyi
  orcidid: bingyi.jia@sdust.edu.cn
  surname: Jia
  fullname: Jia, Bingyi
  organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
– sequence: 3
  givenname: Ziliang
  orcidid: zhaoziliang1@sdust.edu.cn
  surname: Zhao
  fullname: Zhao, Ziliang
  organization: College of Transportation and Shandong Key Laboratory of Hydrogen Electric Hybrid Power System Control and Safety, Shandong University of Science and Technology, Qingdao, China
BookMark eNp9kM9KAzEQh4NUsK0-gOAhL7A1_zd7LMXaQsVC63nJZicS2W5Ksgp9e3dpQfHgaYYZvhl-3wSN2tACQveUzCglxeN-vd_NGGFixoWWlPArNKZS6owQqkZDz0RWEElu0CSlj34qJKVjVL2EGppsGQHwCm8jJBt9BTXeQnQhHkxrAS9C28XQ4ODwvDbHzn_1s_jp089qd0odHBL-8gZvQ-PtCW_AxNa377fo2pkmwd2lTtHb8mm_WGWb1-f1Yr7JLFOqy5RRNcm54iQvlK4KbbVWwBkVtOaSgiUuZ1Yoox3rc1S5kEwWQA3TrnbM8Cmi57s2hpQiuPIY_cHEU0lJOUgqB0nlIKm8SOqZ_A9jfWc6P6QyvvmXfDiTHgB-fcqFYkLxbw7adqU
CODEN ITISFG
CitedBy_id crossref_primary_10_3390_machines12120875
crossref_primary_10_3390_mti8120110
crossref_primary_10_1016_j_oceaneng_2025_120641
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TITS.2024.3485103
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 11
ExternalDocumentID 10_1109_TITS_2024_3485103
10746246
Genre orig-research
GrantInformation_xml – fundername: Anhui Province Key Laboratory of Advanced Numerical Control Servo Technology
  grantid: XJSK202301
– fundername: Natural Science Foundation of Shandong Provincial
  grantid: ZR2022QF011
– fundername: Young Talent of Lifting Engineering for Science and Technology, Shandong, China
  grantid: SDAST2024QTA075
– fundername: Development Plan for Youth Innovation Teams in Higher Education Institutions, Shandong
  grantid: 2023KJ094
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
RIG
ZY4
ID FETCH-LOGICAL-c266t-6a6d0736307968b98c886e32141d351ec0f72c46a8f2050b745259e1a28fdf2a3
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Thu Apr 24 23:05:37 EDT 2025
Tue Jul 01 04:29:18 EDT 2025
Wed Aug 27 03:07:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-6a6d0736307968b98c886e32141d351ec0f72c46a8f2050b745259e1a28fdf2a3
ORCID bingyi.jia@sdust.edu.cn
zhaoziliang1@sdust.edu.cn
junzhao1993@163.com
PageCount 11
ParticipantIDs crossref_primary_10_1109_TITS_2024_3485103
crossref_citationtrail_10_1109_TITS_2024_3485103
ieee_primary_10746246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014511
Score 2.4170446
Snippet Model-free control does not require precise system dynamic information, but rather meets performance requirements by directly designing a control law. This...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> H_{\infty}</tex-math> </inline-formula> control
Adaptation models
adaptive cruise control system
Computational modeling
Cruise control
cyber-physical system
Heuristic algorithms
Mathematical models
model-free control
Policy learning
reinforcement learning
Safety
System dynamics
Uncertainty
Vehicle dynamics
Vehicles
Title Model-Free H Prescribed Performance Control of Adaptive Cruise Control Systems via Policy Learning
URI https://ieeexplore.ieee.org/document/10746246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGA9uJz34nDhf5OBJSNemaZoex3BMwSG4wW4laRIZyjZm68G_3nxt91BQvIU8IORL8r1_H0I3WgnluAInXMWSsFBGJJFMkiAIRRRpRq0Gg_7jkA_G7GESTepk9TIXxhhTBp8ZD5qlL1_PswJMZR0IHuSU8QZqOM2tStZauwwAaKsER6WMJH60cmEGftIZ3Y-enSpImRcyARBy35jQVlWVkqn0D9BwtZ0qluTVK3LlZZ8_kBr_vd9DtF-Ll7hb3YcjtGNmx2hvC3TwBCkof_ZG-ktj8ABDCIb7OJTR-GmTQ4B7VQQ7nlvc1XIBfyLuLYvp-2aoxjrHH1OJK3RhXIO1vrTQuH836g1IXWmBZI5B54RLrt1b5-7BJ1yoRGRCcAM1jAIdRoHJfBvTjHEpLHVHq2LwhiYmkFRYbakMT1FzNp-ZM4RlrKWTkbgJMspiGyhlExnGoQXgOBWxNvJXR59mNQw5VMN4S0t1xE9SoFYK1EprarXR7XrJosLg-GtyCwixNbGiwfkv_RdoF5ZXVpVL1MyXhblyckaursv79QXjlszz
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA4-DurBZ8W3OXgS0m6y2Wz2KMXSalsEK3hbkk0ixdKW2nrw15vZ3dYqKN6W3WQJmSQzmfnmG4SujJbaawVBhI4V4aGKSKK4IpSGMooMZ86AQ7_TFc0nfvccPZfJ6nkujLU2B5_ZKjzmsXwzymbgKqsBeFAwLlbRulf8ES3StRZBA6DayulRGSdJEM2DmDRIar1W79FfBhmvhlwCidw3NbRUVyVXK40d1J0PqECTvFZnU13NPn5wNf57xLtouzQw8U2xIvbQih3uo60l2sEDpKEA2oA0JtbiJgYQhj86tDX44SuLANcLDDseOXxj1BhORVyfzPpvX59KtnP83le44BfGJV3rSwU9NW579SYpay2QzKvoKRFKGL_bhd_yiZA6kZmUwkIVI2rCiNoscDHLuFDSMT-1OoZ4aGKpYtIZx1R4iNaGo6E9QljFRnkrSViaMR47qrVLVBiHDqjjdMSPUTCf-jQricihHsYgzS8kQZKCtFKQVlpK6xhdL7qMCxaOvxpXQBBLDQsZnPzy_hJtNHuddtpude9P0Sb8qvCxnKG16WRmz73VMdUX-Vr7BMKz0Dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Free+%24H_%7B%5Cinfty%7D%24+Prescribed+Performance+Control+of+Adaptive+Cruise+Control+Systems+via+Policy+Learning&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Zhao%2C+Jun&rft.au=Jia%2C+Bingyi&rft.au=Zhao%2C+Ziliang&rft.date=2024&rft.issn=1524-9050&rft.eissn=1558-0016&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTITS.2024.3485103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2024_3485103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon