Output Feedback Active Fault Tolerant Control for a 3-DOF Laboratory Helicopter With Sensor Fault
In this paper, an output feedback-based active fault tolerant control (FTC) scheme is proposed for an unstable three degree-of-freedom (3-DOF) helicopter equipped only with angular position sensors, of which a single sensor can be faulty. Limited by the available outputs, existing fault estimation (...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 21; no. 3; pp. 2689 - 2700 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, an output feedback-based active fault tolerant control (FTC) scheme is proposed for an unstable three degree-of-freedom (3-DOF) helicopter equipped only with angular position sensors, of which a single sensor can be faulty. Limited by the available outputs, existing fault estimation (FE) and FTC schemes cannot be applied to this helicopter because when the sensor measuring the elevation or travel angle is faulty, it does not satisfy the minimum-phase and matching conditions required by standard observers. To circumvent this problem, an adaptive interval observer is firstly designed as a fault detection and isolation (FDI) unit to indicate the occurrence and location of a fault, in contrast to the existing FDI methods that require a bank of observers and incur a high computational cost. Then a high-gain observer is combined with a sliding mode observer to form an FE unit that does not require the matching and minimum-phase conditions. Based on the estimate of the fault, an FTC scheme is constructed to ensure an <inline-formula> <tex-math notation="LaTeX">\mathcal {H}_{\infty } </tex-math></inline-formula> performance of the faulty system. Finally, physical experiments on the 3-DOF helicopter verify the effectiveness of the proposed scheme. Note to Practitioners-The 3-DOF lab helicopter serves as an ideal experimental platform for control strategies. In this paper, an active fault tolerant control (FTC) scheme is developed for a 3-DOF lab helicopter when any single sensor can be faulty. The helicopter is nonlinear and subject to external disturbances. There are only encoders measuring the attitude angles and no sensors for angular velocities. In this paper, we firstly design a fault detection and isolation (FDI) unit based on an adaptive interval observer to detect the fault and identify its location; it incurs a lower computational cost compared to existing methods that use a bank of observers. Then a high-gain observer is combined with a sliding mode observer to estimate the fault. Based on the estimate of the fault, an FTC scheme is constructed and designed using Linear Matrix Inequalities to ensure an <inline-formula> <tex-math notation="LaTeX">\mathcal {H}_{\infty } </tex-math></inline-formula> performance of the faulty system. |
---|---|
AbstractList | In this paper, an output feedback-based active fault tolerant control (FTC) scheme is proposed for an unstable three degree-of-freedom (3-DOF) helicopter equipped only with angular position sensors, of which a single sensor can be faulty. Limited by the available outputs, existing fault estimation (FE) and FTC schemes cannot be applied to this helicopter because when the sensor measuring the elevation or travel angle is faulty, it does not satisfy the minimum-phase and matching conditions required by standard observers. To circumvent this problem, an adaptive interval observer is firstly designed as a fault detection and isolation (FDI) unit to indicate the occurrence and location of a fault, in contrast to the existing FDI methods that require a bank of observers and incur a high computational cost. Then a high-gain observer is combined with a sliding mode observer to form an FE unit that does not require the matching and minimum-phase conditions. Based on the estimate of the fault, an FTC scheme is constructed to ensure an <inline-formula> <tex-math notation="LaTeX">\mathcal {H}_{\infty } </tex-math></inline-formula> performance of the faulty system. Finally, physical experiments on the 3-DOF helicopter verify the effectiveness of the proposed scheme. Note to Practitioners-The 3-DOF lab helicopter serves as an ideal experimental platform for control strategies. In this paper, an active fault tolerant control (FTC) scheme is developed for a 3-DOF lab helicopter when any single sensor can be faulty. The helicopter is nonlinear and subject to external disturbances. There are only encoders measuring the attitude angles and no sensors for angular velocities. In this paper, we firstly design a fault detection and isolation (FDI) unit based on an adaptive interval observer to detect the fault and identify its location; it incurs a lower computational cost compared to existing methods that use a bank of observers. Then a high-gain observer is combined with a sliding mode observer to estimate the fault. Based on the estimate of the fault, an FTC scheme is constructed and designed using Linear Matrix Inequalities to ensure an <inline-formula> <tex-math notation="LaTeX">\mathcal {H}_{\infty } </tex-math></inline-formula> performance of the faulty system. |
Author | Tan, Chee Pin Wang, Xianghua |
Author_xml | – sequence: 1 givenname: Xianghua orcidid: 0000-0002-7888-4235 surname: Wang fullname: Wang, Xianghua email: xianghuaw@pku.edu.cn organization: School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Haidian District, Beijing, China – sequence: 2 givenname: Chee Pin orcidid: 0000-0003-0162-3763 surname: Tan fullname: Tan, Chee Pin email: tan.chee.pin@monash.edu organization: School of Engineering and Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia |
BookMark | eNp9kM1OwkAUhScGEwF9ABMX8wLF-enttEuCFExIWIBx2QzTO3G0dsh0MOHtpcLCuHB1z-J8JzffiAxa3yIh95xNOGfF43a6mU8EE3IiRaa4FFdkyAHyRKpcDvqcQgIFwA0Zdd07YyLNCzYken2I-0OkJWK90-aDTk10X0hLfWgi3foGg24jnfk2Bt9Q6wPVVCZP65Ku9M4HHX040iU2zvh9xEBfXXyjG2y7U_Nn5JZcW910eHe5Y_JSzrezZbJaL55n01ViRJbFBFJZQ8ERVW0lZwZUjYXNa5VKyIBJCTY1ynCxS3WtrC0soM4NCqMAhKnlmKjzrgm-6wLayrioo-s_166pOKt6U1VvqupNVRdTJ5L_IffBfepw_Jd5ODMOEX_1OcuLU-Eb5wx20w |
CODEN | ITASC7 |
CitedBy_id | crossref_primary_10_1109_LGRS_2024_3477711 crossref_primary_10_1177_09596518241309123 crossref_primary_10_1002_acs_3736 crossref_primary_10_1002_oca_3186 crossref_primary_10_1177_01423312241237665 crossref_primary_10_1109_MSP_2024_3496396 crossref_primary_10_3390_drones9030164 crossref_primary_10_1109_TCYB_2024_3472020 crossref_primary_10_1177_09596518241227131 crossref_primary_10_1016_j_jfranklin_2024_107323 |
Cites_doi | 10.1109/taes.2022.3207706 10.1002/rnc.3192 10.1002/rnc.5421 10.1016/j.automatica.2007.11.012 10.1109/TMECH.2021.3087193 10.1109/TSMC.2021.3095073 10.1002/acs.3120 10.1016/j.automatica.2009.10.040 10.1016/j.ifacol.2017.08.717 10.1080/00207179.2015.1057230 10.1016/j.isatra.2017.09.006 10.1016/B978-0-12-164901-2.50021-0 10.1109/TFUZZ.2020.3048505 10.1109/TAC.2009.2037478 10.1109/TAC.2013.2253231 10.1016/j.automatica.2009.12.005 10.1002/rnc.5407 10.1109/TIE.2012.2216233 10.1109/TAC.2010.2041996 10.1002/acs.958 10.1016/j.automatica.2018.05.005 10.1109/TAC.2021.3073284 10.1109/TAC.2020.2982907 10.1109/TCYB.2017.2707422 10.1016/j.automatica.2022.110792 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TASE.2023.3267132 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-3783 |
EndPage | 2700 |
ExternalDocumentID | 10_1109_TASE_2023_3267132 10108971 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61973197 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c266t-543d591ee7df310c57de9f8d7435650335f4c7c12b4ad7ff9f5ea8ce2c7552cd3 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Thu Apr 24 22:57:03 EDT 2025 Tue Jul 01 02:56:33 EDT 2025 Wed Aug 27 02:33:41 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c266t-543d591ee7df310c57de9f8d7435650335f4c7c12b4ad7ff9f5ea8ce2c7552cd3 |
ORCID | 0000-0002-7888-4235 0000-0003-0162-3763 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TASE_2023_3267132 ieee_primary_10108971 crossref_primary_10_1109_TASE_2023_3267132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 Wang (ref4) 2008; 6 ref17 ref16 ref19 ref24 ref23 ref25 Khalil (ref27) 2002 ref20 ref22 ref21 ref28 ref8 ref7 ref9 (ref18) 2006 ref3 ref6 ref5 Lasalle (ref26) 1976; 1 |
References_xml | – ident: ref20 doi: 10.1109/taes.2022.3207706 – ident: ref28 doi: 10.1002/rnc.3192 – ident: ref2 doi: 10.1002/rnc.5421 – ident: ref24 doi: 10.1016/j.automatica.2007.11.012 – ident: ref13 doi: 10.1109/TMECH.2021.3087193 – ident: ref15 doi: 10.1109/TSMC.2021.3095073 – volume: 6 start-page: 339 issue: 3 year: 2008 ident: ref4 article-title: Active fault-tolerant control for a class of nonlinear systems with sensor faults publication-title: Int. J. Control Autom. Syst. – ident: ref16 doi: 10.1002/acs.3120 – ident: ref8 doi: 10.1016/j.automatica.2009.10.040 – ident: ref23 doi: 10.1016/j.ifacol.2017.08.717 – ident: ref7 doi: 10.1080/00207179.2015.1057230 – ident: ref14 doi: 10.1016/j.isatra.2017.09.006 – volume: 1 start-page: 211 year: 1976 ident: ref26 article-title: Stablity theory and invariance principles publication-title: Dyn. Syst. doi: 10.1016/B978-0-12-164901-2.50021-0 – ident: ref5 doi: 10.1109/TFUZZ.2020.3048505 – ident: ref10 doi: 10.1109/TAC.2009.2037478 – ident: ref19 doi: 10.1109/TAC.2013.2253231 – ident: ref22 doi: 10.1016/j.automatica.2009.12.005 – volume-title: 3-DOF Helicopter Reference Manual year: 2006 ident: ref18 – ident: ref25 doi: 10.1002/rnc.5407 – ident: ref1 doi: 10.1109/TIE.2012.2216233 – start-page: 102 volume-title: Nonlinear Systems year: 2002 ident: ref27 – ident: ref9 doi: 10.1109/TAC.2010.2041996 – ident: ref6 doi: 10.1002/acs.958 – ident: ref11 doi: 10.1016/j.automatica.2018.05.005 – ident: ref21 doi: 10.1109/TAC.2021.3073284 – ident: ref17 doi: 10.1109/TAC.2020.2982907 – ident: ref3 doi: 10.1109/TCYB.2017.2707422 – ident: ref12 doi: 10.1016/j.automatica.2022.110792 |
SSID | ssj0024890 |
Score | 2.525293 |
Snippet | In this paper, an output feedback-based active fault tolerant control (FTC) scheme is proposed for an unstable three degree-of-freedom (3-DOF) helicopter... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2689 |
SubjectTerms | 3-DOF 3-DOF helicopter Circuit faults Computational efficiency Fault detection and isolation fault estimation Fault tolerant control Helicopters Iron Observers |
Title | Output Feedback Active Fault Tolerant Control for a 3-DOF Laboratory Helicopter With Sensor Fault |
URI | https://ieeexplore.ieee.org/document/10108971 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBbanNpD120pmm0ddNipgDw_xNg-BmmMYhjaQxMsN0MPGisaJEEgH7ZfP0p216zAit4MgzIEkxI_SuRHxr6kWEhArcUY9FhI2v6EQjCikAWhD1AGMCTI3oyvF_LbEpZ9sXqohUHEkHyGkX8Md_l2Y1p_VEYrPImL0leMH1Lk1hVrPRHrFeFAxUMCASVAf4WZxOXX-eRuFvk-4RGBFYrK0n-c0F5XleBUqjfs5nE6XS7JQ9Q6HZnfz5gaXz3fU3bSw0s-6ezhLTvA9Tt2vEc6-J6p29ZtW8cr8ltamQc-CVser1S7cny-WSG5L8enXQ47J1DLFc_E1W3Fv3cWs9n94uSuyIa2pBX-49795HcUDpNk-MiQLarZfHot-kYLwpB_dgJkZqFMEHPbENwzkFssm8ISuiC8F2cZNNLkJkm1VDZvmrIBVIXB1OQAqbHZGRusN2s8Z9xio_O4UKCzXOocS09RmOnUAjYEtZIRix__fG16FnLfDGNVh2gkLmuvrNorq-6VNWKXf4dsOwqOl4SHXg97gp0KPvzn_Ud2RMNll4D7iQ3crsULghlOfw7m9QeXWM0q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6h9kB7KI-2aqHAHjghrfFjJ7aPUagVIKSHJmpu1j7GatUoiaL1AX49s2sXQiUQN8uaXa084_2-2Z0HY-9TLCSg1mIAeiAkbX9CIRhRyILYBygDGAJkp4PxXH5ZwKJPVg-5MIgYgs8w8o_hLt-uTeuPyugPT-Ki9Bnj-wT8kHTpWr9L6xXhSMWTAgElQH-JmcTlx9nw-jLyncIjoivkl6V_wNBOX5UAK9UzNn1YUBdNch-1Tkfmx6Najf-94ufsqCeYfNhZxAv2BFcv2eFO2cFjpq5at2kdrwi5tDL3fBg2PV6pdun4bL1EAjDHR10UOydayxXPxKerik86m1lvv3MCLLKiDemF39y5W35NDjFJhklO2Ly6nI3Gom-1IAwhtBMgMwtlgpjbhgifgdxi2RSW-AUxvjjLoJEmN0mqpbJ505QNoCoMpiYHSI3NTtnear3CM8YtNjqPCwU6y6XOsfRFCjOdWsCGyFZyzuKHL1-bvg65b4exrIM_Epe1V1btlVX3yjpnH34N2XRFOP4lfOL1sCPYqeDVX96_Y0_Hs2-TevJ5-vU1O6CpZBeOe8H23LbFN0Q6nH4bTO0neIrQcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Output+Feedback+Active+Fault+Tolerant+Control+for+a+3-DOF+Laboratory+Helicopter+With+Sensor+Fault&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Wang%2C+Xianghua&rft.au=Tan%2C+Chee+Pin&rft.date=2024-07-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=21&rft.issue=3&rft.spage=2689&rft.epage=2700&rft_id=info:doi/10.1109%2FTASE.2023.3267132&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2023_3267132 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |