A Multi-Objective Clustered Input Oriented Salp Swarm Algorithm in Cloud Computing

Infrastructure as a Service (IaaS) in cloud computing enables flexible resource distribution over the Internet, but achieving optimal scheduling remains a challenge. Effective resource allocation in cloud-based environments, particularly within the IaaS model, poses persistent challenges. Existing m...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 81; no. 3; pp. 4659 - 4690
Main Authors Murali, Juliet A., T., Brindha
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Infrastructure as a Service (IaaS) in cloud computing enables flexible resource distribution over the Internet, but achieving optimal scheduling remains a challenge. Effective resource allocation in cloud-based environments, particularly within the IaaS model, poses persistent challenges. Existing methods often struggle with slow optimization, imbalanced workload distribution, and inefficient use of available assets. These limitations result in longer processing times, increased operational expenses, and inadequate resource deployment, particularly under fluctuating demands. To overcome these issues, a novel Clustered Input-Oriented Salp Swarm Algorithm (CIOSSA) is introduced. This approach combines two distinct strategies: Task Splitting Agglomerative Clustering (TSAC) with an Input Oriented Salp Swarm Algorithm (IOSSA), which prioritizes tasks based on urgency, and a refined multi-leader model that accelerates optimization processes, enhancing both speed and accuracy. By continuously assessing system capacity before task distribution, the model ensures that assets are deployed effectively and costs are controlled. The dual-leader technique expands the potential solution space, leading to substantial gains in processing speed, cost-effectiveness, asset efficiency, and system throughput, as demonstrated by comprehensive tests. As a result, the suggested model performs better than existing approaches in terms of makespan, resource utilisation, throughput, and convergence speed, demonstrating that CIOSSA is scalable, reliable, and appropriate for the dynamic settings found in cloud computing.
AbstractList Infrastructure as a Service (IaaS) in cloud computing enables flexible resource distribution over the Internet, but achieving optimal scheduling remains a challenge. Effective resource allocation in cloud-based environments, particularly within the IaaS model, poses persistent challenges. Existing methods often struggle with slow optimization, imbalanced workload distribution, and inefficient use of available assets. These limitations result in longer processing times, increased operational expenses, and inadequate resource deployment, particularly under fluctuating demands. To overcome these issues, a novel Clustered Input-Oriented Salp Swarm Algorithm (CIOSSA) is introduced. This approach combines two distinct strategies: Task Splitting Agglomerative Clustering (TSAC) with an Input Oriented Salp Swarm Algorithm (IOSSA), which prioritizes tasks based on urgency, and a refined multi-leader model that accelerates optimization processes, enhancing both speed and accuracy. By continuously assessing system capacity before task distribution, the model ensures that assets are deployed effectively and costs are controlled. The dual-leader technique expands the potential solution space, leading to substantial gains in processing speed, cost-effectiveness, asset efficiency, and system throughput, as demonstrated by comprehensive tests. As a result, the suggested model performs better than existing approaches in terms of makespan, resource utilisation, throughput, and convergence speed, demonstrating that CIOSSA is scalable, reliable, and appropriate for the dynamic settings found in cloud computing.
Author T., Brindha
Murali, Juliet A.
Author_xml – sequence: 1
  givenname: Juliet A.
  surname: Murali
  fullname: Murali, Juliet A.
– sequence: 2
  givenname: Brindha
  surname: T.
  fullname: T., Brindha
BookMark eNpNkM9LwzAUx4NMcJvePQY8t-YlbdYeR_HHYDJweg5t-joz2qYmqeJ_b3UePL334PO-X_gsyKy3PRJyDSwWXLLkVnc65ownMUszgPSMzCFNZMQ5l7N_-wVZeH9kTEiRszl5XtOnsQ0m2lVH1MF8IC3a0Qd0WNNNP4yB7pzBPkznvmwHuv8sXUfX7cE6E946avrpwY41LWw30aY_XJLzpmw9Xv3NJXm9v3spHqPt7mFTrLeR5lKGSOSICasF400FOoOkydhKSMQcE1GmEkpWpxobXZVZlXOQtchA8hwarCoJK7EkN6fcwdn3EX1QRzu6fqpUAvI8EzwBmCh2orSz3jts1OBMV7ovBUz9mlOTOfVjTp3MiW-hU2K-
Cites_doi 10.1007/s11277-020-07691-7
10.1007/s00607-018-0674-x
10.1109/TSC.2022.3181375
10.1007/s12652-018-1031-9
10.1016/j.comcom.2022.10.019
10.1016/j.neucom.2022.11.089
10.1002/cpe.6513
10.1007/s00500-022-07805-2
10.1007/s10586-023-04090-y
10.1016/j.iotcps.2023.01.002
10.1186/s13677-023-00453-3
10.1016/j.jss.2021.111124
10.1016/j.icte.2018.07.002
10.1007/s10586-022-03713-0
10.1109/ACCESS.2023.3330434
10.1016/j.engappai.2022.105345
ContentType Journal Article
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2024.058115
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 4690
ExternalDocumentID 10_32604_cmc_2024_058115
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c266t-39ee40d302fb1c814f80736ee9e43a561a0d5cefcba8b9216d3816291febb6173
IEDL.DBID BENPR
ISSN 1546-2226
1546-2218
IngestDate Mon Jun 30 11:04:09 EDT 2025
Tue Jul 01 05:26:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-39ee40d302fb1c814f80736ee9e43a561a0d5cefcba8b9216d3816291febb6173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3199832411?pq-origsite=%requestingapplication%
PQID 3199832411
PQPubID 2048737
PageCount 32
ParticipantIDs proquest_journals_3199832411
crossref_primary_10_32604_cmc_2024_058115
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2024
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Jena (ref20) 2022; 34
Javadpour (ref3) 2020; 115
Hamed (ref21) 2023; 74
Nabavi (ref27) 2023; 3
Zakarya (ref5) 2022; 16
Pradhan (ref12) 2022; 34
Javadpour (ref2) 2023; 197
Kumar (ref18) 2019; 101
Saravanan (ref22) 2023, Art. no. 24; 12
Mangalampalli (ref23) 2023; 35
Natesan (ref11) 2019; 5
Alsaidy (ref24) 2022; 34
Thilak (ref7) 2024, Art. no. 122; 5
Ibrahim (ref15) 2019; 10
Huang (ref13) May 2019
Aktan (ref10) 2022, Art. no. e6513; 34
Tuli (ref25) 2022, Art. no. 111124; 184
Jeong (ref8) 2023; 521
Prity (ref1) 2023; 26
Singhal (ref19) 2023; 11
Katal (ref9) 2023; 26
Zhou (ref14) 2023, Art. no. 85; 12
Aron (ref6) 2022, Art. no. 105345; 116
Rambabu (ref17) 2023, Art. no. 103401; 176
Agbaje (ref4) 2022, Art. no. 9323818; 2022
Patel (ref26) 2020
Mohamed (ref16) 2023; 27
References_xml – volume: 115
  start-page: 2471
  year: 2020
  ident: ref3
  article-title: Resource management in a peer to peer cloud network for IoT
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-020-07691-7
– year: May 2019
  ident: ref13
  publication-title: Distributed, Parallel, and Cluster Computing
– volume: 101
  start-page: 1609
  year: 2019
  ident: ref18
  article-title: Generalized ant colony optimizer: Swarm-based meta-heuristic algorithm for cloud services execution
  publication-title: Computing
  doi: 10.1007/s00607-018-0674-x
– volume: 16
  start-page: 1023
  year: 2022
  ident: ref5
  article-title: CoLocateMe: Aggregation-based, energy, performance and cost aware VM placement and consolidation in heterogeneous IaaS clouds
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2022.3181375
– volume: 5
  year: 2024, Art. no. 122
  ident: ref7
  article-title: Meta-heuristic algorithms to optimize two-stage task scheduling in the cloud
  publication-title: SN Comput. Sci.
– volume: 10
  start-page: 3155
  year: 2019
  ident: ref15
  article-title: Improved salp swarm algorithm based on particle swarm optimization for feature selection
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-018-1031-9
– volume: 34
  start-page: 2370
  year: 2022
  ident: ref24
  article-title: Heuristic initialization of PSO task scheduling algorithm in cloud computing
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 34
  start-page: 2332
  year: 2022
  ident: ref20
  article-title: Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 197
  start-page: 255
  year: 2023
  ident: ref2
  article-title: An energy-optimized embedded load balancing using DVFS computing in cloud data centers
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2022.10.019
– volume: 35
  start-page: 791
  year: 2023
  ident: ref23
  article-title: Multi objective trust aware task scheduling algorithm in cloud computing using whale optimization
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 521
  start-page: 99
  year: 2023
  ident: ref8
  article-title: Stable and efficient resource management using deep neural network on cloud computing
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.11.089
– volume: 34
  year: 2022, Art. no. e6513
  ident: ref10
  article-title: Metaheuristic task scheduling algorithms for cloud computing environments
  publication-title: Concurr. Comput.: Pract. Exp.
  doi: 10.1002/cpe.6513
– volume: 27
  start-page: 5769
  year: 2023
  ident: ref16
  article-title: A novel hybrid arithmetic optimization algorithm and salp swarm algorithm for data placement in cloud computing
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-07805-2
– volume: 26
  start-page: 3037
  year: 2023
  ident: ref1
  article-title: A review of task scheduling in cloud computing based on nature-inspired optimization algorithm
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-023-04090-y
– volume: 3
  start-page: 28
  year: 2023
  ident: ref27
  article-title: Seagull optimization algorithm based multi-objective VM placement in edge-cloud data centers
  publication-title: Internet Things Cyber-Phys. Syst.
  doi: 10.1016/j.iotcps.2023.01.002
– volume: 12
  year: 2023, Art. no. 85
  ident: ref14
  article-title: Comparative analysis of metaheuristic load balancing algorithms for efficient load balancing in cloud computing
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-023-00453-3
– volume: 12
  year: 2023, Art. no. 24
  ident: ref22
  article-title: Improved wild horse optimization with levy flight algorithm for effective task scheduling in cloud computing
  publication-title: J. Cloud Comput.
– volume: 184
  year: 2022, Art. no. 111124
  ident: ref25
  article-title: HUNTER: AI based holistic resource management for sustainable cloud computing
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2021.111124
– volume: 74
  start-page: 2133
  year: 2023
  ident: ref21
  article-title: Optimization task scheduling using cooperation search algorithm for heterogeneous cloud computing systems
  publication-title: Comput. Mater. Contin.
– volume: 5
  start-page: 110
  year: 2019
  ident: ref11
  article-title: Task scheduling in heterogeneous cloud environment using mean grey wolf optimization algorithm
  publication-title: ICT Express
  doi: 10.1016/j.icte.2018.07.002
– volume: 2022
  year: 2022, Art. no. 9323818
  ident: ref4
  article-title: A survey of game-theoretic approach for resource management in cloud computing
  publication-title: J. Comput. Netw. Commun.
– volume: 176
  year: 2023, Art. no. 103401
  ident: ref17
  article-title: Optimization assisted frequent pattern mining for data replication in cloud: Combining sealion and grey wolf algorithm
  publication-title: Adv. Eng. Softw.
– start-page: 655
  year: 2020
  ident: ref26
  article-title: GWO based task allocation for load balancing in containerized cloud
– volume: 26
  start-page: 1845
  year: 2023
  ident: ref9
  article-title: Energy efficiency in cloud computing data centers: A survey on software technologies
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-022-03713-0
– volume: 11
  start-page: 126135
  year: 2023
  ident: ref19
  article-title: Energy efficient resource allocation in cloud environment using metaheuristic algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3330434
– volume: 34
  start-page: 4888
  year: 2022
  ident: ref12
  article-title: A survey on PSO based meta-heuristic scheduling mechanism in cloud computing environment
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 116
  year: 2022, Art. no. 105345
  ident: ref6
  article-title: Resource scheduling methods for cloud computing environment: The role of meta-heuristics and artificial intelligence
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105345
SSID ssj0036390
Score 2.304868
Snippet Infrastructure as a Service (IaaS) in cloud computing enables flexible resource distribution over the Internet, but achieving optimal scheduling remains a...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 4659
SubjectTerms Algorithms
Cloud computing
Clustering
Cost effectiveness
Optimization
Resource allocation
Solution space
Title A Multi-Objective Clustered Input Oriented Salp Swarm Algorithm in Cloud Computing
URI https://www.proquest.com/docview/3199832411
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vXjxLVar7MGLh7VJdhM2J6mlUgVbaS30FvYVH7Rp7QP_vrPZDerFWyDJQr5h5ptHZgahKwkem-baEM0VI4zFjAipOYmlEoniIneSfuonvTF7nMQTn3Bb-d8qK5tYGmo9VzZH3qK2GQzYPwxvF5_Ebo2y1VW_QmMb1cEEcwi-6nfd_vOwssUU-LdsiYxZQiJgM1eoBJclYC01syMMI3YTxDy0a3F_E9Nfu1ySzf0-2vVeIm47sR6gLVMcor1qAwP2CnmEhm1cdtCSgfxwlgt3phs7-8Bo_FDA03hgBxmDW4lHYrrAoy-xnOH29BU-bf02w-8FvDDfaOzOBh47RuP77kunR_yWBKKAXNeEpsawQNMgymWoeMhyDmqbGJMaRgW4RyLQsTK5koLLNAoTbWuFURrmRkrwX-gJqhXzwpwiTFMpRB4ZluQpYxCYaa1iSVMIqkK4Zg10XUGULdwwjAyCiBLODODMLJyZg7OBmhWGmVeLVfYjxLP_b5-jHXuWy3U0UW293JgLYP-1vPQi_gYE7q42
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsNADLWgHODCjijrHODAYSDJTKLkgFDZ1LIUxCJxC7OFRW1aoBXip_hGPJlEwIUbt0hJfHh2_OxxbANsSIzYdKwN1bHilPOQUyF1TEOpRKRikTlNn7ej5i0_uQvvRuCz6oWxv1VWPrFw1Lqn7Bn5DrPNYMj-vr_Xf6F2a5StrlYrNJxZnJqPd0zZ3nZbh6jfzSA4Pro5aNJyqwBVSEYDyhJjuKeZF2TSV7HPsxjNPDImMZwJDCeEp0NlMiVFLJPAj7StrQWJnxkpke8Zyh2FMc4wlanB2P5R-_Kq8v0M-b5owQx5RANkT1cYxRDJ4zuqa0cmBnzbC2PfruH9SYS_eaAgt-NpmCyjUtJwZjQDIyafhalq4wMpHcAcXDVI0bFLL-Sz85TkoDO0sxaMJq0cnyYXdnAyhrHkWnT65PpdvHZJo_OAUA4eu-Qpxxd6Q02cbOTNebj9F_wWoJb3crMIhCVSiCwwPMoSzjER1FqFkiWYxPl4zeuwVUGU9t3wjRSTlgLOFOFMLZypg7MOKxWGafkZvqXfRrP09-11GG_enJ-lZ6326TJMWLnunGUFaoPXoVnFyGMg10p1E7j_bwv7Amgu6zE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Objective+Clustered+Input+Oriented+Salp+Swarm+Algorithm+in+Cloud+Computing&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Murali%2C+Juliet+A.&rft.au=T.%2C+Brindha&rft.date=2024&rft.issn=1546-2226&rft.eissn=1546-2226&rft.volume=81&rft.issue=3&rft.spage=4659&rft.epage=4690&rft_id=info:doi/10.32604%2Fcmc.2024.058115&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2024_058115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon