A Multi-Objective Clustered Input Oriented Salp Swarm Algorithm in Cloud Computing
Infrastructure as a Service (IaaS) in cloud computing enables flexible resource distribution over the Internet, but achieving optimal scheduling remains a challenge. Effective resource allocation in cloud-based environments, particularly within the IaaS model, poses persistent challenges. Existing m...
Saved in:
Published in | Computers, materials & continua Vol. 81; no. 3; pp. 4659 - 4690 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Henderson
Tech Science Press
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Infrastructure as a Service (IaaS) in cloud computing enables flexible resource distribution over the Internet, but achieving optimal scheduling remains a challenge. Effective resource allocation in cloud-based environments, particularly within the IaaS model, poses persistent challenges. Existing methods often struggle with slow optimization, imbalanced workload distribution, and inefficient use of available assets. These limitations result in longer processing times, increased operational expenses, and inadequate resource deployment, particularly under fluctuating demands. To overcome these issues, a novel Clustered Input-Oriented Salp Swarm Algorithm (CIOSSA) is introduced. This approach combines two distinct strategies: Task Splitting Agglomerative Clustering (TSAC) with an Input Oriented Salp Swarm Algorithm (IOSSA), which prioritizes tasks based on urgency, and a refined multi-leader model that accelerates optimization processes, enhancing both speed and accuracy. By continuously assessing system capacity before task distribution, the model ensures that assets are deployed effectively and costs are controlled. The dual-leader technique expands the potential solution space, leading to substantial gains in processing speed, cost-effectiveness, asset efficiency, and system throughput, as demonstrated by comprehensive tests. As a result, the suggested model performs better than existing approaches in terms of makespan, resource utilisation, throughput, and convergence speed, demonstrating that CIOSSA is scalable, reliable, and appropriate for the dynamic settings found in cloud computing. |
---|---|
AbstractList | Infrastructure as a Service (IaaS) in cloud computing enables flexible resource distribution over the Internet, but achieving optimal scheduling remains a challenge. Effective resource allocation in cloud-based environments, particularly within the IaaS model, poses persistent challenges. Existing methods often struggle with slow optimization, imbalanced workload distribution, and inefficient use of available assets. These limitations result in longer processing times, increased operational expenses, and inadequate resource deployment, particularly under fluctuating demands. To overcome these issues, a novel Clustered Input-Oriented Salp Swarm Algorithm (CIOSSA) is introduced. This approach combines two distinct strategies: Task Splitting Agglomerative Clustering (TSAC) with an Input Oriented Salp Swarm Algorithm (IOSSA), which prioritizes tasks based on urgency, and a refined multi-leader model that accelerates optimization processes, enhancing both speed and accuracy. By continuously assessing system capacity before task distribution, the model ensures that assets are deployed effectively and costs are controlled. The dual-leader technique expands the potential solution space, leading to substantial gains in processing speed, cost-effectiveness, asset efficiency, and system throughput, as demonstrated by comprehensive tests. As a result, the suggested model performs better than existing approaches in terms of makespan, resource utilisation, throughput, and convergence speed, demonstrating that CIOSSA is scalable, reliable, and appropriate for the dynamic settings found in cloud computing. |
Author | T., Brindha Murali, Juliet A. |
Author_xml | – sequence: 1 givenname: Juliet A. surname: Murali fullname: Murali, Juliet A. – sequence: 2 givenname: Brindha surname: T. fullname: T., Brindha |
BookMark | eNpNkM9LwzAUx4NMcJvePQY8t-YlbdYeR_HHYDJweg5t-joz2qYmqeJ_b3UePL334PO-X_gsyKy3PRJyDSwWXLLkVnc65ownMUszgPSMzCFNZMQ5l7N_-wVZeH9kTEiRszl5XtOnsQ0m2lVH1MF8IC3a0Qd0WNNNP4yB7pzBPkznvmwHuv8sXUfX7cE6E946avrpwY41LWw30aY_XJLzpmw9Xv3NJXm9v3spHqPt7mFTrLeR5lKGSOSICasF400FOoOkydhKSMQcE1GmEkpWpxobXZVZlXOQtchA8hwarCoJK7EkN6fcwdn3EX1QRzu6fqpUAvI8EzwBmCh2orSz3jts1OBMV7ovBUz9mlOTOfVjTp3MiW-hU2K- |
Cites_doi | 10.1007/s11277-020-07691-7 10.1007/s00607-018-0674-x 10.1109/TSC.2022.3181375 10.1007/s12652-018-1031-9 10.1016/j.comcom.2022.10.019 10.1016/j.neucom.2022.11.089 10.1002/cpe.6513 10.1007/s00500-022-07805-2 10.1007/s10586-023-04090-y 10.1016/j.iotcps.2023.01.002 10.1186/s13677-023-00453-3 10.1016/j.jss.2021.111124 10.1016/j.icte.2018.07.002 10.1007/s10586-022-03713-0 10.1109/ACCESS.2023.3330434 10.1016/j.engappai.2022.105345 |
ContentType | Journal Article |
Copyright | 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.32604/cmc.2024.058115 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1546-2226 |
EndPage | 4690 |
ExternalDocumentID | 10_32604_cmc_2024_058115 |
GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c266t-39ee40d302fb1c814f80736ee9e43a561a0d5cefcba8b9216d3816291febb6173 |
IEDL.DBID | BENPR |
ISSN | 1546-2226 1546-2218 |
IngestDate | Mon Jun 30 11:04:09 EDT 2025 Tue Jul 01 05:26:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c266t-39ee40d302fb1c814f80736ee9e43a561a0d5cefcba8b9216d3816291febb6173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3199832411?pq-origsite=%requestingapplication% |
PQID | 3199832411 |
PQPubID | 2048737 |
PageCount | 32 |
ParticipantIDs | proquest_journals_3199832411 crossref_primary_10_32604_cmc_2024_058115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Henderson |
PublicationPlace_xml | – name: Henderson |
PublicationTitle | Computers, materials & continua |
PublicationYear | 2024 |
Publisher | Tech Science Press |
Publisher_xml | – name: Tech Science Press |
References | Jena (ref20) 2022; 34 Javadpour (ref3) 2020; 115 Hamed (ref21) 2023; 74 Nabavi (ref27) 2023; 3 Zakarya (ref5) 2022; 16 Pradhan (ref12) 2022; 34 Javadpour (ref2) 2023; 197 Kumar (ref18) 2019; 101 Saravanan (ref22) 2023, Art. no. 24; 12 Mangalampalli (ref23) 2023; 35 Natesan (ref11) 2019; 5 Alsaidy (ref24) 2022; 34 Thilak (ref7) 2024, Art. no. 122; 5 Ibrahim (ref15) 2019; 10 Huang (ref13) May 2019 Aktan (ref10) 2022, Art. no. e6513; 34 Tuli (ref25) 2022, Art. no. 111124; 184 Jeong (ref8) 2023; 521 Prity (ref1) 2023; 26 Singhal (ref19) 2023; 11 Katal (ref9) 2023; 26 Zhou (ref14) 2023, Art. no. 85; 12 Aron (ref6) 2022, Art. no. 105345; 116 Rambabu (ref17) 2023, Art. no. 103401; 176 Agbaje (ref4) 2022, Art. no. 9323818; 2022 Patel (ref26) 2020 Mohamed (ref16) 2023; 27 |
References_xml | – volume: 115 start-page: 2471 year: 2020 ident: ref3 article-title: Resource management in a peer to peer cloud network for IoT publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-020-07691-7 – year: May 2019 ident: ref13 publication-title: Distributed, Parallel, and Cluster Computing – volume: 101 start-page: 1609 year: 2019 ident: ref18 article-title: Generalized ant colony optimizer: Swarm-based meta-heuristic algorithm for cloud services execution publication-title: Computing doi: 10.1007/s00607-018-0674-x – volume: 16 start-page: 1023 year: 2022 ident: ref5 article-title: CoLocateMe: Aggregation-based, energy, performance and cost aware VM placement and consolidation in heterogeneous IaaS clouds publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2022.3181375 – volume: 5 year: 2024, Art. no. 122 ident: ref7 article-title: Meta-heuristic algorithms to optimize two-stage task scheduling in the cloud publication-title: SN Comput. Sci. – volume: 10 start-page: 3155 year: 2019 ident: ref15 article-title: Improved salp swarm algorithm based on particle swarm optimization for feature selection publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-018-1031-9 – volume: 34 start-page: 2370 year: 2022 ident: ref24 article-title: Heuristic initialization of PSO task scheduling algorithm in cloud computing publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 34 start-page: 2332 year: 2022 ident: ref20 article-title: Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 197 start-page: 255 year: 2023 ident: ref2 article-title: An energy-optimized embedded load balancing using DVFS computing in cloud data centers publication-title: Comput. Commun. doi: 10.1016/j.comcom.2022.10.019 – volume: 35 start-page: 791 year: 2023 ident: ref23 article-title: Multi objective trust aware task scheduling algorithm in cloud computing using whale optimization publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 521 start-page: 99 year: 2023 ident: ref8 article-title: Stable and efficient resource management using deep neural network on cloud computing publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.11.089 – volume: 34 year: 2022, Art. no. e6513 ident: ref10 article-title: Metaheuristic task scheduling algorithms for cloud computing environments publication-title: Concurr. Comput.: Pract. Exp. doi: 10.1002/cpe.6513 – volume: 27 start-page: 5769 year: 2023 ident: ref16 article-title: A novel hybrid arithmetic optimization algorithm and salp swarm algorithm for data placement in cloud computing publication-title: Soft Comput. doi: 10.1007/s00500-022-07805-2 – volume: 26 start-page: 3037 year: 2023 ident: ref1 article-title: A review of task scheduling in cloud computing based on nature-inspired optimization algorithm publication-title: Cluster Comput. doi: 10.1007/s10586-023-04090-y – volume: 3 start-page: 28 year: 2023 ident: ref27 article-title: Seagull optimization algorithm based multi-objective VM placement in edge-cloud data centers publication-title: Internet Things Cyber-Phys. Syst. doi: 10.1016/j.iotcps.2023.01.002 – volume: 12 year: 2023, Art. no. 85 ident: ref14 article-title: Comparative analysis of metaheuristic load balancing algorithms for efficient load balancing in cloud computing publication-title: J. Cloud Comput. doi: 10.1186/s13677-023-00453-3 – volume: 12 year: 2023, Art. no. 24 ident: ref22 article-title: Improved wild horse optimization with levy flight algorithm for effective task scheduling in cloud computing publication-title: J. Cloud Comput. – volume: 184 year: 2022, Art. no. 111124 ident: ref25 article-title: HUNTER: AI based holistic resource management for sustainable cloud computing publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2021.111124 – volume: 74 start-page: 2133 year: 2023 ident: ref21 article-title: Optimization task scheduling using cooperation search algorithm for heterogeneous cloud computing systems publication-title: Comput. Mater. Contin. – volume: 5 start-page: 110 year: 2019 ident: ref11 article-title: Task scheduling in heterogeneous cloud environment using mean grey wolf optimization algorithm publication-title: ICT Express doi: 10.1016/j.icte.2018.07.002 – volume: 2022 year: 2022, Art. no. 9323818 ident: ref4 article-title: A survey of game-theoretic approach for resource management in cloud computing publication-title: J. Comput. Netw. Commun. – volume: 176 year: 2023, Art. no. 103401 ident: ref17 article-title: Optimization assisted frequent pattern mining for data replication in cloud: Combining sealion and grey wolf algorithm publication-title: Adv. Eng. Softw. – start-page: 655 year: 2020 ident: ref26 article-title: GWO based task allocation for load balancing in containerized cloud – volume: 26 start-page: 1845 year: 2023 ident: ref9 article-title: Energy efficiency in cloud computing data centers: A survey on software technologies publication-title: Cluster Comput. doi: 10.1007/s10586-022-03713-0 – volume: 11 start-page: 126135 year: 2023 ident: ref19 article-title: Energy efficient resource allocation in cloud environment using metaheuristic algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3330434 – volume: 34 start-page: 4888 year: 2022 ident: ref12 article-title: A survey on PSO based meta-heuristic scheduling mechanism in cloud computing environment publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 116 year: 2022, Art. no. 105345 ident: ref6 article-title: Resource scheduling methods for cloud computing environment: The role of meta-heuristics and artificial intelligence publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105345 |
SSID | ssj0036390 |
Score | 2.304868 |
Snippet | Infrastructure as a Service (IaaS) in cloud computing enables flexible resource distribution over the Internet, but achieving optimal scheduling remains a... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 4659 |
SubjectTerms | Algorithms Cloud computing Clustering Cost effectiveness Optimization Resource allocation Solution space |
Title | A Multi-Objective Clustered Input Oriented Salp Swarm Algorithm in Cloud Computing |
URI | https://www.proquest.com/docview/3199832411 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vXjxLVar7MGLh7VJdhM2J6mlUgVbaS30FvYVH7Rp7QP_vrPZDerFWyDJQr5h5ptHZgahKwkem-baEM0VI4zFjAipOYmlEoniIneSfuonvTF7nMQTn3Bb-d8qK5tYGmo9VzZH3qK2GQzYPwxvF5_Ebo2y1VW_QmMb1cEEcwi-6nfd_vOwssUU-LdsiYxZQiJgM1eoBJclYC01syMMI3YTxDy0a3F_E9Nfu1ySzf0-2vVeIm47sR6gLVMcor1qAwP2CnmEhm1cdtCSgfxwlgt3phs7-8Bo_FDA03hgBxmDW4lHYrrAoy-xnOH29BU-bf02w-8FvDDfaOzOBh47RuP77kunR_yWBKKAXNeEpsawQNMgymWoeMhyDmqbGJMaRgW4RyLQsTK5koLLNAoTbWuFURrmRkrwX-gJqhXzwpwiTFMpRB4ZluQpYxCYaa1iSVMIqkK4Zg10XUGULdwwjAyCiBLODODMLJyZg7OBmhWGmVeLVfYjxLP_b5-jHXuWy3U0UW293JgLYP-1vPQi_gYE7q42 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsNADLWgHODCjijrHODAYSDJTKLkgFDZ1LIUxCJxC7OFRW1aoBXip_hGPJlEwIUbt0hJfHh2_OxxbANsSIzYdKwN1bHilPOQUyF1TEOpRKRikTlNn7ej5i0_uQvvRuCz6oWxv1VWPrFw1Lqn7Bn5DrPNYMj-vr_Xf6F2a5StrlYrNJxZnJqPd0zZ3nZbh6jfzSA4Pro5aNJyqwBVSEYDyhJjuKeZF2TSV7HPsxjNPDImMZwJDCeEp0NlMiVFLJPAj7StrQWJnxkpke8Zyh2FMc4wlanB2P5R-_Kq8v0M-b5owQx5RANkT1cYxRDJ4zuqa0cmBnzbC2PfruH9SYS_eaAgt-NpmCyjUtJwZjQDIyafhalq4wMpHcAcXDVI0bFLL-Sz85TkoDO0sxaMJq0cnyYXdnAyhrHkWnT65PpdvHZJo_OAUA4eu-Qpxxd6Q02cbOTNebj9F_wWoJb3crMIhCVSiCwwPMoSzjER1FqFkiWYxPl4zeuwVUGU9t3wjRSTlgLOFOFMLZypg7MOKxWGafkZvqXfRrP09-11GG_enJ-lZ6326TJMWLnunGUFaoPXoVnFyGMg10p1E7j_bwv7Amgu6zE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Objective+Clustered+Input+Oriented+Salp+Swarm+Algorithm+in+Cloud+Computing&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Murali%2C+Juliet+A.&rft.au=T.%2C+Brindha&rft.date=2024&rft.issn=1546-2226&rft.eissn=1546-2226&rft.volume=81&rft.issue=3&rft.spage=4659&rft.epage=4690&rft_id=info:doi/10.32604%2Fcmc.2024.058115&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2024_058115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |