Potential application of p-type diamane as back surface field layer in silicon-based heterojunction solar cells
A higher efficiency of photovoltaic cells can be attained by optimizing their design, selecting the appropriate materials, and implementing of effective passivation process. The present study investigates the influence of the thickness and band gap of different layers of the solar cell and resuting...
Saved in:
Published in | Semiconductor science and technology Vol. 39; no. 12; pp. 125021 - 125037 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A higher efficiency of photovoltaic cells can be attained by optimizing their design, selecting the appropriate materials, and implementing of effective passivation process. The present study investigates the influence of the thickness and band gap of different layers of the solar cell and resuting opto-electric performance parameters of both single junction heterojunction (HJ) and heterojunction with intrinsic thin layer (HIT) cells. These cells are made up of a crystalline silicon (c-Si) active layer having back surafce field layer. The reported simulated work was conducted using AFORS-HET, an automated program specifically designed for simulating heterostructures. An efficiency of 26.86% has been attained for a HJ solar cell, this efficiency was further improved to 29.38% for the HIT solar cell by optimising all parameters. These cells require an emitter layer with a bandgap of around 1.4 eV. The optimal values of open-circuit voltage (
V
OC
), short-circuit current density (J
SC
), and fill factor are determined and found to be: 631.2 mV, 51.16 mA cm
−2
, and 83.16% for HJ solar cell, and 683 mV, 52.74 mA cm
−2
, and 81.55% for HIT solar cell. Moreover, the J-V curve, spectral response and quantum efficiency analysis have also been studied. |
---|---|
AbstractList | A higher efficiency of photovoltaic cells can be attained by optimizing their design, selecting the appropriate materials, and implementing of effective passivation process. The present study investigates the influence of the thickness and band gap of different layers of the solar cell and resuting opto-electric performance parameters of both single junction heterojunction (HJ) and heterojunction with intrinsic thin layer (HIT) cells. These cells are made up of a crystalline silicon (c-Si) active layer having back surafce field layer. The reported simulated work was conducted using AFORS-HET, an automated program specifically designed for simulating heterostructures. An efficiency of 26.86% has been attained for a HJ solar cell, this efficiency was further improved to 29.38% for the HIT solar cell by optimising all parameters. These cells require an emitter layer with a bandgap of around 1.4 eV. The optimal values of open-circuit voltage (
V
OC
), short-circuit current density (J
SC
), and fill factor are determined and found to be: 631.2 mV, 51.16 mA cm
−2
, and 83.16% for HJ solar cell, and 683 mV, 52.74 mA cm
−2
, and 81.55% for HIT solar cell. Moreover, the J-V curve, spectral response and quantum efficiency analysis have also been studied. |
Author | Naima Singh, Vinod Tyagi, Pawan K |
Author_xml | – sequence: 1 surname: Naima fullname: Naima organization: Delhi Technological University Department of Applied Physics, New Delhi 110042, India – sequence: 2 givenname: Pawan K orcidid: 0000-0002-4645-5700 surname: Tyagi fullname: Tyagi, Pawan K organization: Delhi Technological University Department of Applied Physics, New Delhi 110042, India – sequence: 3 givenname: Vinod orcidid: 0000-0001-8774-2207 surname: Singh fullname: Singh, Vinod organization: Delhi Technological University Department of Applied Physics, New Delhi 110042, India |
BookMark | eNp1kEtLAzEURoNUsK3uXWbpwtE8mnRmKcUXFHTRfbh5YWqaDMl00X_v1IorhQsXLt_5uJwZmqScHELXlNxR0rb3lEvaSLmg92Bbx90Zmv6eJmhKmGwbyhbsAs1q3RJCacvJFOX3PLg0BIgY-j4GA0PICWeP-2Y49A7bADtIDkPFGswnrvviwTjsg4sWRzi4gkPCNYxsTo2G6iz-cIMrebtP5rut5ggFGxdjvUTnHmJ1Vz97jjZPj5vVS7N-e35dPawbw6QcGs60F8CBam0EAwaW-4UBpp2A1ndL2VremmUntO68ZJTTpTWiW2gptPCUzxE51ZqSay3Oq76EHZSDokQdfamjHHWUo06-RuTmhITcq23elzT-p2odFO8UZeMIwqjqrR-jt39E_23-AnB4fnM |
CODEN | SSTEET |
Cites_doi | 10.1016/j.tsf.2010.03.023 10.1016/j.carbon.2020.07.068 10.1021/acsami.3c01536 10.1016/B978-0-12-823710-6.00014-5 10.5772/51065 10.1039/c2nr33795a 10.1088/1361-648X/ab5f37 10.1039/d0na00309c 10.1016/j.carbon.2020.06.007 10.1039/d1cp01747k 10.1039/c9tc02517k 10.5772/8073 10.1016/j.solener.2014.10.004 10.1021/acs.nanolett.1c01557 10.1063/1.4793999 10.1016/j.solener.2017.11.066 10.1021/nl101437p 10.1016/j.solmat.2021.111291 10.1063/1.4928747 10.1016/0254-0584(82)90021-9 10.1016/j.ijleo.2021.166642 10.1016/j.solmat.2008.02.037 10.1088/1402-4896/aca445 10.1002/solr.201900514 10.1109/PVSC.2010.5614460 10.1016/B978-0-12-811479-7/00009-9 10.1016/j.carbon.2020.02.017 10.1016/j.carbon.2017.02.042 10.1007/s10854-024-12650-0 10.1016/j.physb.2024.416173 10.5772/intechopen.94114 10.1080/26941112.2020.1869475 10.1109/JPHOTOV.2011.2174967 10.1007/s10854-016-4843-4 10.1016/s0022-3093(99)00756-5 10.1126/science.1156965 10.1039/C8NA00350E 10.1103/PhysRevB.94.045318 10.3390/cryst9080402 10.1155/2018/7368175 10.1016/j.solmat.2015.05.031 10.1038/s41467-024-53275-5 10.1002/1439-7641(20010917)2:8/9<490::AID-CPHC490>3.0.CO;2-1 10.1016/j.solmat.2012.02.019 10.1002/pip.2696 10.1007/s12633-021-01083-7 10.1016/j.cartre.2022.100209 10.1039/x0xx00000x 10.1039/C8NR08493A 10.1103/PhysRevLett.49.1187 10.1063/1.4942660 10.1016/j.solmat.2017.06.024 10.1143/JJAP.31.3518 10.1038/s41560-023-01255-2 10.1016/j.egypro.2011.06.125 10.1016/j.ijleo.2017.02.074 10.1007/s10971-023-06177-9 10.1016/j.commatsci.2023.112252 10.1038/nnano.2010.132 10.3329/dujs.v69i2.56488 10.1016/j.solener.2012.11.008 10.1063/1.2768635 10.3390/c7010017 10.1016/j.cplett.2006.06.081 10.1016/S0368-2048(97)00236-3 10.1134/S0021364009140112 10.1103/PhysRevB.105.174106 10.1021/nl404389u 10.1007/s11082-023-04716-w 10.1038/nenergy.2017.32 |
ContentType | Journal Article |
Copyright | 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6641/ad8e3e |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1361-6641 |
ExternalDocumentID | 10_1088_1361_6641_ad8e3e sstad8e3e |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 E.- EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE PZZ R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ UCJ W28 XPP ZMT AAYXX CITATION |
ID | FETCH-LOGICAL-c266t-32bf5a3a1bbc52a2ad3f4ca2be5a8f9768d38c795bb9f621317dc594b65b5f13 |
IEDL.DBID | IOP |
ISSN | 0268-1242 |
IngestDate | Tue Jul 01 02:44:55 EDT 2025 Tue Nov 26 22:22:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c266t-32bf5a3a1bbc52a2ad3f4ca2be5a8f9768d38c795bb9f621317dc594b65b5f13 |
Notes | SST-110496.R1 |
ORCID | 0000-0002-4645-5700 0000-0001-8774-2207 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1088_1361_6641_ad8e3e iop_journals_10_1088_1361_6641_ad8e3e |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Semiconductor science and technology |
PublicationTitleAbbrev | SST |
PublicationTitleAlternate | Semicond. Sci. Technol |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Borah (sstad8e3ebib16) 2020; 2 Pham (sstad8e3ebib55) 2017; 136 Tsunomura (sstad8e3ebib70) 2009; 93 Cramarossa (sstad8e3ebib47) 1983; 9 Singh (sstad8e3ebib58) 2000 Plakhotnyuk (sstad8e3ebib2) 2018 Robinson (sstad8e3ebib33) 2010; 10 Kroemer (sstad8e3ebib27) 2001; 2 Ge (sstad8e3ebib25) 2021; 23 Rawat (sstad8e3ebib30) 2014; 110 Singh (sstad8e3ebib60) 2012; 101 Somani (sstad8e3ebib51) 2006; 430 Zhu (sstad8e3ebib37) 2019; 11 Long (sstad8e3ebib72) 2021; 231 Bivour (sstad8e3ebib7) 2015; 142 Brendel (sstad8e3ebib19) 2015; 24 Fang (sstad8e3ebib44) 2016; 94 Taşçıoğlu (sstad8e3ebib62) 2023; 107 Benda (sstad8e3ebib45) 2018 Sorokin (sstad8e3ebib31) 2021; 21 Uda (sstad8e3ebib50) 1998; 88–91 Ma (sstad8e3ebib69) 2018; 160 Tanrıkulu (sstad8e3ebib63) 2023; 98 Zheng (sstad8e3ebib36) 2020; 161 Iftiquar (sstad8e3ebib4) 2012 Yoshikawa (sstad8e3ebib74) 2017; 173 Van Sark (sstad8e3ebib12) 2016 Bouzidi (sstad8e3ebib43) 2021; 235 Geissbühler (sstad8e3ebib71) 2015; 107 (sstad8e3ebib9) 2022; 9 Lu (sstad8e3ebib18) 2007; 91 Shen (sstad8e3ebib42) 2019; 7 Stangl (sstad8e3ebib26) 2010; vol 1 Tantardini (sstad8e3ebib34) 2023; 15 Lin (sstad8e3ebib3) 2023; 8 Tan (sstad8e3ebib57) 2016; 27 Singh (sstad8e3ebib8) 2021 Güçlü (sstad8e3ebib64) 2024; 689 Fujishima (sstad8e3ebib5) 2010 Nair (sstad8e3ebib17) 2008; 320 Hsu (sstad8e3ebib54) 2019; 9 Piazza (sstad8e3ebib49) 2020; 169 Kumar (sstad8e3ebib53) 2023; 55 Bessler (sstad8e3ebib39) 2019; 1 Li (sstad8e3ebib68) 2013; 5 Li (sstad8e3ebib67) 2020; 4 Rietwyk (sstad8e3ebib38) 2013; 102 Street (sstad8e3ebib20) 1982; 49 Sarkar (sstad8e3ebib66) 2021; 69 Tanaka (sstad8e3ebib11) 1992; 31 Dwivedi (sstad8e3ebib1) 2013; 88 Farah Khaleda (sstad8e3ebib65) 2021 Chernozatonskii (sstad8e3ebib40) 2021; 7 Rahal (sstad8e3ebib56) 2021; 14 Raeisi (sstad8e3ebib35) 2020; 167 Yoshikawa (sstad8e3ebib73) 2017; 2 Battaglia (sstad8e3ebib6) 2014; 14 Patel (sstad8e3ebib15) 2017; 116 Wang (sstad8e3ebib28) 2024; 15 Futako (sstad8e3ebib46) 2000; 266–269 Güçlü (sstad8e3ebib61) 2024; 35 Lien (sstad8e3ebib14) 2010; 518 Qin (sstad8e3ebib24) 2021; 1 (sstad8e3ebib10) 2023; 226 Yang (sstad8e3ebib52) 2018; 5 Green (sstad8e3ebib59) 2016; 108 Bae (sstad8e3ebib48) 2010; 5 Niu (sstad8e3ebib22) 2020; 32 Chernozatonskii (sstad8e3ebib41) 2009; 90 Zhang (sstad8e3ebib13) 2011; 8 Holman (sstad8e3ebib21) 2012; 2 Bellini (sstad8e3ebib29) 2024 Niu (sstad8e3ebib23) 2022; B105 Cheng (sstad8e3ebib32) 2020; 8 |
References_xml | – volume: 518 start-page: S10 year: 2010 ident: sstad8e3ebib14 article-title: Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells publication-title: Thin Solid Films doi: 10.1016/j.tsf.2010.03.023 – volume: 169 start-page: 129 year: 2020 ident: sstad8e3ebib49 article-title: Raman evidence for the successful synthesis of diamane publication-title: Carbon doi: 10.1016/j.carbon.2020.07.068 – volume: 15 start-page: 16317 year: 2023 ident: sstad8e3ebib34 article-title: Electronic properties of functionalized diamanes for field-emission displays publication-title: Appl. Mater. Interfaces doi: 10.1021/acsami.3c01536 – start-page: 525 year: 2021 ident: sstad8e3ebib65 article-title: Spectral response and quantum efficiency evaluation of solar cells: a review doi: 10.1016/B978-0-12-823710-6.00014-5 – start-page: 106 year: 2012 ident: sstad8e3ebib4 article-title: Fabrication of Crystalline Silicon Solar Cell with Emitter Diffusion, SiNx Surface Passivation and Screen Printing of Electrode doi: 10.5772/51065 – volume: 5 start-page: 1945 year: 2013 ident: sstad8e3ebib68 article-title: Ion doping of graphene for high-efficiency heterojunction solar cells publication-title: Nanoscale doi: 10.1039/c2nr33795a – volume: 32 year: 2020 ident: sstad8e3ebib22 article-title: Boron-dopant enhanced stability of diamane with tunable band gap publication-title: J. Phys.: Condens. Matter doi: 10.1088/1361-648X/ab5f37 – volume: 2 start-page: 3231 year: 2020 ident: sstad8e3ebib16 article-title: The prospective application of a graphene/MoS2 heterostructure in Si-HIT solar cells for higher efficiency publication-title: Nanoscale Adv. doi: 10.1039/d0na00309c – volume: 167 start-page: 51 year: 2020 ident: sstad8e3ebib35 article-title: High thermal conductivity in semiconducting Janus and non-Janus diamanes publication-title: Carbon doi: 10.1016/j.carbon.2020.06.007 – volume: 23 year: 2021 ident: sstad8e3ebib25 article-title: Properties of diamane anchored with different groups publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/d1cp01747k – volume: 7 start-page: 9756 year: 2019 ident: sstad8e3ebib42 article-title: Electron affinity of boron-terminated diamond (001) surfaces: a density functional theory study publication-title: J. Mater. Chem. C doi: 10.1039/c9tc02517k – volume: vol 1 start-page: 319 year: 2010 ident: sstad8e3ebib26 article-title: Numerical Simulation of Solar Cells and Solar Cell Characterization Methods: the Open-Source on Demand Program AFORS-HET doi: 10.5772/8073 – volume: 110 start-page: 691 year: 2014 ident: sstad8e3ebib30 article-title: Numerical simulations for high efficiency HIT solar cells using microcrystalline silicon as emitter and back surface field (BSF) layers publication-title: Sol. Energy doi: 10.1016/j.solener.2014.10.004 – volume: 21 start-page: 5475 year: 2021 ident: sstad8e3ebib31 article-title: Two-Dimensional Diamond—diamane: current state and further prospects publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c01557 – volume: 102 year: 2013 ident: sstad8e3ebib38 article-title: Work function and electron affinity of the fluorine-terminated (100) diamond surface publication-title: Appl. Phys. Lett. doi: 10.1063/1.4793999 – volume: 160 start-page: 76 year: 2018 ident: sstad8e3ebib69 article-title: High efficiency graphene/MoS2Si Schottky barrier solar cells using layer-controlled MoS2 films publication-title: Sol. Energy doi: 10.1016/j.solener.2017.11.066 – volume: 10 start-page: 3001 year: 2010 ident: sstad8e3ebib33 article-title: Properties of fluorinated graphene films publication-title: Nano Lett. doi: 10.1021/nl101437p – volume: 231 year: 2021 ident: sstad8e3ebib72 article-title: On the limiting efficiency for silicon heterojunction solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2021.111291 – volume: 107 year: 2015 ident: sstad8e3ebib71 article-title: 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector publication-title: Appl. Phys. Lett. doi: 10.1063/1.4928747 – volume: 9 start-page: 213 year: 1983 ident: sstad8e3ebib47 article-title: Deposition techniques and applications of amorphous silicon films publication-title: Mater. Chem. Phys. doi: 10.1016/0254-0584(82)90021-9 – volume: 235 year: 2021 ident: sstad8e3ebib43 article-title: Optical properties of Janus and non-Janus diamanes monolayers using ab-initio calculations publication-title: Optik doi: 10.1016/j.ijleo.2021.166642 – year: 2024 ident: sstad8e3ebib29 article-title: Longi announces 27.30% efficiency for heterojunction back contact solar cell – volume: 93 start-page: 670 year: 2009 ident: sstad8e3ebib70 article-title: Twenty-two percent efficiency hit solar cell publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2008.02.037 – volume: 98 year: 2023 ident: sstad8e3ebib63 article-title: Investigation of photon-induced effects on some diode parameters and negative capacitance of the Schottky structure with Zn-doped organic polymer (PVA) interface publication-title: Phys. Scr. doi: 10.1088/1402-4896/aca445 – volume: 4 year: 2020 ident: sstad8e3ebib67 article-title: Silicon heterojunction solar cells with MoOx hole selective layer by hot wire oxidation-sublimation deposition publication-title: Sol. RRL doi: 10.1002/solr.201900514 – start-page: 003137 year: 2010 ident: sstad8e3ebib5 article-title: High-performance HIT solar cells for thinner silicon wafers doi: 10.1109/PVSC.2010.5614460 – start-page: 181 year: 2018 ident: sstad8e3ebib45 article-title: Crystalline Silicon Solar Cell and Module Technology doi: 10.1016/B978-0-12-811479-7/00009-9 – volume: 161 start-page: 809 year: 2020 ident: sstad8e3ebib36 article-title: Single layer diamond—a new ultrathin 2D carbon nanostructure for mechanical resonator publication-title: Carbon doi: 10.1016/j.carbon.2020.02.017 – volume: 116 start-page: 744 year: 2017 ident: sstad8e3ebib15 article-title: P-type multilayer graphene as a highly efficient transparent conducting electrode in silicon heterojunction solar cells publication-title: Carbon doi: 10.1016/j.carbon.2017.02.042 – volume: 35 start-page: 881 year: 2024 ident: sstad8e3ebib61 article-title: A comparison electrical characteristics of the Au/ (pure-PVA)/n-Si and Au/(CdTe doped-PVA)/n-Si (MPS) type Schottky structures using I–V and C–V measurements publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-024-12650-0 – volume: 689 year: 2024 ident: sstad8e3ebib64 article-title: On the impact of pure PVC and (PVC: ti) interlayer on the conduction mechanisms and physical parameters of classic metal-semiconductor (MS) Schottky diodes (SDs) publication-title: Physica B Condens. Matter doi: 10.1016/j.physb.2024.416173 – start-page: 1 year: 2021 ident: sstad8e3ebib8 article-title: Two-Dimensional Materials for Advanced Solar Cells doi: 10.5772/intechopen.94114 – volume: 1 start-page: 83 year: 2021 ident: sstad8e3ebib24 article-title: Diamane: design, synthesis, properties, and challenges publication-title: Funct. Diam. doi: 10.1080/26941112.2020.1869475 – volume: 2 start-page: 7 year: 2012 ident: sstad8e3ebib21 article-title: Current losses at the front of silicon heterojunction solar cells publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2011.2174967 – volume: 27 start-page: 8340 year: 2016 ident: sstad8e3ebib57 article-title: Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities publication-title: J. Mater. Sci., Mater. Electron. doi: 10.1007/s10854-016-4843-4 – volume: 266–269 start-page: 630 year: 2000 ident: sstad8e3ebib46 article-title: The structure of 1.5–2.0 eV band gap amorphous silicon films prepared by chemical annealing publication-title: J. Non-Cryst. Solids doi: 10.1016/s0022-3093(99)00756-5 – year: 2018 ident: sstad8e3ebib2 – volume: 320 start-page: 1308 year: 2008 ident: sstad8e3ebib17 article-title: Fine structure constant defines visual transparency of graphene publication-title: Science doi: 10.1126/science.1156965 – volume: 1 start-page: 1702 year: 2019 ident: sstad8e3ebib39 article-title: The dielectric constant of a bilayer graphene interface publication-title: Nanoscale Adv. doi: 10.1039/C8NA00350E – volume: 94 year: 2016 ident: sstad8e3ebib44 article-title: Microscopic dielectric permittivities of graphene nanoribbons and graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.045318 – volume: 9 start-page: 402 year: 2019 ident: sstad8e3ebib54 article-title: Silicon heterojunction solar cells with p-type silicon carbon window layer publication-title: Crystals doi: 10.3390/cryst9080402 – volume: 5 year: 2018 ident: sstad8e3ebib52 article-title: HIT solar cells with N-type low-cost metallurgical Si publication-title: Hindawi Adv. OptoElectron. doi: 10.1155/2018/7368175 – volume: 142 start-page: 34 year: 2015 ident: sstad8e3ebib7 article-title: Molybdenum and tungsten oxide: high work function wide band gap contact materials for hole selective contacts of silicon solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.05.031 – volume: 15 start-page: 8931 year: 2024 ident: sstad8e3ebib28 article-title: 27.09%-efficiency silicon heterojunction back contact solar cell and going beyond publication-title: Nat. Commun. doi: 10.1038/s41467-024-53275-5 – volume: 2 start-page: 490 year: 2001 ident: sstad8e3ebib27 article-title: Quasi-electric fields and band offsets: teaching electrons new tricks (nobel lecture) publication-title: Chem. Phys. Chem. doi: 10.1002/1439-7641(20010917)2:8/9<490::AID-CPHC490>3.0.CO;2-1 – volume: 101 start-page: 36 year: 2012 ident: sstad8e3ebib60 article-title: Temperature dependence of solar cell performance—an analysis publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2012.02.019 – start-page: 104 year: 2016 ident: sstad8e3ebib12 article-title: Heterojunction silicon solar cells – volume: 24 start-page: 1475 year: 2015 ident: sstad8e3ebib19 article-title: Breakdown of the efficiency gap to 29% based on experimental input data and modelling publication-title: Prog. Photovolt., Res. Appl. doi: 10.1002/pip.2696 – volume: 14 start-page: 1 year: 2021 ident: sstad8e3ebib56 article-title: Simulation and optimization of back surface field for efficient HIT solar cells publication-title: Silicon doi: 10.1007/s12633-021-01083-7 – volume: 9 year: 2022 ident: sstad8e3ebib9 article-title: N-type diamane: an effective emitter layer in crystalline silicon heterojunction solar cell publication-title: Carbon Trends doi: 10.1016/j.cartre.2022.100209 – volume: 8 start-page: 13819 year: 2020 ident: sstad8e3ebib32 article-title: High elastic moduli, controllable bandgap and extraordinary carrier mobility in single-layer diamond publication-title: J. Mater. Chem. C doi: 10.1039/x0xx00000x – volume: 11 start-page: 4248 year: 2019 ident: sstad8e3ebib37 article-title: Giant thermal conductivity in diamane and the influence of horizontal reflection symmetry on phonon scattering publication-title: Nanoscale doi: 10.1039/C8NR08493A – year: 2000 ident: sstad8e3ebib58 – volume: 49 start-page: 1187 year: 1982 ident: sstad8e3ebib20 article-title: Doping and the fermi energy in amorphous silicon publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.1187 – volume: 108 year: 2016 ident: sstad8e3ebib59 article-title: Accurate expressions for solar cell fill factors including series and shunt resistances publication-title: Appl. Phys. Lett. doi: 10.1063/1.4942660 – volume: 173 start-page: 37 year: 2017 ident: sstad8e3ebib74 article-title: Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.06.024 – volume: 31 start-page: 3518 year: 1992 ident: sstad8e3ebib11 article-title: Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer) publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.31.3518 – volume: 8 start-page: 789 year: 2023 ident: sstad8e3ebib3 article-title: Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers publication-title: Nat. Energy doi: 10.1038/s41560-023-01255-2 – volume: 8 start-page: 207 year: 2011 ident: sstad8e3ebib13 article-title: Influence of ITO deposition and post annealing on HIT solar cell structures publication-title: Energy Proc. doi: 10.1016/j.egypro.2011.06.125 – volume: 136 start-page: 507 year: 2017 ident: sstad8e3ebib55 article-title: Role of a-Si:H buffer layer at the p/i interface and band gap profiling of the absorption layer on enhancing cell parameters in hydrogenated amorphous silicon germanium solar cells publication-title: Optik doi: 10.1016/j.ijleo.2017.02.074 – volume: 107 start-page: 536 year: 2023 ident: sstad8e3ebib62 article-title: Examination on the current conduction mechanisms of Au/n-Si diodes with ZnO–PVP and ZnO/Ag2WO4–PVP interfacial layers publication-title: J. Solgel Sci. Technol. doi: 10.1007/s10971-023-06177-9 – volume: 226 year: 2023 ident: sstad8e3ebib10 article-title: Potential application of novel graphene/diamane interface in silicon-based heterojunction with intrinsic thin layer solar cell publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2023.112252 – volume: 5 start-page: 574 year: 2010 ident: sstad8e3ebib48 article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.132 – volume: 69 start-page: 88 year: 2021 ident: sstad8e3ebib66 article-title: Performance Enhancement of an a-Si:H/µc-Si:H Heterojunction p-i-n Solar Cell by Tuning the Device Parameters publication-title: Dhaka Univ. J. Sci. doi: 10.3329/dujs.v69i2.56488 – volume: 88 start-page: 31 year: 2013 ident: sstad8e3ebib1 article-title: Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve ∼ 27% efficiency publication-title: Sol. Energy doi: 10.1016/j.solener.2012.11.008 – volume: 91 year: 2007 ident: sstad8e3ebib18 article-title: Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation publication-title: Appl. Phys. Lett. doi: 10.1063/1.2768635 – volume: 7 start-page: 17 year: 2021 ident: sstad8e3ebib40 article-title: Fully hydrogenated and fluorinated bigraphenes–diamanes: theoretical and experimental studies publication-title: C — J. Carbon Research doi: 10.3390/c7010017 – volume: 430 start-page: 56 year: 2006 ident: sstad8e3ebib51 article-title: Planer nano graphenes from camphor by CVD publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.06.081 – volume: 88–91 start-page: 643 year: 1998 ident: sstad8e3ebib50 article-title: Work function of polycrystalline Ag, Au and A1 publication-title: J. Electron. Spectros. Relat. Phenom. doi: 10.1016/S0368-2048(97)00236-3 – volume: 90 start-page: 134 year: 2009 ident: sstad8e3ebib41 article-title: Diamond-like C2H nanolayer, diamane: simulation of the structure and properties publication-title: JETP Lett. doi: 10.1134/S0021364009140112 – volume: B105 year: 2022 ident: sstad8e3ebib23 article-title: Configuration stability and electronic properties of diamane with boron and nitrogen dopants publication-title: Phys. Rev. doi: 10.1103/PhysRevB.105.174106 – volume: 14 start-page: 967 year: 2014 ident: sstad8e3ebib6 article-title: Hole selective MoOx contact for silicon solar cells publication-title: Nano Lett. doi: 10.1021/nl404389u – volume: 55 start-page: 441 year: 2023 ident: sstad8e3ebib53 article-title: 24.13% efficient TiO2/i–a–Si:H/p–c–Si heterojunction solar cell by AFORS-HET numerical simulation publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-023-04716-w – volume: 2 year: 2017 ident: sstad8e3ebib73 article-title: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% publication-title: Nat. Energy doi: 10.1038/nenergy.2017.32 |
SSID | ssj0011830 |
Score | 2.4249043 |
Snippet | A higher efficiency of photovoltaic cells can be attained by optimizing their design, selecting the appropriate materials, and implementing of effective... |
SourceID | crossref iop |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 125021 |
SubjectTerms | 2D carbon materials BSF layer energy band diagram higher efficiency photovoltaic cells |
Title | Potential application of p-type diamane as back surface field layer in silicon-based heterojunction solar cells |
URI | https://iopscience.iop.org/article/10.1088/1361-6641/ad8e3e |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9YwFL3sB4I-OJ2K000ibA8-5BtNmjbFJ5GNMZjuYYM9DMLNL5zT9mPp9-Jf703bjW8iIoM-9CFJw03ac5Jzcguwa7HRIVjPqxhLXgpfcytkzQtbZ9VI-DLkheLJl-rovDy-UBcr8PHuLEw3nz79M7odEwWPIZwMcXq_kFXBq6os9tHrIMMqrEtNwJlP7309vZMQaK5OGyy0TCIgmjTKv7VwD5NW6blLEHO4AZe3nRudJdezRW9n7tcfeRsf2Ptn8HSinuzTWPQ5rIR2E54sJSTchEeDIdSlF9Cddn02ElGFJY2bdZHNed62ZTSvfmIbGCZm0V2ztLiJ6AIbLHHsBxKVZ1ctS1dUt2t5RkvPvmXzTfedsHRoLeV1NcvaQXoJZ4cHZ5-P-PRzBu4I03suhY0KJRbWOiVQoJexdChsUKgjkRztpXZ1o6xtYiUK4ineqaa0lbIqFvIVrLVdG14Ds1o7GWPUQWR9usacs12FGitUImLcgg-3o2PmYwoOM0jnWpscTZOjacZobsEeBd5M72H6R7n398ql1BvZmELQpYj2mLmPb_6zrbfwWBDTGT0u27DW3yzCDjGV3r4bZuRv3-Pjgg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2iRaCy4FFAlKeRYMHCM4odJ84SAaPyKrMoUnfm-iVKSzKqMxu-nuskRVOEEBJSFlnYTnLt5Bz7HN8APLPY6BCs51WMJS-Fr7kVsuaFrbNqJHwZ8kTx40G1_7l8d6SOpv-cDnthutX06Z_R6ZgoeAzhZIjT80JWBa-qspij10GG-crHLbisJGFn3sH3aflLRqDxOi2y0FSJwGjSKf_UygVc2qJrb8DM4gZ8Ob_B0V1yMlv3duZ-_Ja78T-e4CZcnygoezkWvwWXQrsL1zYSE-7ClcEY6tJt6JZdnw1FVGFD62ZdZCuel28Zja_v2AaGiVl0JyytzyK6wAZrHDtFovTsuGXpmOp2Lc-o6dnXbMLpvhGmDq2lPL9mWUNId-Bw8ebw1T6fftLAHWF7z6WwUaHEwlqnBAr0MpYOhQ0KdSSyo73Urm6UtU2sREF8xTvVlLZSVsVC3oXttmvDPWBWaydjjDqIrFPXmHO3q1BjhUpEjHvw4ryHzGpMxWEGCV1rkyNqckTNGNE9eE7BN9P7mP5S7umFcin1RjamEHQooj-Geub-P7b1BK4uXy_Mh7cH7x_AjiDyM9peHsJ2f7YOj4i89PbxMEB_AhEB6OY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+application+of+p-type+diamane+as+back+surface+field+layer+in+silicon-based+heterojunction+solar+cells&rft.jtitle=Semiconductor+science+and+technology&rft.au=Naima&rft.au=Tyagi%2C+Pawan+K&rft.au=Singh%2C+Vinod&rft.date=2024-12-01&rft.issn=0268-1242&rft.eissn=1361-6641&rft.volume=39&rft.issue=12&rft.spage=125021&rft_id=info:doi/10.1088%2F1361-6641%2Fad8e3e&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6641_ad8e3e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-1242&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-1242&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-1242&client=summon |