Potential application of p-type diamane as back surface field layer in silicon-based heterojunction solar cells

A higher efficiency of photovoltaic cells can be attained by optimizing their design, selecting the appropriate materials, and implementing of effective passivation process. The present study investigates the influence of the thickness and band gap of different layers of the solar cell and resuting...

Full description

Saved in:
Bibliographic Details
Published inSemiconductor science and technology Vol. 39; no. 12; pp. 125021 - 125037
Main Authors Naima, Tyagi, Pawan K, Singh, Vinod
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A higher efficiency of photovoltaic cells can be attained by optimizing their design, selecting the appropriate materials, and implementing of effective passivation process. The present study investigates the influence of the thickness and band gap of different layers of the solar cell and resuting opto-electric performance parameters of both single junction heterojunction (HJ) and heterojunction with intrinsic thin layer (HIT) cells. These cells are made up of a crystalline silicon (c-Si) active layer having back surafce field layer. The reported simulated work was conducted using AFORS-HET, an automated program specifically designed for simulating heterostructures. An efficiency of 26.86% has been attained for a HJ solar cell, this efficiency was further improved to 29.38% for the HIT solar cell by optimising all parameters. These cells require an emitter layer with a bandgap of around 1.4 eV. The optimal values of open-circuit voltage ( V OC ), short-circuit current density (J SC ), and fill factor are determined and found to be: 631.2 mV, 51.16 mA cm −2 , and 83.16% for HJ solar cell, and 683 mV, 52.74 mA cm −2 , and 81.55% for HIT solar cell. Moreover, the J-V curve, spectral response and quantum efficiency analysis have also been studied.
AbstractList A higher efficiency of photovoltaic cells can be attained by optimizing their design, selecting the appropriate materials, and implementing of effective passivation process. The present study investigates the influence of the thickness and band gap of different layers of the solar cell and resuting opto-electric performance parameters of both single junction heterojunction (HJ) and heterojunction with intrinsic thin layer (HIT) cells. These cells are made up of a crystalline silicon (c-Si) active layer having back surafce field layer. The reported simulated work was conducted using AFORS-HET, an automated program specifically designed for simulating heterostructures. An efficiency of 26.86% has been attained for a HJ solar cell, this efficiency was further improved to 29.38% for the HIT solar cell by optimising all parameters. These cells require an emitter layer with a bandgap of around 1.4 eV. The optimal values of open-circuit voltage ( V OC ), short-circuit current density (J SC ), and fill factor are determined and found to be: 631.2 mV, 51.16 mA cm −2 , and 83.16% for HJ solar cell, and 683 mV, 52.74 mA cm −2 , and 81.55% for HIT solar cell. Moreover, the J-V curve, spectral response and quantum efficiency analysis have also been studied.
Author Naima
Singh, Vinod
Tyagi, Pawan K
Author_xml – sequence: 1
  surname: Naima
  fullname: Naima
  organization: Delhi Technological University Department of Applied Physics, New Delhi 110042, India
– sequence: 2
  givenname: Pawan K
  orcidid: 0000-0002-4645-5700
  surname: Tyagi
  fullname: Tyagi, Pawan K
  organization: Delhi Technological University Department of Applied Physics, New Delhi 110042, India
– sequence: 3
  givenname: Vinod
  orcidid: 0000-0001-8774-2207
  surname: Singh
  fullname: Singh, Vinod
  organization: Delhi Technological University Department of Applied Physics, New Delhi 110042, India
BookMark eNp1kEtLAzEURoNUsK3uXWbpwtE8mnRmKcUXFHTRfbh5YWqaDMl00X_v1IorhQsXLt_5uJwZmqScHELXlNxR0rb3lEvaSLmg92Bbx90Zmv6eJmhKmGwbyhbsAs1q3RJCacvJFOX3PLg0BIgY-j4GA0PICWeP-2Y49A7bADtIDkPFGswnrvviwTjsg4sWRzi4gkPCNYxsTo2G6iz-cIMrebtP5rut5ggFGxdjvUTnHmJ1Vz97jjZPj5vVS7N-e35dPawbw6QcGs60F8CBam0EAwaW-4UBpp2A1ndL2VremmUntO68ZJTTpTWiW2gptPCUzxE51ZqSay3Oq76EHZSDokQdfamjHHWUo06-RuTmhITcq23elzT-p2odFO8UZeMIwqjqrR-jt39E_23-AnB4fnM
CODEN SSTEET
Cites_doi 10.1016/j.tsf.2010.03.023
10.1016/j.carbon.2020.07.068
10.1021/acsami.3c01536
10.1016/B978-0-12-823710-6.00014-5
10.5772/51065
10.1039/c2nr33795a
10.1088/1361-648X/ab5f37
10.1039/d0na00309c
10.1016/j.carbon.2020.06.007
10.1039/d1cp01747k
10.1039/c9tc02517k
10.5772/8073
10.1016/j.solener.2014.10.004
10.1021/acs.nanolett.1c01557
10.1063/1.4793999
10.1016/j.solener.2017.11.066
10.1021/nl101437p
10.1016/j.solmat.2021.111291
10.1063/1.4928747
10.1016/0254-0584(82)90021-9
10.1016/j.ijleo.2021.166642
10.1016/j.solmat.2008.02.037
10.1088/1402-4896/aca445
10.1002/solr.201900514
10.1109/PVSC.2010.5614460
10.1016/B978-0-12-811479-7/00009-9
10.1016/j.carbon.2020.02.017
10.1016/j.carbon.2017.02.042
10.1007/s10854-024-12650-0
10.1016/j.physb.2024.416173
10.5772/intechopen.94114
10.1080/26941112.2020.1869475
10.1109/JPHOTOV.2011.2174967
10.1007/s10854-016-4843-4
10.1016/s0022-3093(99)00756-5
10.1126/science.1156965
10.1039/C8NA00350E
10.1103/PhysRevB.94.045318
10.3390/cryst9080402
10.1155/2018/7368175
10.1016/j.solmat.2015.05.031
10.1038/s41467-024-53275-5
10.1002/1439-7641(20010917)2:8/9<490::AID-CPHC490>3.0.CO;2-1
10.1016/j.solmat.2012.02.019
10.1002/pip.2696
10.1007/s12633-021-01083-7
10.1016/j.cartre.2022.100209
10.1039/x0xx00000x
10.1039/C8NR08493A
10.1103/PhysRevLett.49.1187
10.1063/1.4942660
10.1016/j.solmat.2017.06.024
10.1143/JJAP.31.3518
10.1038/s41560-023-01255-2
10.1016/j.egypro.2011.06.125
10.1016/j.ijleo.2017.02.074
10.1007/s10971-023-06177-9
10.1016/j.commatsci.2023.112252
10.1038/nnano.2010.132
10.3329/dujs.v69i2.56488
10.1016/j.solener.2012.11.008
10.1063/1.2768635
10.3390/c7010017
10.1016/j.cplett.2006.06.081
10.1016/S0368-2048(97)00236-3
10.1134/S0021364009140112
10.1103/PhysRevB.105.174106
10.1021/nl404389u
10.1007/s11082-023-04716-w
10.1038/nenergy.2017.32
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/1361-6641/ad8e3e
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-6641
ExternalDocumentID 10_1088_1361_6641_ad8e3e
sstad8e3e
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
E.-
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
PZZ
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
UCJ
W28
XPP
ZMT
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-32bf5a3a1bbc52a2ad3f4ca2be5a8f9768d38c795bb9f621317dc594b65b5f13
IEDL.DBID IOP
ISSN 0268-1242
IngestDate Tue Jul 01 02:44:55 EDT 2025
Tue Nov 26 22:22:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-32bf5a3a1bbc52a2ad3f4ca2be5a8f9768d38c795bb9f621317dc594b65b5f13
Notes SST-110496.R1
ORCID 0000-0002-4645-5700
0000-0001-8774-2207
PageCount 17
ParticipantIDs crossref_primary_10_1088_1361_6641_ad8e3e
iop_journals_10_1088_1361_6641_ad8e3e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Semiconductor science and technology
PublicationTitleAbbrev SST
PublicationTitleAlternate Semicond. Sci. Technol
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Borah (sstad8e3ebib16) 2020; 2
Pham (sstad8e3ebib55) 2017; 136
Tsunomura (sstad8e3ebib70) 2009; 93
Cramarossa (sstad8e3ebib47) 1983; 9
Singh (sstad8e3ebib58) 2000
Plakhotnyuk (sstad8e3ebib2) 2018
Robinson (sstad8e3ebib33) 2010; 10
Kroemer (sstad8e3ebib27) 2001; 2
Ge (sstad8e3ebib25) 2021; 23
Rawat (sstad8e3ebib30) 2014; 110
Singh (sstad8e3ebib60) 2012; 101
Somani (sstad8e3ebib51) 2006; 430
Zhu (sstad8e3ebib37) 2019; 11
Long (sstad8e3ebib72) 2021; 231
Bivour (sstad8e3ebib7) 2015; 142
Brendel (sstad8e3ebib19) 2015; 24
Fang (sstad8e3ebib44) 2016; 94
Taşçıoğlu (sstad8e3ebib62) 2023; 107
Benda (sstad8e3ebib45) 2018
Sorokin (sstad8e3ebib31) 2021; 21
Uda (sstad8e3ebib50) 1998; 88–91
Ma (sstad8e3ebib69) 2018; 160
Tanrıkulu (sstad8e3ebib63) 2023; 98
Zheng (sstad8e3ebib36) 2020; 161
Iftiquar (sstad8e3ebib4) 2012
Yoshikawa (sstad8e3ebib74) 2017; 173
Van Sark (sstad8e3ebib12) 2016
Bouzidi (sstad8e3ebib43) 2021; 235
Geissbühler (sstad8e3ebib71) 2015; 107
(sstad8e3ebib9) 2022; 9
Lu (sstad8e3ebib18) 2007; 91
Shen (sstad8e3ebib42) 2019; 7
Stangl (sstad8e3ebib26) 2010; vol 1
Tantardini (sstad8e3ebib34) 2023; 15
Lin (sstad8e3ebib3) 2023; 8
Tan (sstad8e3ebib57) 2016; 27
Singh (sstad8e3ebib8) 2021
Güçlü (sstad8e3ebib64) 2024; 689
Fujishima (sstad8e3ebib5) 2010
Nair (sstad8e3ebib17) 2008; 320
Hsu (sstad8e3ebib54) 2019; 9
Piazza (sstad8e3ebib49) 2020; 169
Kumar (sstad8e3ebib53) 2023; 55
Bessler (sstad8e3ebib39) 2019; 1
Li (sstad8e3ebib68) 2013; 5
Li (sstad8e3ebib67) 2020; 4
Rietwyk (sstad8e3ebib38) 2013; 102
Street (sstad8e3ebib20) 1982; 49
Sarkar (sstad8e3ebib66) 2021; 69
Tanaka (sstad8e3ebib11) 1992; 31
Dwivedi (sstad8e3ebib1) 2013; 88
Farah Khaleda (sstad8e3ebib65) 2021
Chernozatonskii (sstad8e3ebib40) 2021; 7
Rahal (sstad8e3ebib56) 2021; 14
Raeisi (sstad8e3ebib35) 2020; 167
Yoshikawa (sstad8e3ebib73) 2017; 2
Battaglia (sstad8e3ebib6) 2014; 14
Patel (sstad8e3ebib15) 2017; 116
Wang (sstad8e3ebib28) 2024; 15
Futako (sstad8e3ebib46) 2000; 266–269
Güçlü (sstad8e3ebib61) 2024; 35
Lien (sstad8e3ebib14) 2010; 518
Qin (sstad8e3ebib24) 2021; 1
(sstad8e3ebib10) 2023; 226
Yang (sstad8e3ebib52) 2018; 5
Green (sstad8e3ebib59) 2016; 108
Bae (sstad8e3ebib48) 2010; 5
Niu (sstad8e3ebib22) 2020; 32
Chernozatonskii (sstad8e3ebib41) 2009; 90
Zhang (sstad8e3ebib13) 2011; 8
Holman (sstad8e3ebib21) 2012; 2
Bellini (sstad8e3ebib29) 2024
Niu (sstad8e3ebib23) 2022; B105
Cheng (sstad8e3ebib32) 2020; 8
References_xml – volume: 518
  start-page: S10
  year: 2010
  ident: sstad8e3ebib14
  article-title: Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2010.03.023
– volume: 169
  start-page: 129
  year: 2020
  ident: sstad8e3ebib49
  article-title: Raman evidence for the successful synthesis of diamane
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.07.068
– volume: 15
  start-page: 16317
  year: 2023
  ident: sstad8e3ebib34
  article-title: Electronic properties of functionalized diamanes for field-emission displays
  publication-title: Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c01536
– start-page: 525
  year: 2021
  ident: sstad8e3ebib65
  article-title: Spectral response and quantum efficiency evaluation of solar cells: a review
  doi: 10.1016/B978-0-12-823710-6.00014-5
– start-page: 106
  year: 2012
  ident: sstad8e3ebib4
  article-title: Fabrication of Crystalline Silicon Solar Cell with Emitter Diffusion, SiNx Surface Passivation and Screen Printing of Electrode
  doi: 10.5772/51065
– volume: 5
  start-page: 1945
  year: 2013
  ident: sstad8e3ebib68
  article-title: Ion doping of graphene for high-efficiency heterojunction solar cells
  publication-title: Nanoscale
  doi: 10.1039/c2nr33795a
– volume: 32
  year: 2020
  ident: sstad8e3ebib22
  article-title: Boron-dopant enhanced stability of diamane with tunable band gap
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/1361-648X/ab5f37
– volume: 2
  start-page: 3231
  year: 2020
  ident: sstad8e3ebib16
  article-title: The prospective application of a graphene/MoS2 heterostructure in Si-HIT solar cells for higher efficiency
  publication-title: Nanoscale Adv.
  doi: 10.1039/d0na00309c
– volume: 167
  start-page: 51
  year: 2020
  ident: sstad8e3ebib35
  article-title: High thermal conductivity in semiconducting Janus and non-Janus diamanes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.06.007
– volume: 23
  year: 2021
  ident: sstad8e3ebib25
  article-title: Properties of diamane anchored with different groups
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/d1cp01747k
– volume: 7
  start-page: 9756
  year: 2019
  ident: sstad8e3ebib42
  article-title: Electron affinity of boron-terminated diamond (001) surfaces: a density functional theory study
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c9tc02517k
– volume: vol 1
  start-page: 319
  year: 2010
  ident: sstad8e3ebib26
  article-title: Numerical Simulation of Solar Cells and Solar Cell Characterization Methods: the Open-Source on Demand Program AFORS-HET
  doi: 10.5772/8073
– volume: 110
  start-page: 691
  year: 2014
  ident: sstad8e3ebib30
  article-title: Numerical simulations for high efficiency HIT solar cells using microcrystalline silicon as emitter and back surface field (BSF) layers
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.10.004
– volume: 21
  start-page: 5475
  year: 2021
  ident: sstad8e3ebib31
  article-title: Two-Dimensional Diamond—diamane: current state and further prospects
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c01557
– volume: 102
  year: 2013
  ident: sstad8e3ebib38
  article-title: Work function and electron affinity of the fluorine-terminated (100) diamond surface
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4793999
– volume: 160
  start-page: 76
  year: 2018
  ident: sstad8e3ebib69
  article-title: High efficiency graphene/MoS2Si Schottky barrier solar cells using layer-controlled MoS2 films
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.11.066
– volume: 10
  start-page: 3001
  year: 2010
  ident: sstad8e3ebib33
  article-title: Properties of fluorinated graphene films
  publication-title: Nano Lett.
  doi: 10.1021/nl101437p
– volume: 231
  year: 2021
  ident: sstad8e3ebib72
  article-title: On the limiting efficiency for silicon heterojunction solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2021.111291
– volume: 107
  year: 2015
  ident: sstad8e3ebib71
  article-title: 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4928747
– volume: 9
  start-page: 213
  year: 1983
  ident: sstad8e3ebib47
  article-title: Deposition techniques and applications of amorphous silicon films
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/0254-0584(82)90021-9
– volume: 235
  year: 2021
  ident: sstad8e3ebib43
  article-title: Optical properties of Janus and non-Janus diamanes monolayers using ab-initio calculations
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.166642
– year: 2024
  ident: sstad8e3ebib29
  article-title: Longi announces 27.30% efficiency for heterojunction back contact solar cell
– volume: 93
  start-page: 670
  year: 2009
  ident: sstad8e3ebib70
  article-title: Twenty-two percent efficiency hit solar cell
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2008.02.037
– volume: 98
  year: 2023
  ident: sstad8e3ebib63
  article-title: Investigation of photon-induced effects on some diode parameters and negative capacitance of the Schottky structure with Zn-doped organic polymer (PVA) interface
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/aca445
– volume: 4
  year: 2020
  ident: sstad8e3ebib67
  article-title: Silicon heterojunction solar cells with MoOx hole selective layer by hot wire oxidation-sublimation deposition
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900514
– start-page: 003137
  year: 2010
  ident: sstad8e3ebib5
  article-title: High-performance HIT solar cells for thinner silicon wafers
  doi: 10.1109/PVSC.2010.5614460
– start-page: 181
  year: 2018
  ident: sstad8e3ebib45
  article-title: Crystalline Silicon Solar Cell and Module Technology
  doi: 10.1016/B978-0-12-811479-7/00009-9
– volume: 161
  start-page: 809
  year: 2020
  ident: sstad8e3ebib36
  article-title: Single layer diamond—a new ultrathin 2D carbon nanostructure for mechanical resonator
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.02.017
– volume: 116
  start-page: 744
  year: 2017
  ident: sstad8e3ebib15
  article-title: P-type multilayer graphene as a highly efficient transparent conducting electrode in silicon heterojunction solar cells
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.02.042
– volume: 35
  start-page: 881
  year: 2024
  ident: sstad8e3ebib61
  article-title: A comparison electrical characteristics of the Au/ (pure-PVA)/n-Si and Au/(CdTe doped-PVA)/n-Si (MPS) type Schottky structures using I–V and C–V measurements
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-024-12650-0
– volume: 689
  year: 2024
  ident: sstad8e3ebib64
  article-title: On the impact of pure PVC and (PVC: ti) interlayer on the conduction mechanisms and physical parameters of classic metal-semiconductor (MS) Schottky diodes (SDs)
  publication-title: Physica B Condens. Matter
  doi: 10.1016/j.physb.2024.416173
– start-page: 1
  year: 2021
  ident: sstad8e3ebib8
  article-title: Two-Dimensional Materials for Advanced Solar Cells
  doi: 10.5772/intechopen.94114
– volume: 1
  start-page: 83
  year: 2021
  ident: sstad8e3ebib24
  article-title: Diamane: design, synthesis, properties, and challenges
  publication-title: Funct. Diam.
  doi: 10.1080/26941112.2020.1869475
– volume: 2
  start-page: 7
  year: 2012
  ident: sstad8e3ebib21
  article-title: Current losses at the front of silicon heterojunction solar cells
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2011.2174967
– volume: 27
  start-page: 8340
  year: 2016
  ident: sstad8e3ebib57
  article-title: Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities
  publication-title: J. Mater. Sci., Mater. Electron.
  doi: 10.1007/s10854-016-4843-4
– volume: 266–269
  start-page: 630
  year: 2000
  ident: sstad8e3ebib46
  article-title: The structure of 1.5–2.0 eV band gap amorphous silicon films prepared by chemical annealing
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/s0022-3093(99)00756-5
– year: 2018
  ident: sstad8e3ebib2
– volume: 320
  start-page: 1308
  year: 2008
  ident: sstad8e3ebib17
  article-title: Fine structure constant defines visual transparency of graphene
  publication-title: Science
  doi: 10.1126/science.1156965
– volume: 1
  start-page: 1702
  year: 2019
  ident: sstad8e3ebib39
  article-title: The dielectric constant of a bilayer graphene interface
  publication-title: Nanoscale Adv.
  doi: 10.1039/C8NA00350E
– volume: 94
  year: 2016
  ident: sstad8e3ebib44
  article-title: Microscopic dielectric permittivities of graphene nanoribbons and graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.045318
– volume: 9
  start-page: 402
  year: 2019
  ident: sstad8e3ebib54
  article-title: Silicon heterojunction solar cells with p-type silicon carbon window layer
  publication-title: Crystals
  doi: 10.3390/cryst9080402
– volume: 5
  year: 2018
  ident: sstad8e3ebib52
  article-title: HIT solar cells with N-type low-cost metallurgical Si
  publication-title: Hindawi Adv. OptoElectron.
  doi: 10.1155/2018/7368175
– volume: 142
  start-page: 34
  year: 2015
  ident: sstad8e3ebib7
  article-title: Molybdenum and tungsten oxide: high work function wide band gap contact materials for hole selective contacts of silicon solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.05.031
– volume: 15
  start-page: 8931
  year: 2024
  ident: sstad8e3ebib28
  article-title: 27.09%-efficiency silicon heterojunction back contact solar cell and going beyond
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-53275-5
– volume: 2
  start-page: 490
  year: 2001
  ident: sstad8e3ebib27
  article-title: Quasi-electric fields and band offsets: teaching electrons new tricks (nobel lecture)
  publication-title: Chem. Phys. Chem.
  doi: 10.1002/1439-7641(20010917)2:8/9<490::AID-CPHC490>3.0.CO;2-1
– volume: 101
  start-page: 36
  year: 2012
  ident: sstad8e3ebib60
  article-title: Temperature dependence of solar cell performance—an analysis
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2012.02.019
– start-page: 104
  year: 2016
  ident: sstad8e3ebib12
  article-title: Heterojunction silicon solar cells
– volume: 24
  start-page: 1475
  year: 2015
  ident: sstad8e3ebib19
  article-title: Breakdown of the efficiency gap to 29% based on experimental input data and modelling
  publication-title: Prog. Photovolt., Res. Appl.
  doi: 10.1002/pip.2696
– volume: 14
  start-page: 1
  year: 2021
  ident: sstad8e3ebib56
  article-title: Simulation and optimization of back surface field for efficient HIT solar cells
  publication-title: Silicon
  doi: 10.1007/s12633-021-01083-7
– volume: 9
  year: 2022
  ident: sstad8e3ebib9
  article-title: N-type diamane: an effective emitter layer in crystalline silicon heterojunction solar cell
  publication-title: Carbon Trends
  doi: 10.1016/j.cartre.2022.100209
– volume: 8
  start-page: 13819
  year: 2020
  ident: sstad8e3ebib32
  article-title: High elastic moduli, controllable bandgap and extraordinary carrier mobility in single-layer diamond
  publication-title: J. Mater. Chem. C
  doi: 10.1039/x0xx00000x
– volume: 11
  start-page: 4248
  year: 2019
  ident: sstad8e3ebib37
  article-title: Giant thermal conductivity in diamane and the influence of horizontal reflection symmetry on phonon scattering
  publication-title: Nanoscale
  doi: 10.1039/C8NR08493A
– year: 2000
  ident: sstad8e3ebib58
– volume: 49
  start-page: 1187
  year: 1982
  ident: sstad8e3ebib20
  article-title: Doping and the fermi energy in amorphous silicon
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.1187
– volume: 108
  year: 2016
  ident: sstad8e3ebib59
  article-title: Accurate expressions for solar cell fill factors including series and shunt resistances
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4942660
– volume: 173
  start-page: 37
  year: 2017
  ident: sstad8e3ebib74
  article-title: Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.06.024
– volume: 31
  start-page: 3518
  year: 1992
  ident: sstad8e3ebib11
  article-title: Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer)
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.31.3518
– volume: 8
  start-page: 789
  year: 2023
  ident: sstad8e3ebib3
  article-title: Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01255-2
– volume: 8
  start-page: 207
  year: 2011
  ident: sstad8e3ebib13
  article-title: Influence of ITO deposition and post annealing on HIT solar cell structures
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2011.06.125
– volume: 136
  start-page: 507
  year: 2017
  ident: sstad8e3ebib55
  article-title: Role of a-Si:H buffer layer at the p/i interface and band gap profiling of the absorption layer on enhancing cell parameters in hydrogenated amorphous silicon germanium solar cells
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.02.074
– volume: 107
  start-page: 536
  year: 2023
  ident: sstad8e3ebib62
  article-title: Examination on the current conduction mechanisms of Au/n-Si diodes with ZnO–PVP and ZnO/Ag2WO4–PVP interfacial layers
  publication-title: J. Solgel Sci. Technol.
  doi: 10.1007/s10971-023-06177-9
– volume: 226
  year: 2023
  ident: sstad8e3ebib10
  article-title: Potential application of novel graphene/diamane interface in silicon-based heterojunction with intrinsic thin layer solar cell
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2023.112252
– volume: 5
  start-page: 574
  year: 2010
  ident: sstad8e3ebib48
  article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.132
– volume: 69
  start-page: 88
  year: 2021
  ident: sstad8e3ebib66
  article-title: Performance Enhancement of an a-Si:H/µc-Si:H Heterojunction p-i-n Solar Cell by Tuning the Device Parameters
  publication-title: Dhaka Univ. J. Sci.
  doi: 10.3329/dujs.v69i2.56488
– volume: 88
  start-page: 31
  year: 2013
  ident: sstad8e3ebib1
  article-title: Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve ∼ 27% efficiency
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.11.008
– volume: 91
  year: 2007
  ident: sstad8e3ebib18
  article-title: Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2768635
– volume: 7
  start-page: 17
  year: 2021
  ident: sstad8e3ebib40
  article-title: Fully hydrogenated and fluorinated bigraphenes–diamanes: theoretical and experimental studies
  publication-title: C — J. Carbon Research
  doi: 10.3390/c7010017
– volume: 430
  start-page: 56
  year: 2006
  ident: sstad8e3ebib51
  article-title: Planer nano graphenes from camphor by CVD
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.06.081
– volume: 88–91
  start-page: 643
  year: 1998
  ident: sstad8e3ebib50
  article-title: Work function of polycrystalline Ag, Au and A1
  publication-title: J. Electron. Spectros. Relat. Phenom.
  doi: 10.1016/S0368-2048(97)00236-3
– volume: 90
  start-page: 134
  year: 2009
  ident: sstad8e3ebib41
  article-title: Diamond-like C2H nanolayer, diamane: simulation of the structure and properties
  publication-title: JETP Lett.
  doi: 10.1134/S0021364009140112
– volume: B105
  year: 2022
  ident: sstad8e3ebib23
  article-title: Configuration stability and electronic properties of diamane with boron and nitrogen dopants
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.105.174106
– volume: 14
  start-page: 967
  year: 2014
  ident: sstad8e3ebib6
  article-title: Hole selective MoOx contact for silicon solar cells
  publication-title: Nano Lett.
  doi: 10.1021/nl404389u
– volume: 55
  start-page: 441
  year: 2023
  ident: sstad8e3ebib53
  article-title: 24.13% efficient TiO2/i–a–Si:H/p–c–Si heterojunction solar cell by AFORS-HET numerical simulation
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-023-04716-w
– volume: 2
  year: 2017
  ident: sstad8e3ebib73
  article-title: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.32
SSID ssj0011830
Score 2.4249043
Snippet A higher efficiency of photovoltaic cells can be attained by optimizing their design, selecting the appropriate materials, and implementing of effective...
SourceID crossref
iop
SourceType Index Database
Enrichment Source
Publisher
StartPage 125021
SubjectTerms 2D carbon materials
BSF layer
energy band diagram
higher efficiency
photovoltaic cells
Title Potential application of p-type diamane as back surface field layer in silicon-based heterojunction solar cells
URI https://iopscience.iop.org/article/10.1088/1361-6641/ad8e3e
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9YwFL3sB4I-OJ2K000ibA8-5BtNmjbFJ5GNMZjuYYM9DMLNL5zT9mPp9-Jf703bjW8iIoM-9CFJw03ac5Jzcguwa7HRIVjPqxhLXgpfcytkzQtbZ9VI-DLkheLJl-rovDy-UBcr8PHuLEw3nz79M7odEwWPIZwMcXq_kFXBq6os9tHrIMMqrEtNwJlP7309vZMQaK5OGyy0TCIgmjTKv7VwD5NW6blLEHO4AZe3nRudJdezRW9n7tcfeRsf2Ptn8HSinuzTWPQ5rIR2E54sJSTchEeDIdSlF9Cddn02ElGFJY2bdZHNed62ZTSvfmIbGCZm0V2ztLiJ6AIbLHHsBxKVZ1ctS1dUt2t5RkvPvmXzTfedsHRoLeV1NcvaQXoJZ4cHZ5-P-PRzBu4I03suhY0KJRbWOiVQoJexdChsUKgjkRztpXZ1o6xtYiUK4ineqaa0lbIqFvIVrLVdG14Ds1o7GWPUQWR9usacs12FGitUImLcgg-3o2PmYwoOM0jnWpscTZOjacZobsEeBd5M72H6R7n398ql1BvZmELQpYj2mLmPb_6zrbfwWBDTGT0u27DW3yzCDjGV3r4bZuRv3-Pjgg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2iRaCy4FFAlKeRYMHCM4odJ84SAaPyKrMoUnfm-iVKSzKqMxu-nuskRVOEEBJSFlnYTnLt5Bz7HN8APLPY6BCs51WMJS-Fr7kVsuaFrbNqJHwZ8kTx40G1_7l8d6SOpv-cDnthutX06Z_R6ZgoeAzhZIjT80JWBa-qspij10GG-crHLbisJGFn3sH3aflLRqDxOi2y0FSJwGjSKf_UygVc2qJrb8DM4gZ8Ob_B0V1yMlv3duZ-_Ja78T-e4CZcnygoezkWvwWXQrsL1zYSE-7ClcEY6tJt6JZdnw1FVGFD62ZdZCuel28Zja_v2AaGiVl0JyytzyK6wAZrHDtFovTsuGXpmOp2Lc-o6dnXbMLpvhGmDq2lPL9mWUNId-Bw8ebw1T6fftLAHWF7z6WwUaHEwlqnBAr0MpYOhQ0KdSSyo73Urm6UtU2sREF8xTvVlLZSVsVC3oXttmvDPWBWaydjjDqIrFPXmHO3q1BjhUpEjHvw4ryHzGpMxWEGCV1rkyNqckTNGNE9eE7BN9P7mP5S7umFcin1RjamEHQooj-Geub-P7b1BK4uXy_Mh7cH7x_AjiDyM9peHsJ2f7YOj4i89PbxMEB_AhEB6OY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+application+of+p-type+diamane+as+back+surface+field+layer+in+silicon-based+heterojunction+solar+cells&rft.jtitle=Semiconductor+science+and+technology&rft.au=Naima&rft.au=Tyagi%2C+Pawan+K&rft.au=Singh%2C+Vinod&rft.date=2024-12-01&rft.issn=0268-1242&rft.eissn=1361-6641&rft.volume=39&rft.issue=12&rft.spage=125021&rft_id=info:doi/10.1088%2F1361-6641%2Fad8e3e&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6641_ad8e3e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-1242&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-1242&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-1242&client=summon