Behavioral Intention Prediction in Driving Scenes: A Survey

In driving scenes, road agents often engage in frequent interaction and strive to understand their surroundings. Ego-agent (each road agent itself) predicts what behavior will be engaged by other road users all the time and expects a shared and consistent understanding for safe movement. To achieve...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 25; no. 8; pp. 8334 - 8355
Main Authors Fang, Jianwu, Wang, Fan, Xue, Jianru, Chua, Tat-Seng
Format Journal Article
LanguageEnglish
Published IEEE 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In driving scenes, road agents often engage in frequent interaction and strive to understand their surroundings. Ego-agent (each road agent itself) predicts what behavior will be engaged by other road users all the time and expects a shared and consistent understanding for safe movement. To achieve this, Behavioral Intention Prediction (BIP) simulates such a human consideration process to anticipate specific behaviors, and the rapid development of BIP inevitably leads to new issues and challenges. To catalyze future research, this work provides a comprehensive review of BIP from the available datasets, key factors, challenges, pedestrian-centric and vehicle-centric BIP approaches, and BIP-aware applications. The investigation reveals that data-driven deep learning approaches have become the primary pipelines, while the behavioral intention types are still limited in most current datasets and methods (e.g., Crossing (C) and Not Crossing (NC) for pedestrians and Lane Changing (LC) for vehicles) in this field. In addition, current research on BIP in safe-critical scenarios (e.g., near-crashing situations) is limited. Through this investigation, we identify open issues in behavioral intention prediction and suggest possible insights for future research.
AbstractList In driving scenes, road agents often engage in frequent interaction and strive to understand their surroundings. Ego-agent (each road agent itself) predicts what behavior will be engaged by other road users all the time and expects a shared and consistent understanding for safe movement. To achieve this, Behavioral Intention Prediction (BIP) simulates such a human consideration process to anticipate specific behaviors, and the rapid development of BIP inevitably leads to new issues and challenges. To catalyze future research, this work provides a comprehensive review of BIP from the available datasets, key factors, challenges, pedestrian-centric and vehicle-centric BIP approaches, and BIP-aware applications. The investigation reveals that data-driven deep learning approaches have become the primary pipelines, while the behavioral intention types are still limited in most current datasets and methods (e.g., Crossing (C) and Not Crossing (NC) for pedestrians and Lane Changing (LC) for vehicles) in this field. In addition, current research on BIP in safe-critical scenarios (e.g., near-crashing situations) is limited. Through this investigation, we identify open issues in behavioral intention prediction and suggest possible insights for future research.
Author Chua, Tat-Seng
Fang, Jianwu
Wang, Fan
Xue, Jianru
Author_xml – sequence: 1
  givenname: Jianwu
  orcidid: 0000-0002-0300-6892
  surname: Fang
  fullname: Fang, Jianwu
  email: fangjianwu@mail.xjtu.edu.cn
  organization: National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
– sequence: 2
  givenname: Fan
  surname: Wang
  fullname: Wang, Fan
  organization: College of Transportation Engineering, Chang'an University, Xi'an, China
– sequence: 3
  givenname: Jianru
  orcidid: 0000-0002-4994-9343
  surname: Xue
  fullname: Xue, Jianru
  email: jrxue@mail.xjtu.edu.cn
  organization: National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
– sequence: 4
  givenname: Tat-Seng
  orcidid: 0000-0001-6097-7807
  surname: Chua
  fullname: Chua, Tat-Seng
  email: dcscts@nus.edu.sg
  organization: Sea-NExT++ Joint Research Centre, School of Computing, National University of Singapore, Cluny Road, Singapore
BookMark eNp9kMtKw0AUhgepYFt9AMFFXiB17hdd1XorFBRS12EyOaMjdSKTGOjb29guxIWr83P4v8Phm6BRbCIgdE7wjBBsLtfLdTGjmPIZY4ozTo_QmAihc4yJHA2Z8txggU_QpG3fd1suCBmj6xt4s31okt1ky9hB7EITs-cEdXA_McTsNoU-xNescBChvcrmWfGVetieomNvNy2cHeYUvdzfrReP-erpYbmYr3JHpexyUqlaODC-khwqx7zEVGinOVVE1N5ZoY0zuDZeWXCVsqbmWIPi0ksiiGZTpPZ3XWraNoEvXejs8F2XbNiUBJeDg3JwUA4OyoODHUn-kJ8pfNi0_Ze52DMBAH71udKUGfYNKktpxQ
CODEN ITISFG
CitedBy_id crossref_primary_10_23919_CHAIN_2024_000008
crossref_primary_10_3390_act13070260
crossref_primary_10_3390_rs17010077
crossref_primary_10_1080_10407413_2024_2427403
crossref_primary_10_1109_ACCESS_2024_3459595
crossref_primary_10_1109_MITS_2024_3378460
crossref_primary_10_1109_TITS_2024_3467175
Cites_doi 10.1109/ICCV.2019.00291
10.1049/itr2.12253
10.1109/ITSC.2016.7795975
10.1109/IROS51168.2021.9636321
10.1016/j.eswa.2019.04.032
10.1162/089976699300016890
10.1109/ITSC45102.2020.9294553
10.1109/ICCV.2017.243
10.1109/TITS.2022.3207347
10.1007/978-3-030-58536-5_32
10.1109/TPAMI.2022.3195549
10.1126/scirobotics.abe2987
10.1109/ICCVW54120.2021.00260
10.1109/ITSC.2019.8917228
10.1109/CVPR.2019.01236
10.1007/978-3-031-19839-7_26
10.1007/s11633-018-1126-y
10.1109/LRA.2020.3047731
10.1007/s11263-020-01395-y
10.1109/IV47402.2020.9304624
10.1109/CVPR52688.2022.01664
10.1109/ICRA.2019.8794278
10.1109/ICRA48506.2021.9561107
10.1109/ITSC.2017.8317941
10.1109/IV47402.2020.9304591
10.1177/001872677402700101
10.1109/TITS.2019.2946642
10.1007/978-3-031-20065-6_3
10.1109/IVS.2018.8500657
10.1109/IVS.2018.8500413
10.1109/CVPR46437.2021.00553
10.1109/CVPR46437.2021.01554
10.1109/CVPRW56347.2022.00497
10.1109/ICCV48922.2021.01531
10.1109/TITS.2022.3173537
10.1109/TITS.2022.3177367
10.1109/ITSC45102.2020.9294491
10.1109/IVS.2015.7225911
10.1177/03611981221119175
10.1109/TPAMI.2022.3179507
10.1609/aaai.v33i01.3301978
10.1109/TPAMI.2017.2728788
10.1109/CVPR42600.2020.01408
10.1109/TVT.2019.2903299
10.1109/TVT.2022.3170627
10.1109/tpami.2023.3290823
10.1109/CVPRW56347.2022.00491
10.1109/ICRA.2019.8793991
10.1016/j.eswa.2017.09.025
10.1109/ROBIO54168.2021.9739407
10.1109/CVPRW56347.2022.00282
10.1109/TITS.2022.3205676
10.1109/TIV.2023.3266102
10.1109/IROS47612.2022.9981690
10.1109/ICRA48891.2023.10160468
10.1109/CVPR52729.2023.01838
10.24963/ijcai.2021/171
10.1109/WACV48630.2021.00130
10.1007/978-3-030-58520-4_42
10.1007/978-3-030-58523-5_40
10.1007/s10462-023-10562-9
10.1109/IEEECONF51394.2020.9443552
10.48550/ARXIV.1706.03762
10.1109/TITS.2019.2901817
10.1109/CVPR52688.2022.01675
10.1109/CVPR.2016.110
10.1017/CBO9781107252950
10.1109/LSP.2021.3134194
10.1109/ITSC55140.2022.9921771
10.1109/ACCESS.2021.3118224
10.1109/ICRA.2019.8793523
10.1109/CVPR42600.2020.01115
10.1007/s11263-022-01594-9
10.18653/v1/D18-1348
10.1145/3400051.3400058
10.1109/ICRA48891.2023.10161318
10.1109/TITS.2022.3142248
10.177/0278364920917446
10.1109/LRA.2020.2976305
10.1109/ICRA46639.2022.9811776
10.1109/ICRA46639.2022.9812188
10.1609/aaai.v37i3.25463
10.1109/TITS.2022.3170551
10.1016/j.infrared.2016.12.014
10.1007/978-3-319-10599-4_40
10.1109/TITS.2021.3090851
10.1109/CVPR46437.2021.01026
10.1177/0361198120922210
10.1007/978-3-030-58592-1_25
10.1109/TIV.2023.3266446
10.1186/s40648-014-0001-z
10.1109/IVS.2019.8813796
10.1109/CVPR.2019.00895
10.1007/978-3-642-33765-9_15
10.1109/IV55152.2023.10186616
10.1109/TITS.2020.3012034
10.1109/WACV48630.2021.00363
10.1109/ITSC.2019.8917053
10.1109/TITS.2020.2972974
10.1109/TITS.2018.2856361
10.1109/LRA.2021.3104334
10.1007/978-3-031-20077-9_1
10.1109/IVS.2019.8813987
10.1126/science.1090973
10.1109/ITSC48978.2021.9565041
10.1109/TIV.2022.3145035
10.1109/TIV.2022.3167103
10.1016/j.knosys.2022.108245
10.1109/CVPR42600.2020.01120
10.1109/ICCV48922.2021.01292
10.1609/aaai.v38i6.28370
10.1109/TITS.2015.2492019
10.1109/ITSC.2019.8917433
10.1109/CVPRW56347.2022.00484
10.1109/CVPR46437.2021.01417
10.1109/ICCV48922.2021.01533
10.1109/CVPR52688.2022.01339
10.1109/IROS55552.2023.10341607
10.1109/IV47402.2020.9304785
10.1109/CVPR52688.2022.01655
10.1007/978-3-030-58621-8_17
10.1109/ITSC.2018.8569415
10.1109/ITSC.2017.8317674
10.1109/TPAMI.2021.3117837
10.1109/ITSC45102.2020.9294182
10.1109/ITSC.2018.8569552
10.1007/978-3-031-19775-8_23
10.1109/ITSC55140.2022.9922162
10.1007/978-3-031-26316-3_17
10.1109/ICCV.2019.00636
10.3390/s22114295
10.1109/TIV.2023.3235362
10.1109/IV51971.2022.9827083
10.1109/TITS.2023.3259322
10.1109/TIM.2022.3158998
10.1109/ICRA46639.2022.9811664
10.1109/IROS51168.2021.9636035
10.1109/CVPR42600.2020.01443
10.1109/IROS47612.2022.9982147
10.1016/j.trc.2021.103259
10.1109/TITS.2023.3248842
10.1109/TITS.2019.2913166
10.1109/CVPR42600.2020.00441
10.1109/IV51971.2022.9827084
10.1109/IV51971.2022.9827231
10.1109/ITSC.2019.8917039
10.1109/SITIS.2018.00109
10.1109/TITS.2023.3309309
10.1049/itr2.12090
10.1109/CVPR46437.2021.00634
10.1007/s11263-022-01657-x
10.1109/CVPR52688.2022.01671
10.1088/1742-6596/1621/1/012047
10.1109/CVPRW59228.2023.00256
10.1109/TITS.2020.2995166
10.1109/ICCV.2019.00300
10.1109/CVPR.2017.233
10.1109/ITSC.2018.8569932
10.1109/CVPR52688.2022.01659
10.1109/ICCVW54120.2021.00345
10.1109/ICRA.2018.8462838
10.1561/2300000078
10.1109/IROS45743.2020.9341072
10.1007/978-3-031-43763-2_1
10.2307/2185304
10.1006/jesp.1996.1314
10.1109/ICRA40945.2020.9196697
10.1109/ITSC.2019.8917331
10.1109/LRA.2022.3192802
10.1109/CVPRW59228.2023.00374
10.1109/ICRA46639.2022.9812226
10.1109/CVPR52688.2022.01473
10.1109/ICCV48922.2021.00966
10.1016/j.eswa.2023.120077
10.24963/ijcai.2020/118
10.1109/TITS.2021.3074829
10.1007/s10514-021-10009-6
10.1109/TII.2021.3064364
10.1109/CVPR52688.2022.00638
10.1109/TITS.2019.2926042
10.1109/TITS.2023.3291196
10.1109/IROS45743.2020.9341083
10.24963/ijcai.2022/785
10.1145/3394171.3413896
10.1109/TIE.2021.3066943
10.1016/j.neucom.2022.07.085
10.1109/ICRA46639.2022.9812107
10.1109/ICCV48922.2021.01502
10.1016/j.patcog.2016.08.029
10.1561/2300000059
10.1109/JAS.2016.7510067
10.1109/TITS.2023.3281393
10.1007/s11263-019-01247-4
10.1109/ITSC48978.2021.9564948
10.1109/TITS.2020.3044678
10.1109/TITS.2023.3287186
10.1109/IVS.2018.8500419
10.1109/TVT.2021.3079263
10.1109/IROS51168.2021.9636241
10.1609/aaai.v29i1.9602
10.3390/math9060660
10.1109/CVPR52688.2022.01892
10.1109/IV51971.2022.9827055
10.1109/IVS.2019.8814207
10.1109/IV51971.2022.9827228
10.1109/CVPR52729.2023.01712
10.1109/WACV45572.2020.9093426
10.1109/ITSC.2019.8917118
10.1109/TIV.2018.2873901
10.1109/CVPR.2019.00865
10.1109/TIV.2022.3162719
10.1109/ICCVW.2017.33
10.1109/CVPR42600.2020.01164
10.1109/TITS.2021.3058035
10.1109/ICCV51070.2023.00701
10.1109/TITS.2023.3239606
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TITS.2024.3374342
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 8355
ExternalDocumentID 10_1109_TITS_2024_3374342
10478239
Genre orig-research
GrantInformation_xml – fundername: Foundation Strengthening Program Technology Field Fund
  grantid: 2021-JCJQ-JJ-0004
– fundername: NSFC
  grantid: 62036008; 62273057
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c266t-1b7d5ce9fb64ebc3f60258c842715dfca589c90d9f7aecb7a9d408e746f615183
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Tue Jul 01 04:29:16 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Wed Aug 27 02:33:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-1b7d5ce9fb64ebc3f60258c842715dfca589c90d9f7aecb7a9d408e746f615183
ORCID 0000-0001-6097-7807
0000-0002-4994-9343
0000-0002-0300-6892
PageCount 22
ParticipantIDs crossref_citationtrail_10_1109_TITS_2024_3374342
ieee_primary_10478239
crossref_primary_10_1109_TITS_2024_3374342
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref207
ref56
ref208
ref59
ref205
ref206
ref53
ref203
ref52
ref54
ref202
(ref39) 2016
ref209
ref210
ref211
ref51
ref46
ref218
ref45
ref219
ref48
ref216
ref47
ref217
ref214
ref215
ref44
ref212
ref43
ref213
ref8
ref9
ref4
ref3
ref6
ref5
ref100
Li (ref201); 34
ref222
ref40
Huang (ref21) 2023
ref220
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref38
Kim (ref253) 2020
Chen (ref238)
ref24
ref23
ref26
ref25
ref20
ref22
Segal (ref125)
ref28
ref27
ref29
Luo (ref82) 2021
Jain (ref120); 100
ref200
Zhang (ref110)
ref128
ref249
ref129
ref126
ref247
ref99
ref245
ref98
ref246
Rasouli (ref49) 2020
Depeweg (ref230)
ref93
ref133
ref254
ref134
ref255
ref95
ref131
ref252
ref94
ref132
ref250
ref130
ref251
ref90
ref139
ref86
ref137
ref85
ref88
ref135
Casas (ref84)
ref87
ref136
ref81
ref145
ref142
ref83
ref143
ref140
ref141
ref80
ref79
ref108
ref78
ref106
ref227
ref107
ref75
ref104
ref225
ref74
ref226
ref77
ref102
ref223
ref76
ref103
ref224
ref71
ref111
ref232
ref70
ref112
ref233
ref73
ref72
Itkina (ref127); 205
Snoek (ref124)
ref68
ref119
ref67
ref117
ref69
ref118
ref239
ref64
ref115
ref236
ref63
ref237
ref66
ref113
ref234
ref65
ref114
ref235
Kendall (ref116)
Li (ref101) 2023
Lorenzo (ref152) 2021
ref60
ref122
ref243
ref123
ref244
ref62
ref241
ref61
ref121
ref242
ref240
ref168
ref169
Xue (ref89) 2020
Zhao (ref97); 155
ref170
ref177
ref178
ref175
ref176
Chai (ref96)
ref173
ref174
ref171
ref172
ref179
Chen (ref50) 2021
ref180
ref181
ref188
ref189
ref186
ref187
Gomes (ref7) 2022
ref184
ref185
ref182
ref183
Belkada (ref58) 2021
ref148
ref149
ref146
ref147
ref155
ref156
ref153
ref154
ref151
ref150
ref159
ref157
ref158
ref166
ref167
Ziebart (ref109); 8
ref164
ref165
ref162
ref163
ref160
ref161
ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Lakshminarayanan (ref229)
Choi (ref92); 155
Ding (ref248)
Rasouli (ref105) 2018
Nixon (ref221); 2
An (ref55) 2023
Lopez (ref204); 33
ref2
ref1
Zhan (ref42) 2019
Kosaraju (ref91)
ref191
ref192
ref190
Bouhsain (ref144)
ref199
ref197
Dosovitskiy (ref231)
ref198
ref195
ref196
ref193
ref194
Zhang (ref228) 2021
Aliakbarian (ref41)
Rasouli (ref138)
References_xml – ident: ref106
  doi: 10.1109/ICCV.2019.00291
– ident: ref167
  doi: 10.1049/itr2.12253
– ident: ref133
  doi: 10.1109/ITSC.2016.7795975
– ident: ref76
  doi: 10.1109/IROS51168.2021.9636321
– ident: ref181
  doi: 10.1016/j.eswa.2019.04.032
– ident: ref37
  doi: 10.1162/089976699300016890
– ident: ref118
  doi: 10.1109/ITSC45102.2020.9294553
– ident: ref232
  doi: 10.1109/ICCV.2017.243
– ident: ref6
  doi: 10.1109/TITS.2022.3207347
– ident: ref67
  doi: 10.1007/978-3-030-58536-5_32
– ident: ref239
  doi: 10.1109/TPAMI.2022.3195549
– ident: ref28
  doi: 10.1126/scirobotics.abe2987
– ident: ref153
  doi: 10.1109/ICCVW54120.2021.00260
– ident: ref90
  doi: 10.1109/ITSC.2019.8917228
– ident: ref85
  doi: 10.1109/CVPR.2019.01236
– ident: ref117
  doi: 10.1007/978-3-031-19839-7_26
– ident: ref3
  doi: 10.1007/s11633-018-1126-y
– ident: ref203
  doi: 10.1109/LRA.2020.3047731
– volume-title: Proc. ICLR
  ident: ref238
  article-title: Contrastive syn-to-real generalization
– ident: ref115
  doi: 10.1007/s11263-020-01395-y
– ident: ref146
  doi: 10.1109/IV47402.2020.9304624
– ident: ref60
  doi: 10.1109/CVPR52688.2022.01664
– ident: ref140
  doi: 10.1109/ICRA.2019.8794278
– ident: ref154
  doi: 10.1109/ICRA48506.2021.9561107
– ident: ref211
  doi: 10.1109/ITSC.2017.8317941
– ident: ref147
  doi: 10.1109/IV47402.2020.9304591
– ident: ref217
  doi: 10.1177/001872677402700101
– ident: ref145
  doi: 10.1109/TITS.2019.2946642
– ident: ref247
  doi: 10.1007/978-3-031-20065-6_3
– ident: ref136
  doi: 10.1109/IVS.2018.8500657
– ident: ref135
  doi: 10.1109/IVS.2018.8500413
– ident: ref223
  doi: 10.1109/CVPR46437.2021.00553
– ident: ref66
  doi: 10.1109/CVPR46437.2021.01554
– ident: ref74
  doi: 10.1109/CVPRW56347.2022.00497
– ident: ref150
  doi: 10.1109/ICCV48922.2021.01531
– ident: ref162
  doi: 10.1109/TITS.2022.3173537
– ident: ref163
  doi: 10.1109/TITS.2022.3177367
– start-page: 13969
  volume-title: Proc. NeurIPS
  ident: ref124
  article-title: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift
– ident: ref46
  doi: 10.1109/ITSC45102.2020.9294491
– ident: ref208
  doi: 10.1109/IVS.2015.7225911
– ident: ref189
  doi: 10.1177/03611981221119175
– ident: ref218
  doi: 10.1109/TPAMI.2022.3179507
– ident: ref250
  doi: 10.1609/aaai.v33i01.3301978
– ident: ref242
  doi: 10.1109/TPAMI.2017.2728788
– ident: ref94
  doi: 10.1109/CVPR42600.2020.01408
– ident: ref8
  doi: 10.1109/TVT.2019.2903299
– ident: ref65
  doi: 10.1109/TVT.2022.3170627
– ident: ref122
  doi: 10.1109/tpami.2023.3290823
– ident: ref62
  doi: 10.1109/CVPRW56347.2022.00491
– ident: ref141
  doi: 10.1109/ICRA.2019.8793991
– ident: ref179
  doi: 10.1016/j.eswa.2017.09.025
– ident: ref18
  doi: 10.1109/ROBIO54168.2021.9739407
– year: 2023
  ident: ref55
  article-title: Latent-shift: Latent diffusion with temporal shift for efficient text-to-video generation
  publication-title: arXiv:2304.08477
– year: 2019
  ident: ref42
  article-title: INTERACTION dataset: An international, adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps
  publication-title: arXiv:1910.03088
– ident: ref107
  doi: 10.1109/CVPRW56347.2022.00282
– ident: ref15
  doi: 10.1109/TITS.2022.3205676
– ident: ref195
  doi: 10.1109/TIV.2023.3266102
– ident: ref103
  doi: 10.1109/IROS47612.2022.9981690
– ident: ref111
  doi: 10.1109/ICRA48891.2023.10160468
– ident: ref222
  doi: 10.1109/CVPR52729.2023.01838
– start-page: 812
  volume-title: Proc. Conf. Robot. Learn. (CoRL)
  ident: ref248
  article-title: CausalAF: Causal autoregressive flow for safety-critical driving scenario generation
– ident: ref156
  doi: 10.24963/ijcai.2021/171
– ident: ref158
  doi: 10.1109/WACV48630.2021.00130
– ident: ref224
  doi: 10.1007/978-3-030-58520-4_42
– ident: ref95
  doi: 10.1007/978-3-030-58523-5_40
– start-page: 137
  volume-title: Proc. NeurIPS
  ident: ref91
  article-title: Social-BiGAT: Multimodal trajectory forecasting using bicycle-gan and graph attention networks
– ident: ref126
  doi: 10.1007/s10462-023-10562-9
– volume: 2
  start-page: 38
  volume-title: Proc. CVPR Workshops
  ident: ref221
  article-title: Measuring calibration in deep learning
– ident: ref143
  doi: 10.1109/IEEECONF51394.2020.9443552
– ident: ref176
  doi: 10.48550/ARXIV.1706.03762
– ident: ref25
  doi: 10.1109/TITS.2019.2901817
– ident: ref70
  doi: 10.1109/CVPR52688.2022.01675
– ident: ref79
  doi: 10.1109/CVPR.2016.110
– ident: ref113
  doi: 10.1017/CBO9781107252950
– ident: ref160
  doi: 10.1109/LSP.2021.3134194
– ident: ref52
  doi: 10.1109/ITSC55140.2022.9921771
– ident: ref19
  doi: 10.1109/ACCESS.2021.3118224
– ident: ref44
  doi: 10.1109/ICRA.2019.8793523
– year: 2021
  ident: ref82
  article-title: Safety-oriented pedestrian motion and scene occupancy forecasting
  publication-title: arXiv:2101.02385
– volume-title: Next Generation Simulation (NGSIM) Open Data
  year: 2016
  ident: ref39
– ident: ref69
  doi: 10.1109/CVPR42600.2020.01115
– ident: ref20
  doi: 10.1007/s11263-022-01594-9
– ident: ref129
  doi: 10.18653/v1/D18-1348
– ident: ref243
  doi: 10.1145/3400051.3400058
– ident: ref172
  doi: 10.1109/ICRA48891.2023.10161318
– ident: ref88
  doi: 10.1109/TITS.2022.3142248
– ident: ref14
  doi: 10.177/0278364920917446
– start-page: 86
  volume-title: Proc. Conf. Robot Learn., (PMLR)
  ident: ref96
  article-title: Multipath: Multiple probabilistic anchor trajectory hypotheses for behavior prediction
– ident: ref48
  doi: 10.1109/LRA.2020.2976305
– ident: ref119
  doi: 10.1109/ICRA46639.2022.9811776
– volume: 8
  start-page: 1433
  volume-title: Proc. 23rd AAAI Conf. Artif. Intell.
  ident: ref109
  article-title: Maximum entropy inverse reinforcement learning
– ident: ref190
  doi: 10.1109/ICRA46639.2022.9812188
– ident: ref169
  doi: 10.1609/aaai.v37i3.25463
– ident: ref188
  doi: 10.1109/TITS.2022.3170551
– ident: ref197
  doi: 10.1016/j.infrared.2016.12.014
– ident: ref38
  doi: 10.1007/978-3-319-10599-4_40
– volume: 205
  start-page: 606
  volume-title: Proc. CoRL
  ident: ref127
  article-title: Interpretable self-aware neural networks for robust trajectory prediction
– ident: ref212
  doi: 10.1109/TITS.2021.3090851
– ident: ref236
  doi: 10.1109/CVPR46437.2021.01026
– ident: ref185
  doi: 10.1177/0361198120922210
– ident: ref81
  doi: 10.1007/978-3-030-58592-1_25
– ident: ref22
  doi: 10.1109/TIV.2023.3266446
– year: 2020
  ident: ref253
  article-title: A real-time predictive pedestrian collision warning service for cooperative intelligent transportation systems using 3D pose estimation
  publication-title: arXiv:2009.10868
– ident: ref12
  doi: 10.1186/s40648-014-0001-z
– ident: ref213
  doi: 10.1109/IVS.2019.8813796
– ident: ref54
  doi: 10.1109/CVPR.2019.00895
– ident: ref108
  doi: 10.1007/978-3-642-33765-9_15
– ident: ref171
  doi: 10.1109/IV55152.2023.10186616
– ident: ref11
  doi: 10.1109/TITS.2020.3012034
– ident: ref227
  doi: 10.1109/WACV48630.2021.00363
– year: 2022
  ident: ref7
  article-title: A review on intention-aware and interaction-aware trajectory prediction for autonomous vehicles
  publication-title: techrxiv:19337447.v1
– ident: ref13
  doi: 10.1109/ITSC.2019.8917053
– ident: ref31
  doi: 10.1109/TITS.2020.2972974
– ident: ref64
  doi: 10.1109/TITS.2018.2856361
– ident: ref34
  doi: 10.1109/LRA.2021.3104334
– year: 2021
  ident: ref152
  article-title: IntFormer: Predicting pedestrian intention with the aid of the transformer architecture
  publication-title: arXiv:2105.08647
– ident: ref77
  doi: 10.1007/978-3-031-20077-9_1
– ident: ref182
  doi: 10.1109/IVS.2019.8813987
– volume: 34
  start-page: 27107
  volume-title: Proc. NeurIPS
  ident: ref201
  article-title: GRIN: Generative relation and intention network for multi-agent trajectory prediction
– ident: ref53
  doi: 10.1126/science.1090973
– ident: ref10
  doi: 10.1109/ITSC48978.2021.9565041
– ident: ref233
  doi: 10.1109/TIV.2022.3145035
– ident: ref17
  doi: 10.1109/TIV.2022.3167103
– ident: ref102
  doi: 10.1016/j.knosys.2022.108245
– ident: ref47
  doi: 10.1109/CVPR42600.2020.01120
– ident: ref121
  doi: 10.1109/ICCV48922.2021.01292
– ident: ref255
  doi: 10.1609/aaai.v38i6.28370
– volume: 155
  start-page: 49
  volume-title: Proc. CoRL
  ident: ref92
  article-title: DROGON: A trajectory prediction model based on intention-conditioned behavior reasoning
– start-page: 816
  volume-title: Proc. CoRL
  ident: ref125
  article-title: Just label what you need: Fine-grained active selection for P&P through partially labeled scenes
– ident: ref75
  doi: 10.1109/TITS.2015.2492019
– ident: ref45
  doi: 10.1109/ITSC.2019.8917433
– ident: ref63
  doi: 10.1109/CVPRW56347.2022.00484
– ident: ref83
  doi: 10.1109/CVPR46437.2021.01417
– ident: ref215
  doi: 10.1109/ICCV48922.2021.01533
– ident: ref72
  doi: 10.1109/CVPR52688.2022.01339
– ident: ref159
  doi: 10.1109/IROS55552.2023.10341607
– volume: 155
  start-page: 895
  volume-title: Proc. Conf. Robot Learn. (CoRL)
  ident: ref97
  article-title: TNT: Target-driven trajectory prediction
– ident: ref186
  doi: 10.1109/IV47402.2020.9304785
– ident: ref61
  doi: 10.1109/CVPR52688.2022.01655
– ident: ref99
  doi: 10.1007/978-3-030-58621-8_17
– ident: ref9
  doi: 10.1109/ITSC.2018.8569415
– ident: ref177
  doi: 10.1109/ITSC.2017.8317674
– year: 2023
  ident: ref21
  article-title: Multimodal trajectory prediction: A survey
  publication-title: arXiv:2302.10463
– ident: ref225
  doi: 10.1109/TPAMI.2021.3117837
– ident: ref216
  doi: 10.1109/ITSC45102.2020.9294182
– ident: ref40
  doi: 10.1109/ITSC.2018.8569552
– ident: ref245
  doi: 10.1007/978-3-031-19775-8_23
– ident: ref210
  doi: 10.1109/ITSC55140.2022.9922162
– ident: ref214
  doi: 10.1007/978-3-031-26316-3_17
– ident: ref43
  doi: 10.1109/ICCV.2019.00636
– ident: ref198
  doi: 10.3390/s22114295
– start-page: 947
  volume-title: Proc. Conf. Robot Learn.
  ident: ref84
  article-title: IntentNet: Learning to predict intention from raw sensor data
– ident: ref194
  doi: 10.1109/TIV.2023.3235362
– ident: ref123
  doi: 10.1109/IV51971.2022.9827083
– ident: ref234
  doi: 10.1109/TITS.2023.3259322
– ident: ref252
  doi: 10.1109/TIM.2022.3158998
– ident: ref173
  doi: 10.1109/ICRA46639.2022.9811664
– ident: ref68
  doi: 10.1109/IROS51168.2021.9636035
– year: 2020
  ident: ref49
  article-title: PePScenes: A novel dataset and baseline for pedestrian action prediction in 3D
  publication-title: arXiv:2012.07773
– ident: ref87
  doi: 10.1109/CVPR42600.2020.01443
– ident: ref206
  doi: 10.1109/IROS47612.2022.9982147
– ident: ref157
  doi: 10.1016/j.trc.2021.103259
– ident: ref192
  doi: 10.1109/TITS.2023.3248842
– ident: ref184
  doi: 10.1109/TITS.2019.2913166
– year: 2023
  ident: ref101
  article-title: Graph-based topology reasoning for driving scenes
  publication-title: arXiv:2304.05277
– ident: ref26
  doi: 10.1109/CVPR42600.2020.00441
– ident: ref165
  doi: 10.1109/IV51971.2022.9827084
– ident: ref166
  doi: 10.1109/IV51971.2022.9827231
– ident: ref202
  doi: 10.1109/ITSC.2019.8917039
– ident: ref137
  doi: 10.1109/SITIS.2018.00109
– ident: ref174
  doi: 10.1109/TITS.2023.3309309
– ident: ref209
  doi: 10.1049/itr2.12090
– ident: ref205
  doi: 10.1109/CVPR46437.2021.00634
– start-page: 1184
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref230
  article-title: Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning
– ident: ref240
  doi: 10.1007/s11263-022-01657-x
– ident: ref235
  doi: 10.1109/CVPR52688.2022.01671
– ident: ref149
  doi: 10.1088/1742-6596/1621/1/012047
– ident: ref226
  doi: 10.1109/CVPRW59228.2023.00256
– start-page: 6402
  volume-title: Proc. Annu. Neural Inf. Process Syst.
  ident: ref229
  article-title: Simple and scalable predictive uncertainty estimation using deep ensembles
– year: 2020
  ident: ref89
  article-title: Scene gated social graph: Pedestrian trajectory prediction based on dynamic social graphs and scene constraints
  publication-title: arXiv:2010.05507
– ident: ref155
  doi: 10.1109/TITS.2020.2995166
– start-page: 5574
  volume-title: Proc. NIPS
  ident: ref116
  article-title: What uncertainties do we need in Bayesian deep learning for computer vision?
– ident: ref71
  doi: 10.1109/ICCV.2019.00300
– start-page: 171
  volume-title: Proc. BMVC
  ident: ref138
  article-title: Pedestrian action anticipation using contextual feature fusion in stacked RNNs
– ident: ref93
  doi: 10.1109/CVPR.2017.233
– ident: ref207
  doi: 10.1109/ITSC.2018.8569932
– ident: ref241
  doi: 10.1109/CVPR52688.2022.01659
– ident: ref151
  doi: 10.1109/ICCVW54120.2021.00345
– volume: 100
  start-page: 407
  volume-title: Proc. CoRL
  ident: ref120
  article-title: Discrete residual flow for probabilistic pedestrian behavior prediction
– volume-title: Proc. Eur. Assoc. Res. Transp. (hEART)
  ident: ref144
  article-title: Pedestrian intention prediction: A multi-task perspective
– ident: ref180
  doi: 10.1109/ICRA.2018.8462838
– start-page: 1
  volume-title: Proc. Conf. Robot Learn.
  ident: ref231
  article-title: CARLA: An open urban driving simulator
– ident: ref86
  doi: 10.1561/2300000078
– ident: ref244
  doi: 10.1109/IROS45743.2020.9341072
– ident: ref170
  doi: 10.1007/978-3-031-43763-2_1
– ident: ref1
  doi: 10.2307/2185304
– ident: ref2
  doi: 10.1006/jesp.1996.1314
– ident: ref80
  doi: 10.1109/ICRA40945.2020.9196697
– ident: ref183
  doi: 10.1109/ITSC.2019.8917331
– ident: ref139
  doi: 10.1109/ICCV.2019.00636
– ident: ref254
  doi: 10.1109/LRA.2022.3192802
– year: 2021
  ident: ref228
  article-title: Dense uncertainty estimation
  publication-title: arXiv:2110.06427
– ident: ref168
  doi: 10.1109/CVPRW59228.2023.00374
– ident: ref199
  doi: 10.1109/ICRA46639.2022.9812226
– ident: ref246
  doi: 10.1109/CVPR52688.2022.01473
– ident: ref51
  doi: 10.1109/ICCV48922.2021.00966
– ident: ref175
  doi: 10.1016/j.eswa.2023.120077
– ident: ref128
  doi: 10.24963/ijcai.2020/118
– ident: ref161
  doi: 10.1109/TITS.2021.3074829
– ident: ref251
  doi: 10.1007/s10514-021-10009-6
– ident: ref131
  doi: 10.1109/TII.2021.3064364
– ident: ref196
  doi: 10.1109/CVPR52688.2022.00638
– start-page: 449
  volume-title: Proc. ACCV
  ident: ref41
  article-title: VIENA2: A driving anticipation dataset
– ident: ref57
  doi: 10.1109/TITS.2019.2926042
– ident: ref24
  doi: 10.1109/TITS.2023.3291196
– ident: ref237
  doi: 10.1109/IROS45743.2020.9341083
– ident: ref4
  doi: 10.24963/ijcai.2022/785
– volume: 33
  start-page: 5081
  volume-title: Proc. NeurIPS
  ident: ref204
  article-title: Decision-making with auto-encoding variational Bayes
– year: 2021
  ident: ref58
  article-title: Do pedestrians pay attention? Eye contact detection in the wild
  publication-title: arXiv:2112.04212
– ident: ref219
  doi: 10.1145/3394171.3413896
– ident: ref191
  doi: 10.1109/TIE.2021.3066943
– ident: ref5
  doi: 10.1016/j.neucom.2022.07.085
– ident: ref98
  doi: 10.1109/ICRA46639.2022.9812107
– ident: ref112
  doi: 10.1109/ICCV48922.2021.01502
– ident: ref104
  doi: 10.1016/j.patcog.2016.08.029
– ident: ref59
  doi: 10.1561/2300000059
– ident: ref132
  doi: 10.1109/JAS.2016.7510067
– ident: ref23
  doi: 10.1109/TITS.2023.3281393
– ident: ref32
  doi: 10.1007/s11263-019-01247-4
– ident: ref114
  doi: 10.1109/ITSC48978.2021.9564948
– ident: ref27
  doi: 10.1109/TITS.2020.3044678
– ident: ref100
  doi: 10.1109/TITS.2023.3287186
– ident: ref178
  doi: 10.1109/IVS.2018.8500419
– ident: ref187
  doi: 10.1109/TVT.2021.3079263
– ident: ref200
  doi: 10.1109/IROS51168.2021.9636241
– ident: ref220
  doi: 10.1609/aaai.v29i1.9602
– ident: ref16
  doi: 10.3390/math9060660
– ident: ref73
  doi: 10.1109/CVPR52688.2022.01892
– ident: ref29
  doi: 10.1109/IV51971.2022.9827055
– start-page: 1371
  volume-title: Proc. Conf. Robot Learn. (CoRL)
  ident: ref110
  article-title: Map-adaptive goal-based trajectory prediction
– year: 2018
  ident: ref105
  article-title: Joint attention in driver-pedestrian interaction: From theory to practice
  publication-title: arXiv:1802.02522
– ident: ref130
  doi: 10.1109/IVS.2019.8814207
– ident: ref249
  doi: 10.1109/IV51971.2022.9827228
– ident: ref78
  doi: 10.1109/CVPR52729.2023.01712
– ident: ref148
  doi: 10.1109/WACV45572.2020.9093426
– ident: ref142
  doi: 10.1109/ITSC.2019.8917118
– ident: ref134
  doi: 10.1109/TIV.2018.2873901
– ident: ref33
  doi: 10.1109/CVPR.2019.00865
– year: 2021
  ident: ref50
  article-title: PSI: A pedestrian behavior dataset for socially intelligent autonomous car
  publication-title: arXiv:2112.02604
– ident: ref164
  doi: 10.1109/TIV.2022.3162719
– ident: ref35
  doi: 10.1109/ICCVW.2017.33
– ident: ref36
  doi: 10.1109/CVPR42600.2020.01164
– ident: ref30
  doi: 10.1109/TITS.2021.3058035
– ident: ref56
  doi: 10.1109/ICCV51070.2023.00701
– ident: ref193
  doi: 10.1109/TITS.2023.3239606
SSID ssj0014511
Score 2.5706553
Snippet In driving scenes, road agents often engage in frequent interaction and strive to understand their surroundings. Ego-agent (each road agent itself) predicts...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 8334
SubjectTerms Behavioral intention prediction
Behavioral sciences
Benchmark testing
benchmarks
challenges
Image analysis
Pedestrians
Predictive models
promising approaches
Reviews
road agents
Roads
Surveys
Trajectory
Title Behavioral Intention Prediction in Driving Scenes: A Survey
URI https://ieeexplore.ieee.org/document/10478239
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uT_rg58T5RR58EtK1Tdok-jQ_xhQcwjbYW2nSBIbSSWkF_etN0m5MQfEttAmkd6H3u9zd7wC4UJwa558ESGIWIaIVR0ynGhlPQmEZZCJ2ddxPo3g4JY-zaNYUq7taGKWUSz5Tnh26WH62kJW9Kus5KpkQ8xZoGc-tLtZahQws0ZYjRw0J4n60DGEGPu9NHiZj4wqGxMPYWEwSfjNCa11VnFEZ7IDRcjt1LsmLV5XCk58_mBr_vd9dsN3AS9ivz8Me2FD5PthaIx08ANc3q8p86BLYrWrgc2EjNm44z-FdMbcXDXAs7a_wCvbhuCre1UcHTAf3k9shalooIGksb4kCQbNIKq5FTJSQWMcG4zDJSEiDKNMyjRiX3M-4pqmSgqY8Iz5TlMTaQh2GD0E7X-TqCEADRDSXIoyZMK8JF5hq-4EhZTLCmnaBv5RpIht-cdvm4jVxfobPE6uGxKohadTQBZerJW81ucZfkztWwmsTa-Ee__L8BGza5XWy3ilol0WlzgyAKMW5Ozhf0qy_nQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86H9QHv8X52QefhHZtkzaJPs2Psek2hHWwt9KkCQylk9IK-tebpN2YguJbaNOS3oXe73J3vwPgUlCsnH_k2RySwEZSUJvIRNrKkxCQeykLTR33YBh2x-hxEkzqYnVTCyOEMMlnwtFDE8tPZ7zUR2UtQyXjQ7oK1pThD7yqXGsRNNBUW4Ye1Uc2dYN5ENNzaSvqRSPlDPrIgVDZTOR_M0NLfVWMWelsg-F8QVU2yYtTFszhnz-4Gv-94h2wVQNMq13tiF2wIrI9sLlEO7gPbm4XtfmWSWHXyrGecx2zMcNpZt3nU33UYI24_hleW21rVObv4uMAjDsP0V3Xrpso2FzZ3sL2GE4DLqhkIRKMQxkqlEM4QT72glTyJCCUUzelEieCM5zQFLlEYBRKDXYIPASNbJaJI2ApKCIpZ35ImLqNKINY6g_0MeEBlLgJ3LlMY14zjOtGF6-x8TRcGms1xFoNca2GJrhaPPJW0Wv8NflAS3hpYiXc41-uX4D1bjTox_3e8OkEbOhXVal7p6BR5KU4U3CiYOdmE30BAzzC5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behavioral+Intention+Prediction+in+Driving+Scenes%3A+A+Survey&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Fang%2C+Jianwu&rft.au=Wang%2C+Fan&rft.au=Xue%2C+Jianru&rft.au=Chua%2C+Tat-Seng&rft.date=2024-08-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=25&rft.issue=8&rft.spage=8334&rft.epage=8355&rft_id=info:doi/10.1109%2FTITS.2024.3374342&rft.externalDocID=10478239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon