Behavioral Intention Prediction in Driving Scenes: A Survey
In driving scenes, road agents often engage in frequent interaction and strive to understand their surroundings. Ego-agent (each road agent itself) predicts what behavior will be engaged by other road users all the time and expects a shared and consistent understanding for safe movement. To achieve...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 25; no. 8; pp. 8334 - 8355 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In driving scenes, road agents often engage in frequent interaction and strive to understand their surroundings. Ego-agent (each road agent itself) predicts what behavior will be engaged by other road users all the time and expects a shared and consistent understanding for safe movement. To achieve this, Behavioral Intention Prediction (BIP) simulates such a human consideration process to anticipate specific behaviors, and the rapid development of BIP inevitably leads to new issues and challenges. To catalyze future research, this work provides a comprehensive review of BIP from the available datasets, key factors, challenges, pedestrian-centric and vehicle-centric BIP approaches, and BIP-aware applications. The investigation reveals that data-driven deep learning approaches have become the primary pipelines, while the behavioral intention types are still limited in most current datasets and methods (e.g., Crossing (C) and Not Crossing (NC) for pedestrians and Lane Changing (LC) for vehicles) in this field. In addition, current research on BIP in safe-critical scenarios (e.g., near-crashing situations) is limited. Through this investigation, we identify open issues in behavioral intention prediction and suggest possible insights for future research. |
---|---|
AbstractList | In driving scenes, road agents often engage in frequent interaction and strive to understand their surroundings. Ego-agent (each road agent itself) predicts what behavior will be engaged by other road users all the time and expects a shared and consistent understanding for safe movement. To achieve this, Behavioral Intention Prediction (BIP) simulates such a human consideration process to anticipate specific behaviors, and the rapid development of BIP inevitably leads to new issues and challenges. To catalyze future research, this work provides a comprehensive review of BIP from the available datasets, key factors, challenges, pedestrian-centric and vehicle-centric BIP approaches, and BIP-aware applications. The investigation reveals that data-driven deep learning approaches have become the primary pipelines, while the behavioral intention types are still limited in most current datasets and methods (e.g., Crossing (C) and Not Crossing (NC) for pedestrians and Lane Changing (LC) for vehicles) in this field. In addition, current research on BIP in safe-critical scenarios (e.g., near-crashing situations) is limited. Through this investigation, we identify open issues in behavioral intention prediction and suggest possible insights for future research. |
Author | Chua, Tat-Seng Fang, Jianwu Wang, Fan Xue, Jianru |
Author_xml | – sequence: 1 givenname: Jianwu orcidid: 0000-0002-0300-6892 surname: Fang fullname: Fang, Jianwu email: fangjianwu@mail.xjtu.edu.cn organization: National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China – sequence: 2 givenname: Fan surname: Wang fullname: Wang, Fan organization: College of Transportation Engineering, Chang'an University, Xi'an, China – sequence: 3 givenname: Jianru orcidid: 0000-0002-4994-9343 surname: Xue fullname: Xue, Jianru email: jrxue@mail.xjtu.edu.cn organization: National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China – sequence: 4 givenname: Tat-Seng orcidid: 0000-0001-6097-7807 surname: Chua fullname: Chua, Tat-Seng email: dcscts@nus.edu.sg organization: Sea-NExT++ Joint Research Centre, School of Computing, National University of Singapore, Cluny Road, Singapore |
BookMark | eNp9kMtKw0AUhgepYFt9AMFFXiB17hdd1XorFBRS12EyOaMjdSKTGOjb29guxIWr83P4v8Phm6BRbCIgdE7wjBBsLtfLdTGjmPIZY4ozTo_QmAihc4yJHA2Z8txggU_QpG3fd1suCBmj6xt4s31okt1ky9hB7EITs-cEdXA_McTsNoU-xNescBChvcrmWfGVetieomNvNy2cHeYUvdzfrReP-erpYbmYr3JHpexyUqlaODC-khwqx7zEVGinOVVE1N5ZoY0zuDZeWXCVsqbmWIPi0ksiiGZTpPZ3XWraNoEvXejs8F2XbNiUBJeDg3JwUA4OyoODHUn-kJ8pfNi0_Ze52DMBAH71udKUGfYNKktpxQ |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_23919_CHAIN_2024_000008 crossref_primary_10_3390_act13070260 crossref_primary_10_3390_rs17010077 crossref_primary_10_1080_10407413_2024_2427403 crossref_primary_10_1109_ACCESS_2024_3459595 crossref_primary_10_1109_MITS_2024_3378460 crossref_primary_10_1109_TITS_2024_3467175 |
Cites_doi | 10.1109/ICCV.2019.00291 10.1049/itr2.12253 10.1109/ITSC.2016.7795975 10.1109/IROS51168.2021.9636321 10.1016/j.eswa.2019.04.032 10.1162/089976699300016890 10.1109/ITSC45102.2020.9294553 10.1109/ICCV.2017.243 10.1109/TITS.2022.3207347 10.1007/978-3-030-58536-5_32 10.1109/TPAMI.2022.3195549 10.1126/scirobotics.abe2987 10.1109/ICCVW54120.2021.00260 10.1109/ITSC.2019.8917228 10.1109/CVPR.2019.01236 10.1007/978-3-031-19839-7_26 10.1007/s11633-018-1126-y 10.1109/LRA.2020.3047731 10.1007/s11263-020-01395-y 10.1109/IV47402.2020.9304624 10.1109/CVPR52688.2022.01664 10.1109/ICRA.2019.8794278 10.1109/ICRA48506.2021.9561107 10.1109/ITSC.2017.8317941 10.1109/IV47402.2020.9304591 10.1177/001872677402700101 10.1109/TITS.2019.2946642 10.1007/978-3-031-20065-6_3 10.1109/IVS.2018.8500657 10.1109/IVS.2018.8500413 10.1109/CVPR46437.2021.00553 10.1109/CVPR46437.2021.01554 10.1109/CVPRW56347.2022.00497 10.1109/ICCV48922.2021.01531 10.1109/TITS.2022.3173537 10.1109/TITS.2022.3177367 10.1109/ITSC45102.2020.9294491 10.1109/IVS.2015.7225911 10.1177/03611981221119175 10.1109/TPAMI.2022.3179507 10.1609/aaai.v33i01.3301978 10.1109/TPAMI.2017.2728788 10.1109/CVPR42600.2020.01408 10.1109/TVT.2019.2903299 10.1109/TVT.2022.3170627 10.1109/tpami.2023.3290823 10.1109/CVPRW56347.2022.00491 10.1109/ICRA.2019.8793991 10.1016/j.eswa.2017.09.025 10.1109/ROBIO54168.2021.9739407 10.1109/CVPRW56347.2022.00282 10.1109/TITS.2022.3205676 10.1109/TIV.2023.3266102 10.1109/IROS47612.2022.9981690 10.1109/ICRA48891.2023.10160468 10.1109/CVPR52729.2023.01838 10.24963/ijcai.2021/171 10.1109/WACV48630.2021.00130 10.1007/978-3-030-58520-4_42 10.1007/978-3-030-58523-5_40 10.1007/s10462-023-10562-9 10.1109/IEEECONF51394.2020.9443552 10.48550/ARXIV.1706.03762 10.1109/TITS.2019.2901817 10.1109/CVPR52688.2022.01675 10.1109/CVPR.2016.110 10.1017/CBO9781107252950 10.1109/LSP.2021.3134194 10.1109/ITSC55140.2022.9921771 10.1109/ACCESS.2021.3118224 10.1109/ICRA.2019.8793523 10.1109/CVPR42600.2020.01115 10.1007/s11263-022-01594-9 10.18653/v1/D18-1348 10.1145/3400051.3400058 10.1109/ICRA48891.2023.10161318 10.1109/TITS.2022.3142248 10.177/0278364920917446 10.1109/LRA.2020.2976305 10.1109/ICRA46639.2022.9811776 10.1109/ICRA46639.2022.9812188 10.1609/aaai.v37i3.25463 10.1109/TITS.2022.3170551 10.1016/j.infrared.2016.12.014 10.1007/978-3-319-10599-4_40 10.1109/TITS.2021.3090851 10.1109/CVPR46437.2021.01026 10.1177/0361198120922210 10.1007/978-3-030-58592-1_25 10.1109/TIV.2023.3266446 10.1186/s40648-014-0001-z 10.1109/IVS.2019.8813796 10.1109/CVPR.2019.00895 10.1007/978-3-642-33765-9_15 10.1109/IV55152.2023.10186616 10.1109/TITS.2020.3012034 10.1109/WACV48630.2021.00363 10.1109/ITSC.2019.8917053 10.1109/TITS.2020.2972974 10.1109/TITS.2018.2856361 10.1109/LRA.2021.3104334 10.1007/978-3-031-20077-9_1 10.1109/IVS.2019.8813987 10.1126/science.1090973 10.1109/ITSC48978.2021.9565041 10.1109/TIV.2022.3145035 10.1109/TIV.2022.3167103 10.1016/j.knosys.2022.108245 10.1109/CVPR42600.2020.01120 10.1109/ICCV48922.2021.01292 10.1609/aaai.v38i6.28370 10.1109/TITS.2015.2492019 10.1109/ITSC.2019.8917433 10.1109/CVPRW56347.2022.00484 10.1109/CVPR46437.2021.01417 10.1109/ICCV48922.2021.01533 10.1109/CVPR52688.2022.01339 10.1109/IROS55552.2023.10341607 10.1109/IV47402.2020.9304785 10.1109/CVPR52688.2022.01655 10.1007/978-3-030-58621-8_17 10.1109/ITSC.2018.8569415 10.1109/ITSC.2017.8317674 10.1109/TPAMI.2021.3117837 10.1109/ITSC45102.2020.9294182 10.1109/ITSC.2018.8569552 10.1007/978-3-031-19775-8_23 10.1109/ITSC55140.2022.9922162 10.1007/978-3-031-26316-3_17 10.1109/ICCV.2019.00636 10.3390/s22114295 10.1109/TIV.2023.3235362 10.1109/IV51971.2022.9827083 10.1109/TITS.2023.3259322 10.1109/TIM.2022.3158998 10.1109/ICRA46639.2022.9811664 10.1109/IROS51168.2021.9636035 10.1109/CVPR42600.2020.01443 10.1109/IROS47612.2022.9982147 10.1016/j.trc.2021.103259 10.1109/TITS.2023.3248842 10.1109/TITS.2019.2913166 10.1109/CVPR42600.2020.00441 10.1109/IV51971.2022.9827084 10.1109/IV51971.2022.9827231 10.1109/ITSC.2019.8917039 10.1109/SITIS.2018.00109 10.1109/TITS.2023.3309309 10.1049/itr2.12090 10.1109/CVPR46437.2021.00634 10.1007/s11263-022-01657-x 10.1109/CVPR52688.2022.01671 10.1088/1742-6596/1621/1/012047 10.1109/CVPRW59228.2023.00256 10.1109/TITS.2020.2995166 10.1109/ICCV.2019.00300 10.1109/CVPR.2017.233 10.1109/ITSC.2018.8569932 10.1109/CVPR52688.2022.01659 10.1109/ICCVW54120.2021.00345 10.1109/ICRA.2018.8462838 10.1561/2300000078 10.1109/IROS45743.2020.9341072 10.1007/978-3-031-43763-2_1 10.2307/2185304 10.1006/jesp.1996.1314 10.1109/ICRA40945.2020.9196697 10.1109/ITSC.2019.8917331 10.1109/LRA.2022.3192802 10.1109/CVPRW59228.2023.00374 10.1109/ICRA46639.2022.9812226 10.1109/CVPR52688.2022.01473 10.1109/ICCV48922.2021.00966 10.1016/j.eswa.2023.120077 10.24963/ijcai.2020/118 10.1109/TITS.2021.3074829 10.1007/s10514-021-10009-6 10.1109/TII.2021.3064364 10.1109/CVPR52688.2022.00638 10.1109/TITS.2019.2926042 10.1109/TITS.2023.3291196 10.1109/IROS45743.2020.9341083 10.24963/ijcai.2022/785 10.1145/3394171.3413896 10.1109/TIE.2021.3066943 10.1016/j.neucom.2022.07.085 10.1109/ICRA46639.2022.9812107 10.1109/ICCV48922.2021.01502 10.1016/j.patcog.2016.08.029 10.1561/2300000059 10.1109/JAS.2016.7510067 10.1109/TITS.2023.3281393 10.1007/s11263-019-01247-4 10.1109/ITSC48978.2021.9564948 10.1109/TITS.2020.3044678 10.1109/TITS.2023.3287186 10.1109/IVS.2018.8500419 10.1109/TVT.2021.3079263 10.1109/IROS51168.2021.9636241 10.1609/aaai.v29i1.9602 10.3390/math9060660 10.1109/CVPR52688.2022.01892 10.1109/IV51971.2022.9827055 10.1109/IVS.2019.8814207 10.1109/IV51971.2022.9827228 10.1109/CVPR52729.2023.01712 10.1109/WACV45572.2020.9093426 10.1109/ITSC.2019.8917118 10.1109/TIV.2018.2873901 10.1109/CVPR.2019.00865 10.1109/TIV.2022.3162719 10.1109/ICCVW.2017.33 10.1109/CVPR42600.2020.01164 10.1109/TITS.2021.3058035 10.1109/ICCV51070.2023.00701 10.1109/TITS.2023.3239606 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TITS.2024.3374342 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 8355 |
ExternalDocumentID | 10_1109_TITS_2024_3374342 10478239 |
Genre | orig-research |
GrantInformation_xml | – fundername: Foundation Strengthening Program Technology Field Fund grantid: 2021-JCJQ-JJ-0004 – fundername: NSFC grantid: 62036008; 62273057 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c266t-1b7d5ce9fb64ebc3f60258c842715dfca589c90d9f7aecb7a9d408e746f615183 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Tue Jul 01 04:29:16 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Wed Aug 27 02:33:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c266t-1b7d5ce9fb64ebc3f60258c842715dfca589c90d9f7aecb7a9d408e746f615183 |
ORCID | 0000-0001-6097-7807 0000-0002-4994-9343 0000-0002-0300-6892 |
PageCount | 22 |
ParticipantIDs | crossref_citationtrail_10_1109_TITS_2024_3374342 ieee_primary_10478239 crossref_primary_10_1109_TITS_2024_3374342 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref57 ref207 ref56 ref208 ref59 ref205 ref206 ref53 ref203 ref52 ref54 ref202 (ref39) 2016 ref209 ref210 ref211 ref51 ref46 ref218 ref45 ref219 ref48 ref216 ref47 ref217 ref214 ref215 ref44 ref212 ref43 ref213 ref8 ref9 ref4 ref3 ref6 ref5 ref100 Li (ref201); 34 ref222 ref40 Huang (ref21) 2023 ref220 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref38 Kim (ref253) 2020 Chen (ref238) ref24 ref23 ref26 ref25 ref20 ref22 Segal (ref125) ref28 ref27 ref29 Luo (ref82) 2021 Jain (ref120); 100 ref200 Zhang (ref110) ref128 ref249 ref129 ref126 ref247 ref99 ref245 ref98 ref246 Rasouli (ref49) 2020 Depeweg (ref230) ref93 ref133 ref254 ref134 ref255 ref95 ref131 ref252 ref94 ref132 ref250 ref130 ref251 ref90 ref139 ref86 ref137 ref85 ref88 ref135 Casas (ref84) ref87 ref136 ref81 ref145 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 ref78 ref106 ref227 ref107 ref75 ref104 ref225 ref74 ref226 ref77 ref102 ref223 ref76 ref103 ref224 ref71 ref111 ref232 ref70 ref112 ref233 ref73 ref72 Itkina (ref127); 205 Snoek (ref124) ref68 ref119 ref67 ref117 ref69 ref118 ref239 ref64 ref115 ref236 ref63 ref237 ref66 ref113 ref234 ref65 ref114 ref235 Kendall (ref116) Li (ref101) 2023 Lorenzo (ref152) 2021 ref60 ref122 ref243 ref123 ref244 ref62 ref241 ref61 ref121 ref242 ref240 ref168 ref169 Xue (ref89) 2020 Zhao (ref97); 155 ref170 ref177 ref178 ref175 ref176 Chai (ref96) ref173 ref174 ref171 ref172 ref179 Chen (ref50) 2021 ref180 ref181 ref188 ref189 ref186 ref187 Gomes (ref7) 2022 ref184 ref185 ref182 ref183 Belkada (ref58) 2021 ref148 ref149 ref146 ref147 ref155 ref156 ref153 ref154 ref151 ref150 ref159 ref157 ref158 ref166 ref167 Ziebart (ref109); 8 ref164 ref165 ref162 ref163 ref160 ref161 ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 Lakshminarayanan (ref229) Choi (ref92); 155 Ding (ref248) Rasouli (ref105) 2018 Nixon (ref221); 2 An (ref55) 2023 Lopez (ref204); 33 ref2 ref1 Zhan (ref42) 2019 Kosaraju (ref91) ref191 ref192 ref190 Bouhsain (ref144) ref199 ref197 Dosovitskiy (ref231) ref198 ref195 ref196 ref193 ref194 Zhang (ref228) 2021 Aliakbarian (ref41) Rasouli (ref138) |
References_xml | – ident: ref106 doi: 10.1109/ICCV.2019.00291 – ident: ref167 doi: 10.1049/itr2.12253 – ident: ref133 doi: 10.1109/ITSC.2016.7795975 – ident: ref76 doi: 10.1109/IROS51168.2021.9636321 – ident: ref181 doi: 10.1016/j.eswa.2019.04.032 – ident: ref37 doi: 10.1162/089976699300016890 – ident: ref118 doi: 10.1109/ITSC45102.2020.9294553 – ident: ref232 doi: 10.1109/ICCV.2017.243 – ident: ref6 doi: 10.1109/TITS.2022.3207347 – ident: ref67 doi: 10.1007/978-3-030-58536-5_32 – ident: ref239 doi: 10.1109/TPAMI.2022.3195549 – ident: ref28 doi: 10.1126/scirobotics.abe2987 – ident: ref153 doi: 10.1109/ICCVW54120.2021.00260 – ident: ref90 doi: 10.1109/ITSC.2019.8917228 – ident: ref85 doi: 10.1109/CVPR.2019.01236 – ident: ref117 doi: 10.1007/978-3-031-19839-7_26 – ident: ref3 doi: 10.1007/s11633-018-1126-y – ident: ref203 doi: 10.1109/LRA.2020.3047731 – volume-title: Proc. ICLR ident: ref238 article-title: Contrastive syn-to-real generalization – ident: ref115 doi: 10.1007/s11263-020-01395-y – ident: ref146 doi: 10.1109/IV47402.2020.9304624 – ident: ref60 doi: 10.1109/CVPR52688.2022.01664 – ident: ref140 doi: 10.1109/ICRA.2019.8794278 – ident: ref154 doi: 10.1109/ICRA48506.2021.9561107 – ident: ref211 doi: 10.1109/ITSC.2017.8317941 – ident: ref147 doi: 10.1109/IV47402.2020.9304591 – ident: ref217 doi: 10.1177/001872677402700101 – ident: ref145 doi: 10.1109/TITS.2019.2946642 – ident: ref247 doi: 10.1007/978-3-031-20065-6_3 – ident: ref136 doi: 10.1109/IVS.2018.8500657 – ident: ref135 doi: 10.1109/IVS.2018.8500413 – ident: ref223 doi: 10.1109/CVPR46437.2021.00553 – ident: ref66 doi: 10.1109/CVPR46437.2021.01554 – ident: ref74 doi: 10.1109/CVPRW56347.2022.00497 – ident: ref150 doi: 10.1109/ICCV48922.2021.01531 – ident: ref162 doi: 10.1109/TITS.2022.3173537 – ident: ref163 doi: 10.1109/TITS.2022.3177367 – start-page: 13969 volume-title: Proc. NeurIPS ident: ref124 article-title: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift – ident: ref46 doi: 10.1109/ITSC45102.2020.9294491 – ident: ref208 doi: 10.1109/IVS.2015.7225911 – ident: ref189 doi: 10.1177/03611981221119175 – ident: ref218 doi: 10.1109/TPAMI.2022.3179507 – ident: ref250 doi: 10.1609/aaai.v33i01.3301978 – ident: ref242 doi: 10.1109/TPAMI.2017.2728788 – ident: ref94 doi: 10.1109/CVPR42600.2020.01408 – ident: ref8 doi: 10.1109/TVT.2019.2903299 – ident: ref65 doi: 10.1109/TVT.2022.3170627 – ident: ref122 doi: 10.1109/tpami.2023.3290823 – ident: ref62 doi: 10.1109/CVPRW56347.2022.00491 – ident: ref141 doi: 10.1109/ICRA.2019.8793991 – ident: ref179 doi: 10.1016/j.eswa.2017.09.025 – ident: ref18 doi: 10.1109/ROBIO54168.2021.9739407 – year: 2023 ident: ref55 article-title: Latent-shift: Latent diffusion with temporal shift for efficient text-to-video generation publication-title: arXiv:2304.08477 – year: 2019 ident: ref42 article-title: INTERACTION dataset: An international, adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps publication-title: arXiv:1910.03088 – ident: ref107 doi: 10.1109/CVPRW56347.2022.00282 – ident: ref15 doi: 10.1109/TITS.2022.3205676 – ident: ref195 doi: 10.1109/TIV.2023.3266102 – ident: ref103 doi: 10.1109/IROS47612.2022.9981690 – ident: ref111 doi: 10.1109/ICRA48891.2023.10160468 – ident: ref222 doi: 10.1109/CVPR52729.2023.01838 – start-page: 812 volume-title: Proc. Conf. Robot. Learn. (CoRL) ident: ref248 article-title: CausalAF: Causal autoregressive flow for safety-critical driving scenario generation – ident: ref156 doi: 10.24963/ijcai.2021/171 – ident: ref158 doi: 10.1109/WACV48630.2021.00130 – ident: ref224 doi: 10.1007/978-3-030-58520-4_42 – ident: ref95 doi: 10.1007/978-3-030-58523-5_40 – start-page: 137 volume-title: Proc. NeurIPS ident: ref91 article-title: Social-BiGAT: Multimodal trajectory forecasting using bicycle-gan and graph attention networks – ident: ref126 doi: 10.1007/s10462-023-10562-9 – volume: 2 start-page: 38 volume-title: Proc. CVPR Workshops ident: ref221 article-title: Measuring calibration in deep learning – ident: ref143 doi: 10.1109/IEEECONF51394.2020.9443552 – ident: ref176 doi: 10.48550/ARXIV.1706.03762 – ident: ref25 doi: 10.1109/TITS.2019.2901817 – ident: ref70 doi: 10.1109/CVPR52688.2022.01675 – ident: ref79 doi: 10.1109/CVPR.2016.110 – ident: ref113 doi: 10.1017/CBO9781107252950 – ident: ref160 doi: 10.1109/LSP.2021.3134194 – ident: ref52 doi: 10.1109/ITSC55140.2022.9921771 – ident: ref19 doi: 10.1109/ACCESS.2021.3118224 – ident: ref44 doi: 10.1109/ICRA.2019.8793523 – year: 2021 ident: ref82 article-title: Safety-oriented pedestrian motion and scene occupancy forecasting publication-title: arXiv:2101.02385 – volume-title: Next Generation Simulation (NGSIM) Open Data year: 2016 ident: ref39 – ident: ref69 doi: 10.1109/CVPR42600.2020.01115 – ident: ref20 doi: 10.1007/s11263-022-01594-9 – ident: ref129 doi: 10.18653/v1/D18-1348 – ident: ref243 doi: 10.1145/3400051.3400058 – ident: ref172 doi: 10.1109/ICRA48891.2023.10161318 – ident: ref88 doi: 10.1109/TITS.2022.3142248 – ident: ref14 doi: 10.177/0278364920917446 – start-page: 86 volume-title: Proc. Conf. Robot Learn., (PMLR) ident: ref96 article-title: Multipath: Multiple probabilistic anchor trajectory hypotheses for behavior prediction – ident: ref48 doi: 10.1109/LRA.2020.2976305 – ident: ref119 doi: 10.1109/ICRA46639.2022.9811776 – volume: 8 start-page: 1433 volume-title: Proc. 23rd AAAI Conf. Artif. Intell. ident: ref109 article-title: Maximum entropy inverse reinforcement learning – ident: ref190 doi: 10.1109/ICRA46639.2022.9812188 – ident: ref169 doi: 10.1609/aaai.v37i3.25463 – ident: ref188 doi: 10.1109/TITS.2022.3170551 – ident: ref197 doi: 10.1016/j.infrared.2016.12.014 – ident: ref38 doi: 10.1007/978-3-319-10599-4_40 – volume: 205 start-page: 606 volume-title: Proc. CoRL ident: ref127 article-title: Interpretable self-aware neural networks for robust trajectory prediction – ident: ref212 doi: 10.1109/TITS.2021.3090851 – ident: ref236 doi: 10.1109/CVPR46437.2021.01026 – ident: ref185 doi: 10.1177/0361198120922210 – ident: ref81 doi: 10.1007/978-3-030-58592-1_25 – ident: ref22 doi: 10.1109/TIV.2023.3266446 – year: 2020 ident: ref253 article-title: A real-time predictive pedestrian collision warning service for cooperative intelligent transportation systems using 3D pose estimation publication-title: arXiv:2009.10868 – ident: ref12 doi: 10.1186/s40648-014-0001-z – ident: ref213 doi: 10.1109/IVS.2019.8813796 – ident: ref54 doi: 10.1109/CVPR.2019.00895 – ident: ref108 doi: 10.1007/978-3-642-33765-9_15 – ident: ref171 doi: 10.1109/IV55152.2023.10186616 – ident: ref11 doi: 10.1109/TITS.2020.3012034 – ident: ref227 doi: 10.1109/WACV48630.2021.00363 – year: 2022 ident: ref7 article-title: A review on intention-aware and interaction-aware trajectory prediction for autonomous vehicles publication-title: techrxiv:19337447.v1 – ident: ref13 doi: 10.1109/ITSC.2019.8917053 – ident: ref31 doi: 10.1109/TITS.2020.2972974 – ident: ref64 doi: 10.1109/TITS.2018.2856361 – ident: ref34 doi: 10.1109/LRA.2021.3104334 – year: 2021 ident: ref152 article-title: IntFormer: Predicting pedestrian intention with the aid of the transformer architecture publication-title: arXiv:2105.08647 – ident: ref77 doi: 10.1007/978-3-031-20077-9_1 – ident: ref182 doi: 10.1109/IVS.2019.8813987 – volume: 34 start-page: 27107 volume-title: Proc. NeurIPS ident: ref201 article-title: GRIN: Generative relation and intention network for multi-agent trajectory prediction – ident: ref53 doi: 10.1126/science.1090973 – ident: ref10 doi: 10.1109/ITSC48978.2021.9565041 – ident: ref233 doi: 10.1109/TIV.2022.3145035 – ident: ref17 doi: 10.1109/TIV.2022.3167103 – ident: ref102 doi: 10.1016/j.knosys.2022.108245 – ident: ref47 doi: 10.1109/CVPR42600.2020.01120 – ident: ref121 doi: 10.1109/ICCV48922.2021.01292 – ident: ref255 doi: 10.1609/aaai.v38i6.28370 – volume: 155 start-page: 49 volume-title: Proc. CoRL ident: ref92 article-title: DROGON: A trajectory prediction model based on intention-conditioned behavior reasoning – start-page: 816 volume-title: Proc. CoRL ident: ref125 article-title: Just label what you need: Fine-grained active selection for P&P through partially labeled scenes – ident: ref75 doi: 10.1109/TITS.2015.2492019 – ident: ref45 doi: 10.1109/ITSC.2019.8917433 – ident: ref63 doi: 10.1109/CVPRW56347.2022.00484 – ident: ref83 doi: 10.1109/CVPR46437.2021.01417 – ident: ref215 doi: 10.1109/ICCV48922.2021.01533 – ident: ref72 doi: 10.1109/CVPR52688.2022.01339 – ident: ref159 doi: 10.1109/IROS55552.2023.10341607 – volume: 155 start-page: 895 volume-title: Proc. Conf. Robot Learn. (CoRL) ident: ref97 article-title: TNT: Target-driven trajectory prediction – ident: ref186 doi: 10.1109/IV47402.2020.9304785 – ident: ref61 doi: 10.1109/CVPR52688.2022.01655 – ident: ref99 doi: 10.1007/978-3-030-58621-8_17 – ident: ref9 doi: 10.1109/ITSC.2018.8569415 – ident: ref177 doi: 10.1109/ITSC.2017.8317674 – year: 2023 ident: ref21 article-title: Multimodal trajectory prediction: A survey publication-title: arXiv:2302.10463 – ident: ref225 doi: 10.1109/TPAMI.2021.3117837 – ident: ref216 doi: 10.1109/ITSC45102.2020.9294182 – ident: ref40 doi: 10.1109/ITSC.2018.8569552 – ident: ref245 doi: 10.1007/978-3-031-19775-8_23 – ident: ref210 doi: 10.1109/ITSC55140.2022.9922162 – ident: ref214 doi: 10.1007/978-3-031-26316-3_17 – ident: ref43 doi: 10.1109/ICCV.2019.00636 – ident: ref198 doi: 10.3390/s22114295 – start-page: 947 volume-title: Proc. Conf. Robot Learn. ident: ref84 article-title: IntentNet: Learning to predict intention from raw sensor data – ident: ref194 doi: 10.1109/TIV.2023.3235362 – ident: ref123 doi: 10.1109/IV51971.2022.9827083 – ident: ref234 doi: 10.1109/TITS.2023.3259322 – ident: ref252 doi: 10.1109/TIM.2022.3158998 – ident: ref173 doi: 10.1109/ICRA46639.2022.9811664 – ident: ref68 doi: 10.1109/IROS51168.2021.9636035 – year: 2020 ident: ref49 article-title: PePScenes: A novel dataset and baseline for pedestrian action prediction in 3D publication-title: arXiv:2012.07773 – ident: ref87 doi: 10.1109/CVPR42600.2020.01443 – ident: ref206 doi: 10.1109/IROS47612.2022.9982147 – ident: ref157 doi: 10.1016/j.trc.2021.103259 – ident: ref192 doi: 10.1109/TITS.2023.3248842 – ident: ref184 doi: 10.1109/TITS.2019.2913166 – year: 2023 ident: ref101 article-title: Graph-based topology reasoning for driving scenes publication-title: arXiv:2304.05277 – ident: ref26 doi: 10.1109/CVPR42600.2020.00441 – ident: ref165 doi: 10.1109/IV51971.2022.9827084 – ident: ref166 doi: 10.1109/IV51971.2022.9827231 – ident: ref202 doi: 10.1109/ITSC.2019.8917039 – ident: ref137 doi: 10.1109/SITIS.2018.00109 – ident: ref174 doi: 10.1109/TITS.2023.3309309 – ident: ref209 doi: 10.1049/itr2.12090 – ident: ref205 doi: 10.1109/CVPR46437.2021.00634 – start-page: 1184 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref230 article-title: Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning – ident: ref240 doi: 10.1007/s11263-022-01657-x – ident: ref235 doi: 10.1109/CVPR52688.2022.01671 – ident: ref149 doi: 10.1088/1742-6596/1621/1/012047 – ident: ref226 doi: 10.1109/CVPRW59228.2023.00256 – start-page: 6402 volume-title: Proc. Annu. Neural Inf. Process Syst. ident: ref229 article-title: Simple and scalable predictive uncertainty estimation using deep ensembles – year: 2020 ident: ref89 article-title: Scene gated social graph: Pedestrian trajectory prediction based on dynamic social graphs and scene constraints publication-title: arXiv:2010.05507 – ident: ref155 doi: 10.1109/TITS.2020.2995166 – start-page: 5574 volume-title: Proc. NIPS ident: ref116 article-title: What uncertainties do we need in Bayesian deep learning for computer vision? – ident: ref71 doi: 10.1109/ICCV.2019.00300 – start-page: 171 volume-title: Proc. BMVC ident: ref138 article-title: Pedestrian action anticipation using contextual feature fusion in stacked RNNs – ident: ref93 doi: 10.1109/CVPR.2017.233 – ident: ref207 doi: 10.1109/ITSC.2018.8569932 – ident: ref241 doi: 10.1109/CVPR52688.2022.01659 – ident: ref151 doi: 10.1109/ICCVW54120.2021.00345 – volume: 100 start-page: 407 volume-title: Proc. CoRL ident: ref120 article-title: Discrete residual flow for probabilistic pedestrian behavior prediction – volume-title: Proc. Eur. Assoc. Res. Transp. (hEART) ident: ref144 article-title: Pedestrian intention prediction: A multi-task perspective – ident: ref180 doi: 10.1109/ICRA.2018.8462838 – start-page: 1 volume-title: Proc. Conf. Robot Learn. ident: ref231 article-title: CARLA: An open urban driving simulator – ident: ref86 doi: 10.1561/2300000078 – ident: ref244 doi: 10.1109/IROS45743.2020.9341072 – ident: ref170 doi: 10.1007/978-3-031-43763-2_1 – ident: ref1 doi: 10.2307/2185304 – ident: ref2 doi: 10.1006/jesp.1996.1314 – ident: ref80 doi: 10.1109/ICRA40945.2020.9196697 – ident: ref183 doi: 10.1109/ITSC.2019.8917331 – ident: ref139 doi: 10.1109/ICCV.2019.00636 – ident: ref254 doi: 10.1109/LRA.2022.3192802 – year: 2021 ident: ref228 article-title: Dense uncertainty estimation publication-title: arXiv:2110.06427 – ident: ref168 doi: 10.1109/CVPRW59228.2023.00374 – ident: ref199 doi: 10.1109/ICRA46639.2022.9812226 – ident: ref246 doi: 10.1109/CVPR52688.2022.01473 – ident: ref51 doi: 10.1109/ICCV48922.2021.00966 – ident: ref175 doi: 10.1016/j.eswa.2023.120077 – ident: ref128 doi: 10.24963/ijcai.2020/118 – ident: ref161 doi: 10.1109/TITS.2021.3074829 – ident: ref251 doi: 10.1007/s10514-021-10009-6 – ident: ref131 doi: 10.1109/TII.2021.3064364 – ident: ref196 doi: 10.1109/CVPR52688.2022.00638 – start-page: 449 volume-title: Proc. ACCV ident: ref41 article-title: VIENA2: A driving anticipation dataset – ident: ref57 doi: 10.1109/TITS.2019.2926042 – ident: ref24 doi: 10.1109/TITS.2023.3291196 – ident: ref237 doi: 10.1109/IROS45743.2020.9341083 – ident: ref4 doi: 10.24963/ijcai.2022/785 – volume: 33 start-page: 5081 volume-title: Proc. NeurIPS ident: ref204 article-title: Decision-making with auto-encoding variational Bayes – year: 2021 ident: ref58 article-title: Do pedestrians pay attention? Eye contact detection in the wild publication-title: arXiv:2112.04212 – ident: ref219 doi: 10.1145/3394171.3413896 – ident: ref191 doi: 10.1109/TIE.2021.3066943 – ident: ref5 doi: 10.1016/j.neucom.2022.07.085 – ident: ref98 doi: 10.1109/ICRA46639.2022.9812107 – ident: ref112 doi: 10.1109/ICCV48922.2021.01502 – ident: ref104 doi: 10.1016/j.patcog.2016.08.029 – ident: ref59 doi: 10.1561/2300000059 – ident: ref132 doi: 10.1109/JAS.2016.7510067 – ident: ref23 doi: 10.1109/TITS.2023.3281393 – ident: ref32 doi: 10.1007/s11263-019-01247-4 – ident: ref114 doi: 10.1109/ITSC48978.2021.9564948 – ident: ref27 doi: 10.1109/TITS.2020.3044678 – ident: ref100 doi: 10.1109/TITS.2023.3287186 – ident: ref178 doi: 10.1109/IVS.2018.8500419 – ident: ref187 doi: 10.1109/TVT.2021.3079263 – ident: ref200 doi: 10.1109/IROS51168.2021.9636241 – ident: ref220 doi: 10.1609/aaai.v29i1.9602 – ident: ref16 doi: 10.3390/math9060660 – ident: ref73 doi: 10.1109/CVPR52688.2022.01892 – ident: ref29 doi: 10.1109/IV51971.2022.9827055 – start-page: 1371 volume-title: Proc. Conf. Robot Learn. (CoRL) ident: ref110 article-title: Map-adaptive goal-based trajectory prediction – year: 2018 ident: ref105 article-title: Joint attention in driver-pedestrian interaction: From theory to practice publication-title: arXiv:1802.02522 – ident: ref130 doi: 10.1109/IVS.2019.8814207 – ident: ref249 doi: 10.1109/IV51971.2022.9827228 – ident: ref78 doi: 10.1109/CVPR52729.2023.01712 – ident: ref148 doi: 10.1109/WACV45572.2020.9093426 – ident: ref142 doi: 10.1109/ITSC.2019.8917118 – ident: ref134 doi: 10.1109/TIV.2018.2873901 – ident: ref33 doi: 10.1109/CVPR.2019.00865 – year: 2021 ident: ref50 article-title: PSI: A pedestrian behavior dataset for socially intelligent autonomous car publication-title: arXiv:2112.02604 – ident: ref164 doi: 10.1109/TIV.2022.3162719 – ident: ref35 doi: 10.1109/ICCVW.2017.33 – ident: ref36 doi: 10.1109/CVPR42600.2020.01164 – ident: ref30 doi: 10.1109/TITS.2021.3058035 – ident: ref56 doi: 10.1109/ICCV51070.2023.00701 – ident: ref193 doi: 10.1109/TITS.2023.3239606 |
SSID | ssj0014511 |
Score | 2.5706553 |
Snippet | In driving scenes, road agents often engage in frequent interaction and strive to understand their surroundings. Ego-agent (each road agent itself) predicts... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 8334 |
SubjectTerms | Behavioral intention prediction Behavioral sciences Benchmark testing benchmarks challenges Image analysis Pedestrians Predictive models promising approaches Reviews road agents Roads Surveys Trajectory |
Title | Behavioral Intention Prediction in Driving Scenes: A Survey |
URI | https://ieeexplore.ieee.org/document/10478239 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uT_rg58T5RR58EtK1Tdok-jQ_xhQcwjbYW2nSBIbSSWkF_etN0m5MQfEttAmkd6H3u9zd7wC4UJwa558ESGIWIaIVR0ynGhlPQmEZZCJ2ddxPo3g4JY-zaNYUq7taGKWUSz5Tnh26WH62kJW9Kus5KpkQ8xZoGc-tLtZahQws0ZYjRw0J4n60DGEGPu9NHiZj4wqGxMPYWEwSfjNCa11VnFEZ7IDRcjt1LsmLV5XCk58_mBr_vd9dsN3AS9ivz8Me2FD5PthaIx08ANc3q8p86BLYrWrgc2EjNm44z-FdMbcXDXAs7a_wCvbhuCre1UcHTAf3k9shalooIGksb4kCQbNIKq5FTJSQWMcG4zDJSEiDKNMyjRiX3M-4pqmSgqY8Iz5TlMTaQh2GD0E7X-TqCEADRDSXIoyZMK8JF5hq-4EhZTLCmnaBv5RpIht-cdvm4jVxfobPE6uGxKohadTQBZerJW81ucZfkztWwmsTa-Ee__L8BGza5XWy3ilol0WlzgyAKMW5Ozhf0qy_nQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86H9QHv8X52QefhHZtkzaJPs2Psek2hHWwt9KkCQylk9IK-tebpN2YguJbaNOS3oXe73J3vwPgUlCsnH_k2RySwEZSUJvIRNrKkxCQeykLTR33YBh2x-hxEkzqYnVTCyOEMMlnwtFDE8tPZ7zUR2UtQyXjQ7oK1pThD7yqXGsRNNBUW4Ye1Uc2dYN5ENNzaSvqRSPlDPrIgVDZTOR_M0NLfVWMWelsg-F8QVU2yYtTFszhnz-4Gv-94h2wVQNMq13tiF2wIrI9sLlEO7gPbm4XtfmWSWHXyrGecx2zMcNpZt3nU33UYI24_hleW21rVObv4uMAjDsP0V3Xrpso2FzZ3sL2GE4DLqhkIRKMQxkqlEM4QT72glTyJCCUUzelEieCM5zQFLlEYBRKDXYIPASNbJaJI2ApKCIpZ35ImLqNKINY6g_0MeEBlLgJ3LlMY14zjOtGF6-x8TRcGms1xFoNca2GJrhaPPJW0Wv8NflAS3hpYiXc41-uX4D1bjTox_3e8OkEbOhXVal7p6BR5KU4U3CiYOdmE30BAzzC5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behavioral+Intention+Prediction+in+Driving+Scenes%3A+A+Survey&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Fang%2C+Jianwu&rft.au=Wang%2C+Fan&rft.au=Xue%2C+Jianru&rft.au=Chua%2C+Tat-Seng&rft.date=2024-08-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=25&rft.issue=8&rft.spage=8334&rft.epage=8355&rft_id=info:doi/10.1109%2FTITS.2024.3374342&rft.externalDocID=10478239 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |