Fractal Belief Rényi Divergence With its Applications in Pattern Classification

Multisource information fusion is a comprehensive and interdisciplinary subject. Dempster-Shafer (D-S) evidence theory copes with uncertain information effectively. Pattern classification is the core research content of pattern recognition, and multisource information fusion based on D-S evidence th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 36; no. 12; pp. 8297 - 8312
Main Authors Huang, Yingcheng, Xiao, Fuyuan, Cao, Zehong, Lin, Chin-Teng
Format Journal Article
LanguageEnglish
Published IEEE 01.12.2024
Subjects
Online AccessGet full text
ISSN1041-4347
1558-2191
DOI10.1109/TKDE.2023.3342907

Cover

Loading…
Abstract Multisource information fusion is a comprehensive and interdisciplinary subject. Dempster-Shafer (D-S) evidence theory copes with uncertain information effectively. Pattern classification is the core research content of pattern recognition, and multisource information fusion based on D-S evidence theory can be effectively applied to pattern classification problems. However, in D-S evidence theory, highly-conflicting evidence may cause counterintuitive fusion results. Belief divergence theory is one of the theories that are proposed to address problems of highly-conflicting evidence. Although belief divergence can deal with conflict between evidence, none of the existing belief divergence methods has considered how to effectively measure the discrepancy between two pieces of evidence with time evolutionary. In this study, a novel fractal belief Rényi (FBR) divergence is proposed to handle this problem. We assume that it is the first divergence that extends the concept of fractal to Rényi divergence. The advantage is measuring the discrepancy between two pieces of evidence with time evolution, which satisfies several properties and is flexible and practical in various circumstances. Furthermore, a novel algorithm for multisource information fusion based on FBR divergence, namely FBReD-based weighted multisource information fusion, is developed. Ultimately, the proposed multisource information fusion algorithm is applied to a series of experiments for pattern classification based on real datasets, where our proposed algorithm achieved superior performance.
AbstractList Multisource information fusion is a comprehensive and interdisciplinary subject. Dempster-Shafer (D-S) evidence theory copes with uncertain information effectively. Pattern classification is the core research content of pattern recognition, and multisource information fusion based on D-S evidence theory can be effectively applied to pattern classification problems. However, in D-S evidence theory, highly-conflicting evidence may cause counterintuitive fusion results. Belief divergence theory is one of the theories that are proposed to address problems of highly-conflicting evidence. Although belief divergence can deal with conflict between evidence, none of the existing belief divergence methods has considered how to effectively measure the discrepancy between two pieces of evidence with time evolutionary. In this study, a novel fractal belief Rényi (FBR) divergence is proposed to handle this problem. We assume that it is the first divergence that extends the concept of fractal to Rényi divergence. The advantage is measuring the discrepancy between two pieces of evidence with time evolution, which satisfies several properties and is flexible and practical in various circumstances. Furthermore, a novel algorithm for multisource information fusion based on FBR divergence, namely FBReD-based weighted multisource information fusion, is developed. Ultimately, the proposed multisource information fusion algorithm is applied to a series of experiments for pattern classification based on real datasets, where our proposed algorithm achieved superior performance.
Author Huang, Yingcheng
Cao, Zehong
Xiao, Fuyuan
Lin, Chin-Teng
Author_xml – sequence: 1
  givenname: Yingcheng
  orcidid: 0009-0003-1713-7708
  surname: Huang
  fullname: Huang, Yingcheng
  email: huangyingchengcqu@163.com
  organization: School of Big Data and Software Engineering, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Fuyuan
  orcidid: 0000-0002-6303-895X
  surname: Xiao
  fullname: Xiao, Fuyuan
  email: doctorxiaofy@hotmail.com
  organization: School of Big Data and Software Engineering, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Zehong
  orcidid: 0000-0003-3656-0328
  surname: Cao
  fullname: Cao, Zehong
  email: zhcaonctu@gmail.com
  organization: STEM, University of South Australia, Adelaide, SA, Australia
– sequence: 4
  givenname: Chin-Teng
  orcidid: 0000-0001-8371-8197
  surname: Lin
  fullname: Lin, Chin-Teng
  email: chin-teng.lin@uts.edu.au
  organization: Australia AI Institute, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
BookMark eNp9kM9KAzEQh4NUsK0-gOAhL7BrZrPZZI-1f1QsWKTicYnTRCNrWpIg9JF8Dl_Mre1BPMgcZmD4Zn58A9Lza28IOQeWA7D6cnk3meYFK3jOeVnUTB6RPgihsgJq6HUzKyEreSlPyCDGN8aYkgr6ZDELGpNu6ZVpnbH04evTbx2duA8TXoxHQ59ceqUuRTrabFqHOrm1j9R5utApmeDpuNUxOntYnZJjq9tozg59SB5n0-X4JpvfX9-OR_MMi6pKGUCXDkFo-wyFqDmYlWYAWjBkiGh4vZKyUkygtRJLVckSdSVQQWWFKjUfEtjfxbCOMRjbbIJ712HbAGt2SpqdkmanpDko6Rj5h0GXflKnoF37L3mxJ50x5tcnXnUF_BsDeHF6
CODEN ITKEEH
CitedBy_id crossref_primary_10_1007_s40747_024_01569_y
crossref_primary_10_1063_5_0220154
crossref_primary_10_1016_j_ins_2024_120617
crossref_primary_10_1016_j_patcog_2024_110720
crossref_primary_10_1016_j_cja_2024_103350
crossref_primary_10_1016_j_fss_2024_109034
crossref_primary_10_3390_e27010094
crossref_primary_10_1007_s40314_024_02781_9
crossref_primary_10_1016_j_engappai_2024_109056
crossref_primary_10_1080_03610926_2024_2301986
crossref_primary_10_1016_j_engappai_2024_108164
crossref_primary_10_1016_j_chaos_2024_115488
crossref_primary_10_1016_j_ins_2024_120168
crossref_primary_10_1016_j_engappai_2025_110412
crossref_primary_10_1109_TKDE_2025_3530524
Cites_doi 10.3846/mma.2022.14060
10.1109/tcyb.2021.3063285
10.1109/TKDE.2020.2997043
10.1016/j.engappai.2022.105701
10.1002/bies.202000178
10.1109/TKDE.2022.3177896
10.1016/j.knosys.2022.109680
10.1109/TKDE.2022.3206871
10.24963/ijcai.2022/28
10.1016/j.ins.2019.12.037
10.1016/j.ins.2023.01.105
10.15837/ijccc.2020.6.3983
10.1109/TFUZZ.2019.2955047
10.1109/TSMC.2016.2628879
10.1109/TPAMI.2022.3227913
10.1109/TKDE.2020.3048788
10.1109/tfuzz.2020.3007423
10.1109/tgrs.2023.3244565
10.1038/s41597-019-0027-4
10.1214/aoms/1177698950
10.15837/ijccc.2022.1.4542
10.1109/TPAMI.2022.3167045
10.1007/s11432-020-3006-9
10.1109/TFUZZ.2017.2788881
10.1016/j.ejor.2020.12.011
10.1109/TKDE.2021.3049540
10.1109/TSMC.2022.3180174
10.1109/TKDE.2020.3046645
10.1108/IJSI-05-2022-0076
10.1007/s00500-021-06658-5
10.1109/TKDE.2020.2973981
10.1016/j.net.2021.09.045
10.1109/TKDE.2020.2991000
10.1109/TFUZZ.2020.3003501
10.1016/j.cie.2022.108818
10.1016/j.ins.2021.08.083
10.1016/j.ins.2023.119177
10.1109/TIP.2023.3243521
10.1016/j.inffus.2023.01.026
10.1016/j.ins.2021.08.088
10.1142/S0218348X22501109
10.1109/TKDE.2020.3015914
10.1109/TFUZZ.2017.2709275
10.1109/TKDE.2022.3193569
10.24963/ijcai.2022/76
10.1007/s10489-022-04181-0
10.1109/TIT.2021.3085190
10.1016/j.ins.2019.11.022
10.32604/cmes.2022.018123
10.3390/math10132325
10.1109/TKDE.2020.3039469
10.1109/TFUZZ.2018.2859899
10.1109/TSMC.2022.3205365
10.1016/j.asoc.2019.105703
10.1109/TSMC.2022.3211498
10.1007/s00500-022-07351-x
10.1109/TSMC.2019.2944640
10.1109/TCYB.2017.2710205
10.1016/j.engappai.2022.105362
10.1016/j.ins.2022.05.012
10.1016/j.ins.2023.119061
10.1109/TIT.2022.3209892
10.1515/9780691214696
10.1109/TAC.2021.3054064
10.1109/TKDE.2020.3015959
10.1016/j.ijar.2020.02.002
10.1109/TCYB.2021.3052536
10.1145/3485447.3512184
10.1002/int.22912
10.1109/TIT.2014.2320500
10.1016/j.ins.2023.119189
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TKDE.2023.3342907
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 8312
ExternalDocumentID 10_1109_TKDE_2023_3342907
10363631
Genre orig-research
GrantInformation_xml – fundername: Australian Research Council
  grantid: DE220100265
  funderid: 10.13039/501100000923
– fundername: ARC Discovery
  grantid: DP220100803
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2023CDJXY-035
  funderid: 10.13039/501100012226
– fundername: Natural Science Foundation of Chongqing, China
  grantid: CSTB2022NSCQ-MSX0531
– fundername: Chongqing Overseas Scholars Innovation Program
  grantid: cx2022024
– fundername: National Natural Science Foundation of China
  grantid: 62003280
  funderid: 10.13039/501100001809
– fundername: Chongqing Talents: Exceptional Young Talents
  grantid: cstc2022ycjh-bgzxm0070
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYOK
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c266t-11155c15afb125931eda011a50c0ccce39d776805cff7c48674ca65c816f584a3
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Tue Jul 01 01:19:44 EDT 2025
Thu Apr 24 23:06:25 EDT 2025
Wed Aug 27 03:06:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-11155c15afb125931eda011a50c0ccce39d776805cff7c48674ca65c816f584a3
ORCID 0009-0003-1713-7708
0000-0001-8371-8197
0000-0002-6303-895X
0000-0003-3656-0328
PageCount 16
ParticipantIDs crossref_primary_10_1109_TKDE_2023_3342907
crossref_citationtrail_10_1109_TKDE_2023_3342907
ieee_primary_10363631
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref24
ref68
ref23
ref67
ref26
Wang (ref72)
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref40
  doi: 10.3846/mma.2022.14060
– ident: ref56
  doi: 10.1109/tcyb.2021.3063285
– ident: ref20
  doi: 10.1109/TKDE.2020.2997043
– ident: ref49
  doi: 10.1016/j.engappai.2022.105701
– ident: ref16
  doi: 10.1002/bies.202000178
– ident: ref47
  doi: 10.1109/TKDE.2022.3177896
– ident: ref53
  doi: 10.1016/j.knosys.2022.109680
– ident: ref34
  doi: 10.1109/TKDE.2022.3206871
– ident: ref28
  doi: 10.24963/ijcai.2022/28
– ident: ref54
  doi: 10.1016/j.ins.2019.12.037
– ident: ref4
  doi: 10.1016/j.ins.2023.01.105
– ident: ref62
  doi: 10.15837/ijccc.2020.6.3983
– ident: ref24
  doi: 10.1109/TFUZZ.2019.2955047
– ident: ref35
  doi: 10.1109/TSMC.2016.2628879
– ident: ref55
  doi: 10.1109/TPAMI.2022.3227913
– ident: ref67
  doi: 10.1109/TKDE.2020.3048788
– ident: ref19
  doi: 10.1109/tfuzz.2020.3007423
– ident: ref29
  doi: 10.1109/tgrs.2023.3244565
– ident: ref25
  doi: 10.1038/s41597-019-0027-4
– ident: ref50
  doi: 10.1214/aoms/1177698950
– ident: ref3
  doi: 10.15837/ijccc.2022.1.4542
– ident: ref8
  doi: 10.1109/TPAMI.2022.3167045
– ident: ref14
  doi: 10.1007/s11432-020-3006-9
– ident: ref22
  doi: 10.1109/TFUZZ.2017.2788881
– ident: ref57
  doi: 10.1016/j.ejor.2020.12.011
– ident: ref65
  doi: 10.1109/TKDE.2021.3049540
– ident: ref13
  doi: 10.1109/TSMC.2022.3180174
– ident: ref66
  doi: 10.1109/TKDE.2020.3046645
– ident: ref26
  doi: 10.1108/IJSI-05-2022-0076
– start-page: 20536
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref72
  article-title: MVP-N: A dataset and benchmark for real-world multi-view object classification
– ident: ref5
  doi: 10.1007/s00500-021-06658-5
– ident: ref38
  doi: 10.1109/TKDE.2020.2973981
– ident: ref21
  doi: 10.1016/j.net.2021.09.045
– ident: ref70
  doi: 10.1109/TKDE.2020.2991000
– ident: ref6
  doi: 10.1109/TFUZZ.2020.3003501
– ident: ref17
  doi: 10.1016/j.cie.2022.108818
– ident: ref31
  doi: 10.1016/j.ins.2021.08.083
– ident: ref9
  doi: 10.1016/j.ins.2023.119177
– ident: ref2
  doi: 10.1109/TIP.2023.3243521
– ident: ref18
  doi: 10.1016/j.inffus.2023.01.026
– ident: ref36
  doi: 10.1016/j.ins.2021.08.088
– ident: ref63
  doi: 10.1142/S0218348X22501109
– ident: ref69
  doi: 10.1109/TKDE.2020.3015914
– ident: ref15
  doi: 10.1109/TFUZZ.2017.2709275
– ident: ref1
  doi: 10.1109/TKDE.2022.3193569
– ident: ref27
  doi: 10.24963/ijcai.2022/76
– ident: ref10
  doi: 10.1007/s10489-022-04181-0
– ident: ref43
  doi: 10.1109/TIT.2021.3085190
– ident: ref44
  doi: 10.1016/j.ins.2019.11.022
– ident: ref23
  doi: 10.32604/cmes.2022.018123
– ident: ref52
  doi: 10.3390/math10132325
– ident: ref68
  doi: 10.1109/TKDE.2020.3039469
– ident: ref60
  doi: 10.1109/TFUZZ.2018.2859899
– ident: ref32
  doi: 10.1109/TSMC.2022.3205365
– ident: ref7
  doi: 10.1016/j.asoc.2019.105703
– ident: ref48
  doi: 10.1109/TSMC.2022.3211498
– ident: ref64
  doi: 10.1007/s00500-022-07351-x
– ident: ref12
  doi: 10.1109/TSMC.2019.2944640
– ident: ref71
  doi: 10.1109/TCYB.2017.2710205
– ident: ref37
  doi: 10.1016/j.engappai.2022.105362
– ident: ref41
  doi: 10.1016/j.ins.2022.05.012
– ident: ref58
  doi: 10.1016/j.ins.2023.119061
– ident: ref42
  doi: 10.1109/TIT.2022.3209892
– ident: ref51
  doi: 10.1515/9780691214696
– ident: ref11
  doi: 10.1109/TAC.2021.3054064
– ident: ref39
  doi: 10.1109/TKDE.2020.3015959
– ident: ref59
  doi: 10.1016/j.ijar.2020.02.002
– ident: ref33
  doi: 10.1109/TCYB.2021.3052536
– ident: ref30
  doi: 10.1145/3485447.3512184
– ident: ref45
  doi: 10.1002/int.22912
– ident: ref61
  doi: 10.1109/TIT.2014.2320500
– ident: ref46
  doi: 10.1016/j.ins.2023.119189
SSID ssj0008781
Score 2.5385373
Snippet Multisource information fusion is a comprehensive and interdisciplinary subject. Dempster-Shafer (D-S) evidence theory copes with uncertain information...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 8297
SubjectTerms Australia
Dempster-Shafer evidence theory
Diseases
Evidence theory
fractal
Fractals
Medical diagnostic imaging
Medical services
multisource information fusion
pattern classification
Rényi divergence
Time measurement
Title Fractal Belief Rényi Divergence With its Applications in Pattern Classification
URI https://ieeexplore.ieee.org/document/10363631
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60Jz1YrRXriz14EhI33Wwex2pbimIp0mJvIZndYFBS0fSg_8jf4R9zdpOWICiSS14LS2Z3Z77szPcRci5B-rzLXMuVAix0AYGVpF1heYkHMkQYFIe6OPlu7I1m7s1czKtidVMLo5QyyWfK1qdmL18uYKl_leEM5x4eCHY2EbmVxVrrZTfwjSIpwgsERdz1qy1Mh4WX09v-wNY64TbnuP5q6diaE6qpqhinMmyS8ao7ZS7Jk70sEhs-fjA1_ru_u2SnCi9prxwPe2RD5S3SXEk30Gomt8h2jYdwn0yGulYK210pDElTev_1mb9ntK9zNgxZJ33IikeaFW-0V9vwpllOJ4afM6dGXFOnHZlHbTIbDqbXI6uSWrAAPXRh4YonBDgiThOMeELuKBnjzI8FAwYAiofSR2DCBKSpD5qlz4XYExA4XoohTMwPSCNf5OqQUKYArz1HORKjHTcOBIvDxAUmpINwLekQtvr2EVQ85FoO4zkyeISFkTZXpM0VVebqkIt1k5eShOOvl9vaErUXSyMc_XL_mGxhc7dMUTkhjeJ1qU4x0CiSMzPAvgEFf830
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVQOQAHllLEjg-ckBIcbCfNsVCqslUVakVvUTJ2RAQKCNID_BHfwY8xdlIUIYFQLlnsyMrYnpnMzHuEHCpQAT9hwhFKgoMqoO0k6Yl0_MQHFaIbFIemOPlm4PfH4nIiJ1Wxuq2F0Vrb5DPtmlMby1dPMDW_ynCFcx8PdHbmUfGLsCzX-t5424HlJEUHA90iLoIqiOmx8Hh01T13DVO4yznuwIY8tqaGarwqVq30VshgNqAym-TBnRaJC-8_sBr_PeJVslwZmLRTzog1MqfzJlmZkTfQai03yVINiXCdDHumWgr7nWo0SlN6-_mRv2W0a7I2LFwnvcuKe5oVr7RTC3nTLKdDi9CZU0uvaRKP7KMWGffOR2d9pyJbcAB1dOHgnicleDJOE7R5Qu5pFePajyUDBgCahypA14RJSNMADE6fgNiX0Pb8FI2YmG-QRv6U601CmQa89j3tKbR3RNyWLA4TAUwqDx22ZIuw2bePoEIiN4QYj5H1SFgYGXFFRlxRJa4tcvTd5bmE4fircctIotawFML2L_cPyEJ_dHMdXV8MrnbIIr5KlAkru6RRvEz1HpodRbJvJ9sXAorRRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractal+Belief+R%C3%A9nyi+Divergence+With+its+Applications+in+Pattern+Classification&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Huang%2C+Yingcheng&rft.au=Xiao%2C+Fuyuan&rft.au=Cao%2C+Zehong&rft.au=Lin%2C+Chin-Teng&rft.date=2024-12-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=36&rft.issue=12&rft.spage=8297&rft.epage=8312&rft_id=info:doi/10.1109%2FTKDE.2023.3342907&rft.externalDocID=10363631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon