Unsteady MHD flow of a fractional second grade fluid in a channel passing through a porous medium subject to a time-dependent motion of the bottom plate

The velocity of an unsteady flow of a viscous fluid of the second-grade MHD-type enclosed between two parallel side walls perpendicular to a plate was obtained by applying the integral transformation. The fluid is required to move by the plate, which over time t = 0 + subjected the fluid to shear st...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of modern physics. B, Condensed matter physics, statistical physics, applied physics Vol. 38; no. 17
Main Authors Ullah, Ikram, Ul Haq, Sami, Khan, Zar Ali
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 10.07.2024
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0217-9792
1793-6578
DOI10.1142/S0217979224502138

Cover

Loading…
Abstract The velocity of an unsteady flow of a viscous fluid of the second-grade MHD-type enclosed between two parallel side walls perpendicular to a plate was obtained by applying the integral transformation. The fluid is required to move by the plate, which over time t = 0 + subjected the fluid to shear stress. The solutions satisfy the given equation as well as the boundary and initial conditions, and they were separated into two types: steady state and transient state. Furthermore, through h → ∞ , we are able to recover the results found in the literature for motion across an infinite plate. Graphs depict the effect of the side walls and the time it takes to reach the steady state. The solutions are shown in graphs and discussed physically to examine the impact of different flow parameters. It is found that the fluid velocity decreases with an increasing fractional parameter β and second-grade parameter α . Also, it is noticed that the fluid velocity decreases with increasing values of Reynolds number and effective permeability. Numerous industrial products, including honey, paints, varnishes, coffee, chocolate and jelly, use this type of fluid flow concept.
AbstractList The velocity of an unsteady flow of a viscous fluid of the second-grade MHD-type enclosed between two parallel side walls perpendicular to a plate was obtained by applying the integral transformation. The fluid is required to move by the plate, which over time t=0+ subjected the fluid to shear stress. The solutions satisfy the given equation as well as the boundary and initial conditions, and they were separated into two types: steady state and transient state. Furthermore, through h→∞, we are able to recover the results found in the literature for motion across an infinite plate. Graphs depict the effect of the side walls and the time it takes to reach the steady state. The solutions are shown in graphs and discussed physically to examine the impact of different flow parameters. It is found that the fluid velocity decreases with an increasing fractional parameter β and second-grade parameter α. Also, it is noticed that the fluid velocity decreases with increasing values of Reynolds number and effective permeability. Numerous industrial products, including honey, paints, varnishes, coffee, chocolate and jelly, use this type of fluid flow concept.
The velocity of an unsteady flow of a viscous fluid of the second-grade MHD-type enclosed between two parallel side walls perpendicular to a plate was obtained by applying the integral transformation. The fluid is required to move by the plate, which over time [Formula: see text] subjected the fluid to shear stress. The solutions satisfy the given equation as well as the boundary and initial conditions, and they were separated into two types: steady state and transient state. Furthermore, through [Formula: see text], we are able to recover the results found in the literature for motion across an infinite plate. Graphs depict the effect of the side walls and the time it takes to reach the steady state. The solutions are shown in graphs and discussed physically to examine the impact of different flow parameters. It is found that the fluid velocity decreases with an increasing fractional parameter [Formula: see text] and second-grade parameter [Formula: see text]. Also, it is noticed that the fluid velocity decreases with increasing values of Reynolds number and effective permeability. Numerous industrial products, including honey, paints, varnishes, coffee, chocolate and jelly, use this type of fluid flow concept.
The velocity of an unsteady flow of a viscous fluid of the second-grade MHD-type enclosed between two parallel side walls perpendicular to a plate was obtained by applying the integral transformation. The fluid is required to move by the plate, which over time t = 0 + subjected the fluid to shear stress. The solutions satisfy the given equation as well as the boundary and initial conditions, and they were separated into two types: steady state and transient state. Furthermore, through h → ∞ , we are able to recover the results found in the literature for motion across an infinite plate. Graphs depict the effect of the side walls and the time it takes to reach the steady state. The solutions are shown in graphs and discussed physically to examine the impact of different flow parameters. It is found that the fluid velocity decreases with an increasing fractional parameter β and second-grade parameter α . Also, it is noticed that the fluid velocity decreases with increasing values of Reynolds number and effective permeability. Numerous industrial products, including honey, paints, varnishes, coffee, chocolate and jelly, use this type of fluid flow concept.
Author Khan, Zar Ali
Ullah, Ikram
Ul Haq, Sami
Author_xml – sequence: 1
  givenname: Ikram
  surname: Ullah
  fullname: Ullah, Ikram
– sequence: 2
  givenname: Sami
  surname: Ul Haq
  fullname: Ul Haq, Sami
– sequence: 3
  givenname: Zar Ali
  surname: Khan
  fullname: Khan, Zar Ali
BookMark eNplkU1OwzAQhS1UJNrCAdhZYh2wk8ZJlqj8FKmIBXQdOfa4dZXYwXZU9SYcF0dFbLqa0bzvzdNoZmhirAGEbim5p3SRPnySlBZVUaXpIo9tVl6gaRxkCcuLcoKmo5yM-hWaeb8nhLC0IFP0szE-AJdH_L56wqq1B2wV5lg5LoK2hrfYg7BG4q3jEiIxaIm1iYjYcWOgxT33XpstDjtnh-0uKr2NnccdSD102A_NHkTAwUYp6A4SCT0YCSbgzo4hY2TYAW5sCLbDfcsDXKNLxVsPN391jjYvz1_LVbL-eH1bPq4TkTJWJoVQmYRKMppRtlAFKSSUoqqUKCjN86ZshKpYvihVmivOWQNVIyWXWSSBsSybo7vT3t7Z7wF8qPd2cPFuX8eNOSN5RcpI0RMlnPXegap7pzvujjUl9fiA-uwB0UNOnoN1rfRCx4O10uLfem75BYDoi9I
Cites_doi 10.3390/pr7100665
10.1016/j.aej.2021.11.013
10.1007/s10973-021-10913-0
10.5923/j.am.20110102.14
10.1016/j.aej.2020.05.022
10.1016/j.jksus.2021.101604
10.3390/fluids6080264
10.3390/en15144945
10.1142/S0217979222501703
10.3390/su14159361
10.1016/j.nonrwa.2007.02.014
10.1016/S0020-7462(02)00170-1
10.1016/j.cjph.2020.02.014
10.1002/zamm.200510291
10.1016/j.asej.2021.01.034
10.1016/0020-7462(95)00035-6
10.1016/j.chaos.2020.109631
10.1371/journal.pone.0085099
10.1016/j.amc.2017.08.048
10.1016/0735-1933(83)90016-7
10.1007/BF00651403
10.1007/BF01178551
10.1002/htj.21605
10.3934/math.2020198
10.1016/0017-9310(78)90159-X
10.1016/j.icheatmasstransfer.2022.106157
10.1016/j.aej.2020.05.024
10.1016/j.rinp.2018.09.023
ContentType Journal Article
Copyright 2024, World Scientific Publishing Company
2024. World Scientific Publishing Company
Copyright_xml – notice: 2024, World Scientific Publishing Company
– notice: 2024. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0217979224502138
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1793-6578
ExternalDocumentID 10_1142_S0217979224502138
S0217979224502138
GroupedDBID -~X
0R~
4.4
5GY
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
HZ~
O9-
P2P
P71
RNS
RWJ
TN5
WSP
AAYXX
CITATION
ADMLS
ID FETCH-LOGICAL-c2668-7cf3de9d613164f707de8c99fc71155b8bcf96548f25faa6be9bddad3707e6633
ISSN 0217-9792
IngestDate Fri Jul 25 22:09:29 EDT 2025
Tue Jul 01 02:05:47 EDT 2025
Fri Aug 23 08:19:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords MHD
Side walls
second-grade fluid channel
shear stress
exact solution
integral transformation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2668-7cf3de9d613164f707de8c99fc71155b8bcf96548f25faa6be9bddad3707e6633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6582-0734
PQID 3165605908
PQPubID 2049856
ParticipantIDs crossref_primary_10_1142_S0217979224502138
worldscientific_primary_S0217979224502138
proquest_journals_3165605908
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240710
PublicationDateYYYYMMDD 2024-07-10
PublicationDate_xml – month: 07
  year: 2024
  text: 20240710
  day: 10
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics
PublicationYear 2024
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References S0217979224502138BIB008
S0217979224502138BIB009
Sowmya G. (S0217979224502138BIB004) 2022
Taha A. (S0217979224502138BIB007) 2016; 71
Awan A. U. (S0217979224502138BIB025) 2022; 640
Jha B. K. (S0217979224502138BIB013) 2010; 224
Fetecau C. (S0217979224502138BIB021) 2011; 9
S0217979224502138BIB020
S0217979224502138BIB022
S0217979224502138BIB001
S0217979224502138BIB023
S0217979224502138BIB002
S0217979224502138BIB024
Alshabanat A. (S0217979224502138BIB032) 2020; 8
S0217979224502138BIB026
S0217979224502138BIB005
S0217979224502138BIB027
S0217979224502138BIB006
S0217979224502138BIB028
S0217979224502138BIB029
S0217979224502138BIB019
Caputo M. (S0217979224502138BIB031) 2015; 1
Almutairi B. N. (S0217979224502138BIB012) 2021; 1
S0217979224502138BIB030
S0217979224502138BIB010
Khan M. (S0217979224502138BIB003) 2011; 2
S0217979224502138BIB011
S0217979224502138BIB033
S0217979224502138BIB034
S0217979224502138BIB035
S0217979224502138BIB014
S0217979224502138BIB036
S0217979224502138BIB015
S0217979224502138BIB037
Abro K. A. (S0217979224502138BIB038) 2020
S0217979224502138BIB016
S0217979224502138BIB017
S0217979224502138BIB018
References_xml – ident: S0217979224502138BIB010
  doi: 10.3390/pr7100665
– ident: S0217979224502138BIB011
  doi: 10.1016/j.aej.2021.11.013
– ident: S0217979224502138BIB033
  doi: 10.1007/s10973-021-10913-0
– volume: 2
  start-page: 713
  issue: 2
  year: 2011
  ident: S0217979224502138BIB003
  publication-title: Special Top. Rev. Porous Media Int. J.
– ident: S0217979224502138BIB006
  doi: 10.5923/j.am.20110102.14
– ident: S0217979224502138BIB029
  doi: 10.1016/j.aej.2020.05.022
– ident: S0217979224502138BIB015
  doi: 10.1016/j.jksus.2021.101604
– ident: S0217979224502138BIB016
  doi: 10.3390/fluids6080264
– ident: S0217979224502138BIB030
  doi: 10.3390/en15144945
– ident: S0217979224502138BIB024
  doi: 10.1142/S0217979222501703
– volume: 71
  start-page: 178
  issue: 7
  year: 2016
  ident: S0217979224502138BIB007
  publication-title: Z. Naturforsch
– ident: S0217979224502138BIB034
  doi: 10.3390/su14159361
– volume: 9
  start-page: 816
  issue: 3
  year: 2011
  ident: S0217979224502138BIB021
  publication-title: Central Eur. J. Phys.
– volume: 224
  start-page: 91
  issue: 2
  year: 2010
  ident: S0217979224502138BIB013
  publication-title: J. Mech. Eng.
– volume: 1
  start-page: 87
  year: 2021
  ident: S0217979224502138BIB012
  publication-title: Complexity
– volume: 640
  year: 2022
  ident: S0217979224502138BIB025
  publication-title: Front. Phys.
– ident: S0217979224502138BIB027
  doi: 10.1016/j.nonrwa.2007.02.014
– volume: 1
  start-page: 1
  issue: 2
  year: 2015
  ident: S0217979224502138BIB031
  publication-title: Progr. Fract. Differ. Appl.
– ident: S0217979224502138BIB023
  doi: 10.1016/S0020-7462(02)00170-1
– start-page: 1
  year: 2020
  ident: S0217979224502138BIB038
  publication-title: J. Therm. Anal. Calorim.
– ident: S0217979224502138BIB022
  doi: 10.1016/j.cjph.2020.02.014
– ident: S0217979224502138BIB008
  doi: 10.1002/zamm.200510291
– ident: S0217979224502138BIB020
  doi: 10.1016/j.asej.2021.01.034
– ident: S0217979224502138BIB026
  doi: 10.1016/0020-7462(95)00035-6
– ident: S0217979224502138BIB036
  doi: 10.1016/j.chaos.2020.109631
– volume: 8
  start-page: 64
  year: 2020
  ident: S0217979224502138BIB032
  publication-title: FrP
– ident: S0217979224502138BIB001
  doi: 10.1371/journal.pone.0085099
– ident: S0217979224502138BIB035
  doi: 10.1016/j.amc.2017.08.048
– start-page: 1
  year: 2022
  ident: S0217979224502138BIB004
  publication-title: Waves Random Complex Media
– ident: S0217979224502138BIB017
  doi: 10.1016/0735-1933(83)90016-7
– ident: S0217979224502138BIB018
  doi: 10.1007/BF00651403
– ident: S0217979224502138BIB028
  doi: 10.1007/BF01178551
– ident: S0217979224502138BIB002
  doi: 10.1002/htj.21605
– ident: S0217979224502138BIB037
  doi: 10.3934/math.2020198
– ident: S0217979224502138BIB014
  doi: 10.1016/0017-9310(78)90159-X
– ident: S0217979224502138BIB005
  doi: 10.1016/j.icheatmasstransfer.2022.106157
– ident: S0217979224502138BIB019
  doi: 10.1016/j.aej.2020.05.024
– ident: S0217979224502138BIB009
  doi: 10.1016/j.rinp.2018.09.023
SSID ssj0006270
Score 2.3924649
Snippet The velocity of an unsteady flow of a viscous fluid of the second-grade MHD-type enclosed between two parallel side walls perpendicular to a plate was obtained...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Equilibrium flow
Fluid dynamics
Fluid flow
Graphs
Initial conditions
Integral transforms
Magnetohydrodynamic flow
Magnetohydrodynamics
Parameters
Plates (structural members)
Porous media
Reynolds number
Shear stress
Steady state
Time dependence
Unsteady flow
Varnishes
Viscous fluids
Title Unsteady MHD flow of a fractional second grade fluid in a channel passing through a porous medium subject to a time-dependent motion of the bottom plate
URI http://www.worldscientific.com/doi/abs/10.1142/S0217979224502138
https://www.proquest.com/docview/3165605908
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVEhcqvIShYL2wAUsh_gVZ4-BggIiCIlGqrhYa3u3jajjEjuq4JfwUzkys7OOHdID5WJZu5tx5Pm8_mY8D8aeh17uxfEwdLWKAhd3P1eoIHXTUAktIy-IJGYjzz6NpvPww2l02uv97kQtret0kP28Nq_kf7QKY6BXzJK9gWY3QmEAzkG_cAQNw_GfdDxfGh39cGbTY0dflFeU7ahXlK2AqSBo7-bO2UrmClasF1hqCRMizyUGuDiXwJ0pYYra9UgH-DhGxeI393XhVOsUHTXIUKXpQ-82XXNrhxoANUEG2JKsLLArdb0VXbTtcuwUqiioCxu5VqqB89r4bEuUXQELLkzhz2Ya5zD3yZSVxuSxdlhaHm2HGgTNAd_GZfT-20oW7agzld_JFV4sNm-bc3IDf5UrZ3Kx6HpC_BBdrDYm1uy3JvrIbIkmzKrryNvdXMEUc0VMffgGijZ_2KswFGjcfTsE4-5TEF__1gl9890bZKJIP4zg1P5wu5j3zppbbM8HA8fvs73J8ezjlw2LGPkx-Qft_7Rf5OFSr3aEbHOq1lDaN1V3q80d6TCnkwO2b00ePiH83mU9tbzHbn8mdd1nvxoUc0AxRxTzUnPJWxRzQjE3KOYGxXyxhCUWxdyimFsUwwyhmBOKuUUxr0uY2kYxJxTjJQHFnFDMDYofsPm7tydvpq7tF-JmQDPHbpzpIFciB4bqjUIdD-NcjTMhdBaD3ROl4zTTYgQmuvYjLeUoVSLNc5kHsFIB8w4esv6yXKpHjEfAY4WXKeCvErYzKYZa-J5OZRiAkCg7ZC-bO55cUlmYhFL8_WRHPYfsqNFJYh-zKglM2atIDGH6xV962ojcEfX4BmufsDvtU3LE-vVqrZ4Cg67TZxZsfwD45sww
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsteady+MHD+flow+of+a+fractional+second+grade+fluid+in+a+channel+passing+through+a+porous+medium+subject+to+a+time-dependent+motion+of+the+bottom+plate&rft.jtitle=International+journal+of+modern+physics.+B%2C+Condensed+matter+physics%2C+statistical+physics%2C+applied+physics&rft.au=Ullah%2C+Ikram&rft.au=Ul+Haq%2C+Sami&rft.au=Khan%2C+Zar+Ali&rft.date=2024-07-10&rft.pub=World+Scientific+Publishing+Company&rft.issn=0217-9792&rft.eissn=1793-6578&rft.volume=38&rft.issue=17&rft_id=info:doi/10.1142%2FS0217979224502138&rft.externalDocID=S0217979224502138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0217-9792&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0217-9792&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0217-9792&client=summon