RECOGNITION OF ATRIAL FIBRILLATION BASED ON CNN-LSTM AND LAPLACIAN SUPPORT VECTOR MACHINE

Atrial fibrillation (AF) is a common arrhythmia associated with cardiac death and stroke. Therefore, the early detection of AF is of critical importance and the wearable long-term ECG monitoring system is one promising way. In order to assist the cardiologists in identifying potential AF in a tremen...

Full description

Saved in:
Bibliographic Details
Published inJournal of mechanics in medicine and biology Vol. 24; no. 4
Main Authors WANG, YING, LI, YONGJIAN, CHEN, MENG, HUO, RUI, LIU, LEI, LIANG, YESONG, WEI, SHOUSHUI
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.05.2024
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0219-5194
1793-6810
DOI10.1142/S0219519423500914

Cover

Loading…
Abstract Atrial fibrillation (AF) is a common arrhythmia associated with cardiac death and stroke. Therefore, the early detection of AF is of critical importance and the wearable long-term ECG monitoring system is one promising way. In order to assist the cardiologists in identifying potential AF in a tremendous amount of long-term ECG data, this study proposed an automatic detector combining deep learning and semi-supervised learning in view of the difficulty of obtaining a large number of labeled data in clinical practice. Three R-R interval features and two nonlinear features extracted from ECG samples, combined with 16-dimension deep learning features extracted by CNN-LSTM, are put into the semi-supervised machine learning model Laplacian Support Vector Machine (LapSVM) for AF detection. The proposed method showed very promising performance, with an accuracy of 99.63%, a sensitivity of 99.70%, a specificity of 99.57% and an F_score of 99.59% on the AFDB dataset. It still achieved an accuracy of 98% when the proportion of the training set was reduced, and achieved an accuracy of 96% on the SPHD collected clinically. The results show that the proposed method can classify AF and non-AF with a higher accuracy, and has excellent generalization performance in different categories of subjects, which is in line with clinical scenarios. The proposed method is also conducive to solving the clinical cases with little labeled data.
AbstractList Atrial fibrillation (AF) is a common arrhythmia associated with cardiac death and stroke. Therefore, the early detection of AF is of critical importance and the wearable long-term ECG monitoring system is one promising way. In order to assist the cardiologists in identifying potential AF in a tremendous amount of long-term ECG data, this study proposed an automatic detector combining deep learning and semi-supervised learning in view of the difficulty of obtaining a large number of labeled data in clinical practice. Three R-R interval features and two nonlinear features extracted from ECG samples, combined with 16-dimension deep learning features extracted by CNN-LSTM, are put into the semi-supervised machine learning model Laplacian Support Vector Machine (LapSVM) for AF detection. The proposed method showed very promising performance, with an accuracy of 99.63%, a sensitivity of 99.70%, a specificity of 99.57% and an F_score of 99.59% on the AFDB dataset. It still achieved an accuracy of 98% when the proportion of the training set was reduced, and achieved an accuracy of 96% on the SPHD collected clinically. The results show that the proposed method can classify AF and non-AF with a higher accuracy, and has excellent generalization performance in different categories of subjects, which is in line with clinical scenarios. The proposed method is also conducive to solving the clinical cases with little labeled data.
Author HUO, RUI
WEI, SHOUSHUI
LIU, LEI
LI, YONGJIAN
CHEN, MENG
LIANG, YESONG
WANG, YING
Author_xml – sequence: 1
  givenname: YING
  surname: WANG
  fullname: WANG, YING
– sequence: 2
  givenname: YONGJIAN
  surname: LI
  fullname: LI, YONGJIAN
– sequence: 3
  givenname: MENG
  surname: CHEN
  fullname: CHEN, MENG
– sequence: 4
  givenname: RUI
  surname: HUO
  fullname: HUO, RUI
– sequence: 5
  givenname: LEI
  surname: LIU
  fullname: LIU, LEI
– sequence: 6
  givenname: YESONG
  surname: LIANG
  fullname: LIANG, YESONG
– sequence: 7
  givenname: SHOUSHUI
  surname: WEI
  fullname: WEI, SHOUSHUI
BookMark eNplkEtvgkAUhSeNTaq2P6C7SbqmnRfDsBwRdZIpGMAmXZERhgRjwYKm6b8v1qYbV_dxzndvciZg1LSNBeARo2eMGXlJEcG-i31GqIuQj9kNGGPPpw4XGI3A-Cw7Z_0OTPp-h4aZITEG70kYxMtIZSqOYLyAMkuU1HChZonSWv6uZzIN53BogihydJq9QhnNoZZrLQMlI5hu1us4yeBbGGRxAl9lsFJReA9uK7Pv7cNfnYLNIsyClaPjpQqkdgrCOXNEiYlXGN8WBaGk4lQIWrqiYlvDS0Q480vDaIUsFcQSjITBwqNbSq3ZYpcaOgVPl7uHrv082f6Y79pT1wwvc4q5yz3OBRpc-OIqurbvO1vlh67-MN13jlF-TjC_SnBg0IX5art92Re1bY51VRf_6DXyA5itavo
Cites_doi 10.1007/s11517-018-1815-2
10.1016/j.eswa.2018.04.031
10.1109/EMBC.2017.8037728
10.1088/1361-6579/aad5bd
10.1109/EMBC.2017.8037253
10.1161/01.CIR.101.23.e215
10.1109/JBHI.2018.2858789
10.1109/JBHI.2022.3173655
10.1016/j.neucom.2018.01.080
10.1142/S0219519418400341
10.3390/s21165302
10.3390/e20120904
10.1142/S0218194019400011
10.1016/j.eswa.2018.08.011
10.1162/neco.1997.9.8.1735
10.3390/ijms23010006
10.1109/ACCESS.2019.2939822
10.1145/3338472.3338485
10.1038/s41580-021-00407-0
10.1109/TBME.2016.2631620
10.1109/CISP-BMEI53629.2021.9624322
10.1109/TIE.2019.2945265
10.1016/j.ins.2014.09.050
10.1073/pnas.88.6.2297
10.1152/ajpheart.2000.278.6.H2039
10.1109/ICCH.2012.6724485
ContentType Journal Article
Copyright 2024, World Scientific Publishing Company
2024. World Scientific Publishing Company
Copyright_xml – notice: 2024, World Scientific Publishing Company
– notice: 2024. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0219519423500914
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1793-6810
ExternalDocumentID 10_1142_S0219519423500914
S0219519423500914
GroupedDBID 0R~
4.4
53G
5GY
ABDBF
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
CS3
DU5
EAD
EAP
EBD
EBS
EJD
EMK
EOJEC
EPL
ESX
F5P
HZ~
I-F
MK~
ML~
O9-
OBODZ
P2P
P71
RWJ
TUS
AAYXX
ACUHS
CITATION
ID FETCH-LOGICAL-c2664-8d127ca9ecc232f63883d58f4ba6d02649da43f0e382e2108a1873b33eab153a3
ISSN 0219-5194
IngestDate Mon Jun 30 12:37:23 EDT 2025
Tue Jul 01 04:02:21 EDT 2025
Fri Aug 23 08:19:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Laplacian support vector machine
electrocardiogram
semi-supervised learning
CNN-LSTM
Atrial fibrillation detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2664-8d127ca9ecc232f63883d58f4ba6d02649da43f0e382e2108a1873b33eab153a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8054-4400
PQID 3165676680
PQPubID 2049871
ParticipantIDs crossref_primary_10_1142_S0219519423500914
worldscientific_primary_S0219519423500914
proquest_journals_3165676680
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240500
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 20240500
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of mechanics in medicine and biology
PublicationYear 2024
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References Zhou F (S0219519423500914BIB010) 2021; 35
S0219519423500914BIB020
S0219519423500914BIB009
S0219519423500914BIB008
S0219519423500914BIB007
S0219519423500914BIB029
S0219519423500914BIB002
S0219519423500914BIB024
S0219519423500914BIB001
S0219519423500914BIB023
S0219519423500914BIB022
S0219519423500914BIB021
S0219519423500914BIB006
S0219519423500914BIB028
S0219519423500914BIB005
Liu Z (S0219519423500914BIB027) 2016; 37
S0219519423500914BIB004
S0219519423500914BIB026
S0219519423500914BIB003
S0219519423500914BIB030
S0219519423500914BIB019
S0219519423500914BIB013
S0219519423500914BIB012
S0219519423500914BIB011
S0219519423500914BIB017
S0219519423500914BIB016
S0219519423500914BIB015
S0219519423500914BIB014
Belkin M (S0219519423500914BIB018) 2006; 7
Moody GB (S0219519423500914BIB025) 1983; 10
References_xml – volume: 7
  start-page: 2399
  issue: 1
  year: 2006
  ident: S0219519423500914BIB018
  publication-title: J Mach Learn Res
– volume: 35
  start-page: 1
  issue: 3
  year: 2021
  ident: S0219519423500914BIB010
  publication-title: J Electron Meas Instrum
– ident: S0219519423500914BIB015
  doi: 10.1007/s11517-018-1815-2
– ident: S0219519423500914BIB020
  doi: 10.1016/j.eswa.2018.04.031
– ident: S0219519423500914BIB029
  doi: 10.1109/EMBC.2017.8037728
– ident: S0219519423500914BIB004
  doi: 10.1088/1361-6579/aad5bd
– ident: S0219519423500914BIB009
  doi: 10.1109/EMBC.2017.8037253
– ident: S0219519423500914BIB026
  doi: 10.1161/01.CIR.101.23.e215
– ident: S0219519423500914BIB002
  doi: 10.1109/JBHI.2018.2858789
– ident: S0219519423500914BIB017
  doi: 10.1109/JBHI.2022.3173655
– ident: S0219519423500914BIB019
  doi: 10.1016/j.neucom.2018.01.080
– volume: 37
  start-page: 2749
  issue: 12
  year: 2016
  ident: S0219519423500914BIB027
  publication-title: J Chin Mini-Micro Comput Syst
– ident: S0219519423500914BIB014
  doi: 10.1142/S0219519418400341
– ident: S0219519423500914BIB030
  doi: 10.3390/s21165302
– ident: S0219519423500914BIB022
  doi: 10.3390/e20120904
– ident: S0219519423500914BIB013
  doi: 10.1142/S0218194019400011
– ident: S0219519423500914BIB011
  doi: 10.1016/j.eswa.2018.08.011
– ident: S0219519423500914BIB012
  doi: 10.1162/neco.1997.9.8.1735
– ident: S0219519423500914BIB001
  doi: 10.3390/ijms23010006
– ident: S0219519423500914BIB003
  doi: 10.1109/ACCESS.2019.2939822
– volume: 10
  start-page: 227
  year: 1983
  ident: S0219519423500914BIB025
  publication-title: Comput Cardiol
– ident: S0219519423500914BIB005
  doi: 10.1145/3338472.3338485
– ident: S0219519423500914BIB006
  doi: 10.1038/s41580-021-00407-0
– ident: S0219519423500914BIB016
  doi: 10.1109/TBME.2016.2631620
– ident: S0219519423500914BIB008
  doi: 10.1109/CISP-BMEI53629.2021.9624322
– ident: S0219519423500914BIB007
  doi: 10.1109/TIE.2019.2945265
– ident: S0219519423500914BIB021
  doi: 10.1016/j.ins.2014.09.050
– ident: S0219519423500914BIB023
  doi: 10.1073/pnas.88.6.2297
– ident: S0219519423500914BIB024
  doi: 10.1152/ajpheart.2000.278.6.H2039
– ident: S0219519423500914BIB028
  doi: 10.1109/ICCH.2012.6724485
SSID ssj0021408
Score 2.2961771
Snippet Atrial fibrillation (AF) is a common arrhythmia associated with cardiac death and stroke. Therefore, the early detection of AF is of critical importance and...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Accuracy
Artificial neural networks
Cardiac arrhythmia
Deep learning
Feature extraction
Fibrillation
Machine learning
Research Article
Semi-supervised learning
Support vector machines
Title RECOGNITION OF ATRIAL FIBRILLATION BASED ON CNN-LSTM AND LAPLACIAN SUPPORT VECTOR MACHINE
URI http://www.worldscientific.com/doi/abs/10.1142/S0219519423500914
https://www.proquest.com/docview/3165676680
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nj5NAFJ_Ubky8bPyMq6uZgxclrO0MpfRIWbAYCg2lpj2RoQybNZEatz3o1X_cNzN8aVejXsiEw4PM-837fm8QekXzCSPbEdfFaBFdjNDSGRHHnXEL1JNlDk3ROzwPzdnKeL8erXu9752qpcM-u9h-u7Wv5H-4Cu-Ar6JL9h842xCFF7AG_sITOAzPv-Jx7DrRu9CXF-dEnmYnsW8HmudPY_DR1X06U3vpXmqwcMJQD5bJXM6TCuxFYDu-HWrL1WIRxYn2wXWSKNbmtjPzQ_c3JusnLvqExVzn67LJysv0QzXLqQ3PKxGyqRWjKPmRdQObXXn1sQNJp-oOEdW1LcRk_DY-XHdjEsRoKwCV5JN1QFI4yYKnbkjN2V1oiz2Xoq8tXBLiDmSnDvakCi9wJY5BeuhiYlpXXque6wqXxu1qwCAyEQ0kBUVCR2BKDo1W59V5_jBKvVUQpIm7Tu6gEwK-BumjE3t6OfUavx18UKnQ6x-skuPwkbdHn_jZvGl9llM5APem2ZKOEZPcR6cVK7GtoPQA9Xj5EN1V95F-fYQ2HUDhyMMKULgLKCwBhWFRAwoDoHADKFwBCitA4QpQj9HKcxNnpld3b-hbMNkM3cqHZLxlEzjhYHMXIKUtmo-swsiYmYPfbkxyZtBiwKlFOBxuiw2tMc0o5SwDJcroE9QvdyV_irCIvwwGeVbQghtgGrCxycdDknOTmwys9zP0pt6y9LMasZKqdnmSHu3vGTqvNzWtTuJNSsUIqbFpWkDr9S8b3ZA8IvXsz6Seo3sttM9Rf__lwF-AAbrPXlYA-QEpsnJP
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RECOGNITION+OF+ATRIAL+FIBRILLATION+BASED+ON+CNN-LSTM+AND+LAPLACIAN+SUPPORT+VECTOR+MACHINE&rft.jtitle=Journal+of+mechanics+in+medicine+and+biology&rft.au=Wang%2C+Ying&rft.au=Li%2C+Yongjian&rft.au=Chen%2C+Meng&rft.au=Huo%2C+Rui&rft.date=2024-05-01&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0219-5194&rft.eissn=1793-6810&rft.volume=24&rft.issue=4&rft_id=info:doi/10.1142%2FS0219519423500914&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-5194&client=summon