RECOGNITION OF ATRIAL FIBRILLATION BASED ON CNN-LSTM AND LAPLACIAN SUPPORT VECTOR MACHINE
Atrial fibrillation (AF) is a common arrhythmia associated with cardiac death and stroke. Therefore, the early detection of AF is of critical importance and the wearable long-term ECG monitoring system is one promising way. In order to assist the cardiologists in identifying potential AF in a tremen...
Saved in:
Published in | Journal of mechanics in medicine and biology Vol. 24; no. 4 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
01.05.2024
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0219-5194 1793-6810 |
DOI | 10.1142/S0219519423500914 |
Cover
Loading…
Abstract | Atrial fibrillation (AF) is a common arrhythmia associated with cardiac death and stroke. Therefore, the early detection of AF is of critical importance and the wearable long-term ECG monitoring system is one promising way. In order to assist the cardiologists in identifying potential AF in a tremendous amount of long-term ECG data, this study proposed an automatic detector combining deep learning and semi-supervised learning in view of the difficulty of obtaining a large number of labeled data in clinical practice. Three R-R interval features and two nonlinear features extracted from ECG samples, combined with 16-dimension deep learning features extracted by CNN-LSTM, are put into the semi-supervised machine learning model Laplacian Support Vector Machine (LapSVM) for AF detection. The proposed method showed very promising performance, with an accuracy of 99.63%, a sensitivity of 99.70%, a specificity of 99.57% and an F_score of 99.59% on the AFDB dataset. It still achieved an accuracy of 98% when the proportion of the training set was reduced, and achieved an accuracy of 96% on the SPHD collected clinically. The results show that the proposed method can classify AF and non-AF with a higher accuracy, and has excellent generalization performance in different categories of subjects, which is in line with clinical scenarios. The proposed method is also conducive to solving the clinical cases with little labeled data. |
---|---|
AbstractList | Atrial fibrillation (AF) is a common arrhythmia associated with cardiac death and stroke. Therefore, the early detection of AF is of critical importance and the wearable long-term ECG monitoring system is one promising way. In order to assist the cardiologists in identifying potential AF in a tremendous amount of long-term ECG data, this study proposed an automatic detector combining deep learning and semi-supervised learning in view of the difficulty of obtaining a large number of labeled data in clinical practice. Three R-R interval features and two nonlinear features extracted from ECG samples, combined with 16-dimension deep learning features extracted by CNN-LSTM, are put into the semi-supervised machine learning model Laplacian Support Vector Machine (LapSVM) for AF detection. The proposed method showed very promising performance, with an accuracy of 99.63%, a sensitivity of 99.70%, a specificity of 99.57% and an F_score of 99.59% on the AFDB dataset. It still achieved an accuracy of 98% when the proportion of the training set was reduced, and achieved an accuracy of 96% on the SPHD collected clinically. The results show that the proposed method can classify AF and non-AF with a higher accuracy, and has excellent generalization performance in different categories of subjects, which is in line with clinical scenarios. The proposed method is also conducive to solving the clinical cases with little labeled data. |
Author | HUO, RUI WEI, SHOUSHUI LIU, LEI LI, YONGJIAN CHEN, MENG LIANG, YESONG WANG, YING |
Author_xml | – sequence: 1 givenname: YING surname: WANG fullname: WANG, YING – sequence: 2 givenname: YONGJIAN surname: LI fullname: LI, YONGJIAN – sequence: 3 givenname: MENG surname: CHEN fullname: CHEN, MENG – sequence: 4 givenname: RUI surname: HUO fullname: HUO, RUI – sequence: 5 givenname: LEI surname: LIU fullname: LIU, LEI – sequence: 6 givenname: YESONG surname: LIANG fullname: LIANG, YESONG – sequence: 7 givenname: SHOUSHUI surname: WEI fullname: WEI, SHOUSHUI |
BookMark | eNplkEtvgkAUhSeNTaq2P6C7SbqmnRfDsBwRdZIpGMAmXZERhgRjwYKm6b8v1qYbV_dxzndvciZg1LSNBeARo2eMGXlJEcG-i31GqIuQj9kNGGPPpw4XGI3A-Cw7Z_0OTPp-h4aZITEG70kYxMtIZSqOYLyAMkuU1HChZonSWv6uZzIN53BogihydJq9QhnNoZZrLQMlI5hu1us4yeBbGGRxAl9lsFJReA9uK7Pv7cNfnYLNIsyClaPjpQqkdgrCOXNEiYlXGN8WBaGk4lQIWrqiYlvDS0Q480vDaIUsFcQSjITBwqNbSq3ZYpcaOgVPl7uHrv082f6Y79pT1wwvc4q5yz3OBRpc-OIqurbvO1vlh67-MN13jlF-TjC_SnBg0IX5art92Re1bY51VRf_6DXyA5itavo |
Cites_doi | 10.1007/s11517-018-1815-2 10.1016/j.eswa.2018.04.031 10.1109/EMBC.2017.8037728 10.1088/1361-6579/aad5bd 10.1109/EMBC.2017.8037253 10.1161/01.CIR.101.23.e215 10.1109/JBHI.2018.2858789 10.1109/JBHI.2022.3173655 10.1016/j.neucom.2018.01.080 10.1142/S0219519418400341 10.3390/s21165302 10.3390/e20120904 10.1142/S0218194019400011 10.1016/j.eswa.2018.08.011 10.1162/neco.1997.9.8.1735 10.3390/ijms23010006 10.1109/ACCESS.2019.2939822 10.1145/3338472.3338485 10.1038/s41580-021-00407-0 10.1109/TBME.2016.2631620 10.1109/CISP-BMEI53629.2021.9624322 10.1109/TIE.2019.2945265 10.1016/j.ins.2014.09.050 10.1073/pnas.88.6.2297 10.1152/ajpheart.2000.278.6.H2039 10.1109/ICCH.2012.6724485 |
ContentType | Journal Article |
Copyright | 2024, World Scientific Publishing Company 2024. World Scientific Publishing Company |
Copyright_xml | – notice: 2024, World Scientific Publishing Company – notice: 2024. World Scientific Publishing Company |
DBID | AAYXX CITATION |
DOI | 10.1142/S0219519423500914 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1793-6810 |
ExternalDocumentID | 10_1142_S0219519423500914 S0219519423500914 |
GroupedDBID | 0R~ 4.4 53G 5GY ABDBF ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 DU5 EAD EAP EBD EBS EJD EMK EOJEC EPL ESX F5P HZ~ I-F MK~ ML~ O9- OBODZ P2P P71 RWJ TUS AAYXX ACUHS CITATION |
ID | FETCH-LOGICAL-c2664-8d127ca9ecc232f63883d58f4ba6d02649da43f0e382e2108a1873b33eab153a3 |
ISSN | 0219-5194 |
IngestDate | Mon Jun 30 12:37:23 EDT 2025 Tue Jul 01 04:02:21 EDT 2025 Fri Aug 23 08:19:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Laplacian support vector machine electrocardiogram semi-supervised learning CNN-LSTM Atrial fibrillation detection |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2664-8d127ca9ecc232f63883d58f4ba6d02649da43f0e382e2108a1873b33eab153a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8054-4400 |
PQID | 3165676680 |
PQPubID | 2049871 |
ParticipantIDs | crossref_primary_10_1142_S0219519423500914 worldscientific_primary_S0219519423500914 proquest_journals_3165676680 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240500 2024-05-00 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 20240500 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of mechanics in medicine and biology |
PublicationYear | 2024 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | Zhou F (S0219519423500914BIB010) 2021; 35 S0219519423500914BIB020 S0219519423500914BIB009 S0219519423500914BIB008 S0219519423500914BIB007 S0219519423500914BIB029 S0219519423500914BIB002 S0219519423500914BIB024 S0219519423500914BIB001 S0219519423500914BIB023 S0219519423500914BIB022 S0219519423500914BIB021 S0219519423500914BIB006 S0219519423500914BIB028 S0219519423500914BIB005 Liu Z (S0219519423500914BIB027) 2016; 37 S0219519423500914BIB004 S0219519423500914BIB026 S0219519423500914BIB003 S0219519423500914BIB030 S0219519423500914BIB019 S0219519423500914BIB013 S0219519423500914BIB012 S0219519423500914BIB011 S0219519423500914BIB017 S0219519423500914BIB016 S0219519423500914BIB015 S0219519423500914BIB014 Belkin M (S0219519423500914BIB018) 2006; 7 Moody GB (S0219519423500914BIB025) 1983; 10 |
References_xml | – volume: 7 start-page: 2399 issue: 1 year: 2006 ident: S0219519423500914BIB018 publication-title: J Mach Learn Res – volume: 35 start-page: 1 issue: 3 year: 2021 ident: S0219519423500914BIB010 publication-title: J Electron Meas Instrum – ident: S0219519423500914BIB015 doi: 10.1007/s11517-018-1815-2 – ident: S0219519423500914BIB020 doi: 10.1016/j.eswa.2018.04.031 – ident: S0219519423500914BIB029 doi: 10.1109/EMBC.2017.8037728 – ident: S0219519423500914BIB004 doi: 10.1088/1361-6579/aad5bd – ident: S0219519423500914BIB009 doi: 10.1109/EMBC.2017.8037253 – ident: S0219519423500914BIB026 doi: 10.1161/01.CIR.101.23.e215 – ident: S0219519423500914BIB002 doi: 10.1109/JBHI.2018.2858789 – ident: S0219519423500914BIB017 doi: 10.1109/JBHI.2022.3173655 – ident: S0219519423500914BIB019 doi: 10.1016/j.neucom.2018.01.080 – volume: 37 start-page: 2749 issue: 12 year: 2016 ident: S0219519423500914BIB027 publication-title: J Chin Mini-Micro Comput Syst – ident: S0219519423500914BIB014 doi: 10.1142/S0219519418400341 – ident: S0219519423500914BIB030 doi: 10.3390/s21165302 – ident: S0219519423500914BIB022 doi: 10.3390/e20120904 – ident: S0219519423500914BIB013 doi: 10.1142/S0218194019400011 – ident: S0219519423500914BIB011 doi: 10.1016/j.eswa.2018.08.011 – ident: S0219519423500914BIB012 doi: 10.1162/neco.1997.9.8.1735 – ident: S0219519423500914BIB001 doi: 10.3390/ijms23010006 – ident: S0219519423500914BIB003 doi: 10.1109/ACCESS.2019.2939822 – volume: 10 start-page: 227 year: 1983 ident: S0219519423500914BIB025 publication-title: Comput Cardiol – ident: S0219519423500914BIB005 doi: 10.1145/3338472.3338485 – ident: S0219519423500914BIB006 doi: 10.1038/s41580-021-00407-0 – ident: S0219519423500914BIB016 doi: 10.1109/TBME.2016.2631620 – ident: S0219519423500914BIB008 doi: 10.1109/CISP-BMEI53629.2021.9624322 – ident: S0219519423500914BIB007 doi: 10.1109/TIE.2019.2945265 – ident: S0219519423500914BIB021 doi: 10.1016/j.ins.2014.09.050 – ident: S0219519423500914BIB023 doi: 10.1073/pnas.88.6.2297 – ident: S0219519423500914BIB024 doi: 10.1152/ajpheart.2000.278.6.H2039 – ident: S0219519423500914BIB028 doi: 10.1109/ICCH.2012.6724485 |
SSID | ssj0021408 |
Score | 2.2961771 |
Snippet | Atrial fibrillation (AF) is a common arrhythmia associated with cardiac death and stroke. Therefore, the early detection of AF is of critical importance and... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Accuracy Artificial neural networks Cardiac arrhythmia Deep learning Feature extraction Fibrillation Machine learning Research Article Semi-supervised learning Support vector machines |
Title | RECOGNITION OF ATRIAL FIBRILLATION BASED ON CNN-LSTM AND LAPLACIAN SUPPORT VECTOR MACHINE |
URI | http://www.worldscientific.com/doi/abs/10.1142/S0219519423500914 https://www.proquest.com/docview/3165676680 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nj5NAFJ_Ubky8bPyMq6uZgxclrO0MpfRIWbAYCg2lpj2RoQybNZEatz3o1X_cNzN8aVejXsiEw4PM-837fm8QekXzCSPbEdfFaBFdjNDSGRHHnXEL1JNlDk3ROzwPzdnKeL8erXu9752qpcM-u9h-u7Wv5H-4Cu-Ar6JL9h842xCFF7AG_sITOAzPv-Jx7DrRu9CXF-dEnmYnsW8HmudPY_DR1X06U3vpXmqwcMJQD5bJXM6TCuxFYDu-HWrL1WIRxYn2wXWSKNbmtjPzQ_c3JusnLvqExVzn67LJysv0QzXLqQ3PKxGyqRWjKPmRdQObXXn1sQNJp-oOEdW1LcRk_DY-XHdjEsRoKwCV5JN1QFI4yYKnbkjN2V1oiz2Xoq8tXBLiDmSnDvakCi9wJY5BeuhiYlpXXque6wqXxu1qwCAyEQ0kBUVCR2BKDo1W59V5_jBKvVUQpIm7Tu6gEwK-BumjE3t6OfUavx18UKnQ6x-skuPwkbdHn_jZvGl9llM5APem2ZKOEZPcR6cVK7GtoPQA9Xj5EN1V95F-fYQ2HUDhyMMKULgLKCwBhWFRAwoDoHADKFwBCitA4QpQj9HKcxNnpld3b-hbMNkM3cqHZLxlEzjhYHMXIKUtmo-swsiYmYPfbkxyZtBiwKlFOBxuiw2tMc0o5SwDJcroE9QvdyV_irCIvwwGeVbQghtgGrCxycdDknOTmwys9zP0pt6y9LMasZKqdnmSHu3vGTqvNzWtTuJNSsUIqbFpWkDr9S8b3ZA8IvXsz6Seo3sttM9Rf__lwF-AAbrPXlYA-QEpsnJP |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RECOGNITION+OF+ATRIAL+FIBRILLATION+BASED+ON+CNN-LSTM+AND+LAPLACIAN+SUPPORT+VECTOR+MACHINE&rft.jtitle=Journal+of+mechanics+in+medicine+and+biology&rft.au=Wang%2C+Ying&rft.au=Li%2C+Yongjian&rft.au=Chen%2C+Meng&rft.au=Huo%2C+Rui&rft.date=2024-05-01&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0219-5194&rft.eissn=1793-6810&rft.volume=24&rft.issue=4&rft_id=info:doi/10.1142%2FS0219519423500914&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-5194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-5194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-5194&client=summon |