Multi-attribute decision making parametric optimization and modeling in hard turning using ceramic insert through grey relational analysis: A case study

Machining of hardened work materials with appropriate levels of process parameters is still a burning issue in manufacturing sectors and challenging. It is because of pressing demand of surface quality which adversely affected by evolution of tool wear. Therefore the present investigation is underta...

Full description

Saved in:
Bibliographic Details
Published inDecision Science Letters Vol. 5; no. 4; pp. 581 - 592
Main Authors Panda, Amlana, Sahoo, Ashok Kumar, Rout, Arun Kumar
Format Journal Article
LanguageEnglish
Published Growing Science 2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machining of hardened work materials with appropriate levels of process parameters is still a burning issue in manufacturing sectors and challenging. It is because of pressing demand of surface quality which adversely affected by evolution of tool wear. Therefore the present investigation is undertaken to make a decision on parametric optimization of multi-responses such as flank wear and surface roughness during machining hardened AISI 52100 steel (55±1) steel using mixed ceramic insert under dry environment through grey relational analysis combined with Taguchi approach. Also predicted mathematical models of 1st and 2nd order have been developed for responses and checked for its accuracy. Second order mathematical model presented higher R2 value and represents best fit of the model and adequate compared to first order model. Model indicates good correlations between the experimental and predicted results. The proposed grey-based Taguchi methodology has been proved to be efficient for solving multi-attribute decision making problem as a case study in hard machining environment.
AbstractList Machining of hardened work materials with appropriate levels of process parameters is still a burning issue in manufacturing sectors and challenging. It is because of pressing demand of surface quality which adversely affected by evolution of tool wear. Therefore the present investigation is undertaken to make a decision on parametric optimization of multi-responses such as flank wear and surface roughness during machining hardened AISI 52100 steel (55±1) steel using mixed ceramic insert under dry environment through grey relational analysis combined with Taguchi approach. Also predicted mathematical models of 1st and 2nd order have been developed for responses and checked for its accuracy. Second order mathematical model presented higher R2 value and represents best fit of the model and adequate compared to first order model. Model indicates good correlations between the experimental and predicted results. The proposed grey-based Taguchi methodology has been proved to be efficient for solving multi-attribute decision making problem as a case study in hard machining environment.
Author Rout, Arun Kumar
Sahoo, Ashok Kumar
Panda, Amlana
Author_xml – sequence: 1
  givenname: Amlana
  surname: Panda
  fullname: Panda, Amlana
– sequence: 2
  givenname: Ashok Kumar
  surname: Sahoo
  fullname: Sahoo, Ashok Kumar
– sequence: 3
  givenname: Arun Kumar
  surname: Rout
  fullname: Rout, Arun Kumar
BookMark eNp1kc1u3CAURlGUSEnT7LPkBezyZ7C7i6K2iZSqm3aNrgHPMMVmBHgxfZI-bvGk7aJSN8Dlco6A7w26XOLiELqnpO2YVO8Orc2hZYTKlreE0At0Qwc2NF1P2eXfNRHX6C5nP5KOKE4klTfo5-c1FN9AKcmPa3HYOuOzjwue4btfdvgICWZXuwbHY_Gz_wFla8Ni8RytC9shv-A9JIvLmpatXvM2GlfRyvklu1Rw2ae47vZ4l9wJJxfOHgjVBOGUfX6PH7CB7HAuqz29RVcThOzufs-36NvHD18fn5qXL5-eHx9eGsOkpE1HJRMCuGUgR9cpaWXvCHXE9Hzq-ChgGoQZJmW5MeMk-QS8fgdziqheTSO_Rc-vXhvhoI_Jz5BOOoLX542YdhpS8SY4DYMSgxiYHDshHKcjU4PtJVNM9VLyrrrkq8ukmHNykza-nJ9ZEvigKdFbXPqga1x6i0tzXeOqIPkH_HOR_yK_AGP7nkk
CitedBy_id crossref_primary_10_1016_j_matpr_2018_06_147
crossref_primary_10_1016_j_aime_2023_100115
crossref_primary_10_1016_j_conbuildmat_2022_126315
crossref_primary_10_1088_1742_6596_1240_1_012121
crossref_primary_10_1007_s10668_022_02283_w
crossref_primary_10_1007_s40430_020_02327_0
crossref_primary_10_1007_s10098_022_02298_x
crossref_primary_10_1088_2051_672X_ac2796
crossref_primary_10_3390_ma14040808
crossref_primary_10_1016_j_renene_2021_12_053
crossref_primary_10_1016_j_procir_2020_11_010
crossref_primary_10_1080_03081060_2024_2411611
crossref_primary_10_1007_s40032_020_00646_8
crossref_primary_10_1016_j_matpr_2019_07_105
crossref_primary_10_1016_j_matpr_2020_07_200
crossref_primary_10_3390_ma13030675
crossref_primary_10_21303_2461_4262_2022_001952
crossref_primary_10_1039_D1RA03780C
crossref_primary_10_1108_IJIEOM_11_2022_0059
crossref_primary_10_1088_2631_8695_acfc17
crossref_primary_10_1016_j_clet_2021_100188
crossref_primary_10_3233_HIS_190264
crossref_primary_10_1016_j_compag_2024_109858
crossref_primary_10_1155_2024_9545184
crossref_primary_10_1088_2053_1591_abd824
crossref_primary_10_1007_s12008_024_02179_1
crossref_primary_10_1007_s12633_020_00662_4
crossref_primary_10_1142_S0219686723500336
crossref_primary_10_1016_j_matpr_2019_08_166
crossref_primary_10_1007_s00170_022_09302_0
crossref_primary_10_1016_j_matpr_2021_02_830
crossref_primary_10_1007_s12008_023_01296_7
crossref_primary_10_1002_ep_13902
crossref_primary_10_1016_j_matpr_2021_07_450
crossref_primary_10_1088_2631_8695_acb11e
crossref_primary_10_1088_2631_8695_ad2d99
crossref_primary_10_1007_s41939_020_00085_z
crossref_primary_10_1007_s12008_022_00924_y
crossref_primary_10_1080_14484846_2021_1960671
crossref_primary_10_3390_ma17040959
crossref_primary_10_1016_j_conbuildmat_2021_122918
crossref_primary_10_1016_j_matpr_2022_11_001
crossref_primary_10_1016_j_matpr_2024_02_022
crossref_primary_10_1007_s11269_023_03564_3
crossref_primary_10_1007_s11665_023_08048_4
crossref_primary_10_3390_coatings13060979
crossref_primary_10_1016_j_matpr_2021_09_430
crossref_primary_10_1088_1757_899X_1055_1_012047
crossref_primary_10_1177_02670844241304086
crossref_primary_10_1007_s12008_023_01554_8
crossref_primary_10_1016_j_applthermaleng_2020_116279
crossref_primary_10_1016_j_matpr_2020_12_253
crossref_primary_10_1177_00952443241254939
crossref_primary_10_1016_j_jer_2023_11_019
crossref_primary_10_1088_2051_672X_ac41fe
crossref_primary_10_1016_j_tws_2023_111178
crossref_primary_10_1038_s41598_024_81323_z
crossref_primary_10_1177_13506501211038113
crossref_primary_10_1007_s40430_023_04647_3
crossref_primary_10_1088_1757_899X_912_3_032028
crossref_primary_10_1007_s12008_022_01142_2
crossref_primary_10_1080_14658011_2023_2202865
crossref_primary_10_3390_lubricants11030108
crossref_primary_10_1109_TCPMT_2023_3292005
crossref_primary_10_1007_s00170_025_15365_6
crossref_primary_10_1080_14484846_2020_1725347
crossref_primary_10_3390_lubricants10040052
crossref_primary_10_1016_j_microrel_2022_114535
crossref_primary_10_1080_10407790_2023_2254931
crossref_primary_10_1016_j_jmrt_2022_03_145
crossref_primary_10_1007_s00170_016_9686_x
crossref_primary_10_1016_j_applthermaleng_2022_118845
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123596
crossref_primary_10_1016_j_matpr_2020_10_550
crossref_primary_10_1002_er_6280
crossref_primary_10_1016_j_matpr_2022_04_549
crossref_primary_10_1177_09544089221093309
crossref_primary_10_5267_j_dsl_2016_3_001
crossref_primary_10_1016_j_fuel_2023_127950
crossref_primary_10_1061__ASCE_EE_1943_7870_0001941
crossref_primary_10_2139_ssrn_3436649
crossref_primary_10_1007_s11831_022_09731_w
crossref_primary_10_1007_s12034_023_02888_5
crossref_primary_10_1016_j_ijsolstr_2023_112126
crossref_primary_10_1016_j_matpr_2021_03_451
crossref_primary_10_1061_JMCEE7_MTENG_16143
crossref_primary_10_37669_milliegitim_823202
crossref_primary_10_1007_s12008_024_02186_2
crossref_primary_10_1016_j_cja_2021_12_002
crossref_primary_10_1080_10298436_2021_1873331
crossref_primary_10_3390_met10111480
crossref_primary_10_3390_ma16031164
Cites_doi 10.5267/j.dsl.2016.3.001
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.5267/j.dsl.2016.3.001
DatabaseName CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1929-5812
EndPage 592
ExternalDocumentID oai_doaj_org_article_a97494926b544e31b279d86272786635
10_5267_j_dsl_2016_3_001
GroupedDBID 5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
IPNFZ
KQ8
OK1
RIG
ID FETCH-LOGICAL-c2661-516244a3d2a6be576d68e01e0c83f53b4af94c9f7d3ccbf63fa31922e70787fb3
IEDL.DBID DOA
ISSN 1929-5804
IngestDate Wed Aug 27 01:27:46 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Tue Jul 01 01:11:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2661-516244a3d2a6be576d68e01e0c83f53b4af94c9f7d3ccbf63fa31922e70787fb3
OpenAccessLink https://doaj.org/article/a97494926b544e31b279d86272786635
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_a97494926b544e31b279d86272786635
crossref_citationtrail_10_5267_j_dsl_2016_3_001
crossref_primary_10_5267_j_dsl_2016_3_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationTitle Decision Science Letters
PublicationYear 2016
Publisher Growing Science
Publisher_xml – name: Growing Science
References ref1
References_xml – ident: ref1
  doi: 10.5267/j.dsl.2016.3.001
SSID ssib050730616
ssj0001258401
Score 2.3192434
Snippet Machining of hardened work materials with appropriate levels of process parameters is still a burning issue in manufacturing sectors and challenging. It is...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 581
SubjectTerms Flank wear
Grey relational analysis
Hard turning
Surface roughness
Taguchi
Title Multi-attribute decision making parametric optimization and modeling in hard turning using ceramic insert through grey relational analysis: A case study
URI https://doaj.org/article/a97494926b544e31b279d86272786635
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwELUQFRSIU9yagobC7CY-ktABAiEkqECii3wiEBvQshQ0fAefy4xj0NJAQ5MicSLLM_GbscfvMbYnVG2tMAUPpqy4rKLltTQNF7TJZ32M1qcC2St9fiMvbtXtlNQX1YT19MD9wA0MBrwNsdpZJWUQhS2rxmMYjrhbE1rS7IuYN5VMoScpclydA59-tQWBNmkhY0TTcFUPZb9nqUpdDR4O_AttQxT6gPhOix8YNUXlnzDnbJEt5GARjvpOLrGZ0C2z-SkKwRX2kU7QcjPplasC-CyaA6OkMwXE7T0i2SwHTzg9jPK5SzCdhySDQ43uO6DTV4D4Q-skQNXwd-DCmNTq8Slt2UOW9AHM0N9gnIvosHsm85ocwhE4BEVIlLWr7Obs9PrknGe1Be4IpLkqNEK9Eb402gZMQ7yuw7AIQ1eLqISVJjbSNbHywjkbtYgGf9-yDMQXhDYWa2y2e-rCOgPpjQpldGWMOBGHWEuKBSoVtJe2kX6DDb7Gt3WZipwUMR5bTEnIIpiSoEVaskgrqOxug-1_v_Hc03D80vaYTPbdjgi00w10qza7VfuXW23-x0e22Bx1q1-x2Wazk_Fr2MEYZmJ3k7vi9fL99BNWXO3J
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-attribute+decision+making+parametric+optimization+and+modeling+in+hard+turning+using+ceramic+insert+through+grey+relational+analysis%3A+A+case+study&rft.jtitle=Decision+Science+Letters&rft.au=Panda%2C+Amlana&rft.au=Sahoo%2C+Ashok+Kumar&rft.au=Rout%2C+Arun+Kumar&rft.date=2016&rft.issn=1929-5804&rft.eissn=1929-5812&rft.spage=581&rft.epage=592&rft_id=info:doi/10.5267%2Fj.dsl.2016.3.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_5267_j_dsl_2016_3_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1929-5804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1929-5804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1929-5804&client=summon