Multi-attribute decision making parametric optimization and modeling in hard turning using ceramic insert through grey relational analysis: A case study
Machining of hardened work materials with appropriate levels of process parameters is still a burning issue in manufacturing sectors and challenging. It is because of pressing demand of surface quality which adversely affected by evolution of tool wear. Therefore the present investigation is underta...
Saved in:
Published in | Decision Science Letters Vol. 5; no. 4; pp. 581 - 592 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Growing Science
2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machining of hardened work materials with appropriate levels of process parameters is still a burning issue in manufacturing sectors and challenging. It is because of pressing demand of surface quality which adversely affected by evolution of tool wear. Therefore the present investigation is undertaken to make a decision on parametric optimization of multi-responses such as flank wear and surface roughness during machining hardened AISI 52100 steel (55±1) steel using mixed ceramic insert under dry environment through grey relational analysis combined with Taguchi approach. Also predicted mathematical models of 1st and 2nd order have been developed for responses and checked for its accuracy. Second order mathematical model presented higher R2 value and represents best fit of the model and adequate compared to first order model. Model indicates good correlations between the experimental and predicted results. The proposed grey-based Taguchi methodology has been proved to be efficient for solving multi-attribute decision making problem as a case study in hard machining environment. |
---|---|
AbstractList | Machining of hardened work materials with appropriate levels of process parameters is still a burning issue in manufacturing sectors and challenging. It is because of pressing demand of surface quality which adversely affected by evolution of tool wear. Therefore the present investigation is undertaken to make a decision on parametric optimization of multi-responses such as flank wear and surface roughness during machining hardened AISI 52100 steel (55±1) steel using mixed ceramic insert under dry environment through grey relational analysis combined with Taguchi approach. Also predicted mathematical models of 1st and 2nd order have been developed for responses and checked for its accuracy. Second order mathematical model presented higher R2 value and represents best fit of the model and adequate compared to first order model. Model indicates good correlations between the experimental and predicted results. The proposed grey-based Taguchi methodology has been proved to be efficient for solving multi-attribute decision making problem as a case study in hard machining environment. |
Author | Rout, Arun Kumar Sahoo, Ashok Kumar Panda, Amlana |
Author_xml | – sequence: 1 givenname: Amlana surname: Panda fullname: Panda, Amlana – sequence: 2 givenname: Ashok Kumar surname: Sahoo fullname: Sahoo, Ashok Kumar – sequence: 3 givenname: Arun Kumar surname: Rout fullname: Rout, Arun Kumar |
BookMark | eNp1kc1u3CAURlGUSEnT7LPkBezyZ7C7i6K2iZSqm3aNrgHPMMVmBHgxfZI-bvGk7aJSN8Dlco6A7w26XOLiELqnpO2YVO8Orc2hZYTKlreE0At0Qwc2NF1P2eXfNRHX6C5nP5KOKE4klTfo5-c1FN9AKcmPa3HYOuOzjwue4btfdvgICWZXuwbHY_Gz_wFla8Ni8RytC9shv-A9JIvLmpatXvM2GlfRyvklu1Rw2ae47vZ4l9wJJxfOHgjVBOGUfX6PH7CB7HAuqz29RVcThOzufs-36NvHD18fn5qXL5-eHx9eGsOkpE1HJRMCuGUgR9cpaWXvCHXE9Hzq-ChgGoQZJmW5MeMk-QS8fgdziqheTSO_Rc-vXhvhoI_Jz5BOOoLX542YdhpS8SY4DYMSgxiYHDshHKcjU4PtJVNM9VLyrrrkq8ukmHNykza-nJ9ZEvigKdFbXPqga1x6i0tzXeOqIPkH_HOR_yK_AGP7nkk |
CitedBy_id | crossref_primary_10_1016_j_matpr_2018_06_147 crossref_primary_10_1016_j_aime_2023_100115 crossref_primary_10_1016_j_conbuildmat_2022_126315 crossref_primary_10_1088_1742_6596_1240_1_012121 crossref_primary_10_1007_s10668_022_02283_w crossref_primary_10_1007_s40430_020_02327_0 crossref_primary_10_1007_s10098_022_02298_x crossref_primary_10_1088_2051_672X_ac2796 crossref_primary_10_3390_ma14040808 crossref_primary_10_1016_j_renene_2021_12_053 crossref_primary_10_1016_j_procir_2020_11_010 crossref_primary_10_1080_03081060_2024_2411611 crossref_primary_10_1007_s40032_020_00646_8 crossref_primary_10_1016_j_matpr_2019_07_105 crossref_primary_10_1016_j_matpr_2020_07_200 crossref_primary_10_3390_ma13030675 crossref_primary_10_21303_2461_4262_2022_001952 crossref_primary_10_1039_D1RA03780C crossref_primary_10_1108_IJIEOM_11_2022_0059 crossref_primary_10_1088_2631_8695_acfc17 crossref_primary_10_1016_j_clet_2021_100188 crossref_primary_10_3233_HIS_190264 crossref_primary_10_1016_j_compag_2024_109858 crossref_primary_10_1155_2024_9545184 crossref_primary_10_1088_2053_1591_abd824 crossref_primary_10_1007_s12008_024_02179_1 crossref_primary_10_1007_s12633_020_00662_4 crossref_primary_10_1142_S0219686723500336 crossref_primary_10_1016_j_matpr_2019_08_166 crossref_primary_10_1007_s00170_022_09302_0 crossref_primary_10_1016_j_matpr_2021_02_830 crossref_primary_10_1007_s12008_023_01296_7 crossref_primary_10_1002_ep_13902 crossref_primary_10_1016_j_matpr_2021_07_450 crossref_primary_10_1088_2631_8695_acb11e crossref_primary_10_1088_2631_8695_ad2d99 crossref_primary_10_1007_s41939_020_00085_z crossref_primary_10_1007_s12008_022_00924_y crossref_primary_10_1080_14484846_2021_1960671 crossref_primary_10_3390_ma17040959 crossref_primary_10_1016_j_conbuildmat_2021_122918 crossref_primary_10_1016_j_matpr_2022_11_001 crossref_primary_10_1016_j_matpr_2024_02_022 crossref_primary_10_1007_s11269_023_03564_3 crossref_primary_10_1007_s11665_023_08048_4 crossref_primary_10_3390_coatings13060979 crossref_primary_10_1016_j_matpr_2021_09_430 crossref_primary_10_1088_1757_899X_1055_1_012047 crossref_primary_10_1177_02670844241304086 crossref_primary_10_1007_s12008_023_01554_8 crossref_primary_10_1016_j_applthermaleng_2020_116279 crossref_primary_10_1016_j_matpr_2020_12_253 crossref_primary_10_1177_00952443241254939 crossref_primary_10_1016_j_jer_2023_11_019 crossref_primary_10_1088_2051_672X_ac41fe crossref_primary_10_1016_j_tws_2023_111178 crossref_primary_10_1038_s41598_024_81323_z crossref_primary_10_1177_13506501211038113 crossref_primary_10_1007_s40430_023_04647_3 crossref_primary_10_1088_1757_899X_912_3_032028 crossref_primary_10_1007_s12008_022_01142_2 crossref_primary_10_1080_14658011_2023_2202865 crossref_primary_10_3390_lubricants11030108 crossref_primary_10_1109_TCPMT_2023_3292005 crossref_primary_10_1007_s00170_025_15365_6 crossref_primary_10_1080_14484846_2020_1725347 crossref_primary_10_3390_lubricants10040052 crossref_primary_10_1016_j_microrel_2022_114535 crossref_primary_10_1080_10407790_2023_2254931 crossref_primary_10_1016_j_jmrt_2022_03_145 crossref_primary_10_1007_s00170_016_9686_x crossref_primary_10_1016_j_applthermaleng_2022_118845 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123596 crossref_primary_10_1016_j_matpr_2020_10_550 crossref_primary_10_1002_er_6280 crossref_primary_10_1016_j_matpr_2022_04_549 crossref_primary_10_1177_09544089221093309 crossref_primary_10_5267_j_dsl_2016_3_001 crossref_primary_10_1016_j_fuel_2023_127950 crossref_primary_10_1061__ASCE_EE_1943_7870_0001941 crossref_primary_10_2139_ssrn_3436649 crossref_primary_10_1007_s11831_022_09731_w crossref_primary_10_1007_s12034_023_02888_5 crossref_primary_10_1016_j_ijsolstr_2023_112126 crossref_primary_10_1016_j_matpr_2021_03_451 crossref_primary_10_1061_JMCEE7_MTENG_16143 crossref_primary_10_37669_milliegitim_823202 crossref_primary_10_1007_s12008_024_02186_2 crossref_primary_10_1016_j_cja_2021_12_002 crossref_primary_10_1080_10298436_2021_1873331 crossref_primary_10_3390_met10111480 crossref_primary_10_3390_ma16031164 |
Cites_doi | 10.5267/j.dsl.2016.3.001 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.5267/j.dsl.2016.3.001 |
DatabaseName | CrossRef DOAJ Open Access Full Text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1929-5812 |
EndPage | 592 |
ExternalDocumentID | oai_doaj_org_article_a97494926b544e31b279d86272786635 10_5267_j_dsl_2016_3_001 |
GroupedDBID | 5VS AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ IPNFZ KQ8 OK1 RIG |
ID | FETCH-LOGICAL-c2661-516244a3d2a6be576d68e01e0c83f53b4af94c9f7d3ccbf63fa31922e70787fb3 |
IEDL.DBID | DOA |
ISSN | 1929-5804 |
IngestDate | Wed Aug 27 01:27:46 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Tue Jul 01 01:11:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2661-516244a3d2a6be576d68e01e0c83f53b4af94c9f7d3ccbf63fa31922e70787fb3 |
OpenAccessLink | https://doaj.org/article/a97494926b544e31b279d86272786635 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a97494926b544e31b279d86272786635 crossref_citationtrail_10_5267_j_dsl_2016_3_001 crossref_primary_10_5267_j_dsl_2016_3_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-00-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016-00-00 |
PublicationDecade | 2010 |
PublicationTitle | Decision Science Letters |
PublicationYear | 2016 |
Publisher | Growing Science |
Publisher_xml | – name: Growing Science |
References | ref1 |
References_xml | – ident: ref1 doi: 10.5267/j.dsl.2016.3.001 |
SSID | ssib050730616 ssj0001258401 |
Score | 2.3192434 |
Snippet | Machining of hardened work materials with appropriate levels of process parameters is still a burning issue in manufacturing sectors and challenging. It is... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 581 |
SubjectTerms | Flank wear Grey relational analysis Hard turning Surface roughness Taguchi |
Title | Multi-attribute decision making parametric optimization and modeling in hard turning using ceramic insert through grey relational analysis: A case study |
URI | https://doaj.org/article/a97494926b544e31b279d86272786635 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwELUQFRSIU9yagobC7CY-ktABAiEkqECii3wiEBvQshQ0fAefy4xj0NJAQ5MicSLLM_GbscfvMbYnVG2tMAUPpqy4rKLltTQNF7TJZ32M1qcC2St9fiMvbtXtlNQX1YT19MD9wA0MBrwNsdpZJWUQhS2rxmMYjrhbE1rS7IuYN5VMoScpclydA59-tQWBNmkhY0TTcFUPZb9nqUpdDR4O_AttQxT6gPhOix8YNUXlnzDnbJEt5GARjvpOLrGZ0C2z-SkKwRX2kU7QcjPplasC-CyaA6OkMwXE7T0i2SwHTzg9jPK5SzCdhySDQ43uO6DTV4D4Q-skQNXwd-DCmNTq8Slt2UOW9AHM0N9gnIvosHsm85ocwhE4BEVIlLWr7Obs9PrknGe1Be4IpLkqNEK9Eb402gZMQ7yuw7AIQ1eLqISVJjbSNbHywjkbtYgGf9-yDMQXhDYWa2y2e-rCOgPpjQpldGWMOBGHWEuKBSoVtJe2kX6DDb7Gt3WZipwUMR5bTEnIIpiSoEVaskgrqOxug-1_v_Hc03D80vaYTPbdjgi00w10qza7VfuXW23-x0e22Bx1q1-x2Wazk_Fr2MEYZmJ3k7vi9fL99BNWXO3J |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-attribute+decision+making+parametric+optimization+and+modeling+in+hard+turning+using+ceramic+insert+through+grey+relational+analysis%3A+A+case+study&rft.jtitle=Decision+Science+Letters&rft.au=Panda%2C+Amlana&rft.au=Sahoo%2C+Ashok+Kumar&rft.au=Rout%2C+Arun+Kumar&rft.date=2016&rft.issn=1929-5804&rft.eissn=1929-5812&rft.spage=581&rft.epage=592&rft_id=info:doi/10.5267%2Fj.dsl.2016.3.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_5267_j_dsl_2016_3_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1929-5804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1929-5804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1929-5804&client=summon |