Person-Specific Face Antispoofing With Subject Domain Adaptation

Face antispoofing is important to practical face recognition systems. In previous works, a generic antispoofing classifier is trained to detect spoofing attacks on all subjects. However, due to the individual differences among subjects, the generic classifier cannot generalize well to all subjects....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 10; no. 4; pp. 797 - 809
Main Authors Jianwei Yang, Zhen Lei, Dong Yi, Li, Stan Z.
Format Journal Article
LanguageEnglish
Published IEEE 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Face antispoofing is important to practical face recognition systems. In previous works, a generic antispoofing classifier is trained to detect spoofing attacks on all subjects. However, due to the individual differences among subjects, the generic classifier cannot generalize well to all subjects. In this paper, we propose a person-specific face antispoofing approach. It recognizes spoofing attacks using a classifier specifically trained for each subject, which dismisses the interferences among subjects. Moreover, considering the scarce or void fake samples for training, we propose a subject domain adaptation method to synthesize virtual features, which makes it tractable to train well-performed individual face antispoofing classifiers. The extensive experiments on two challenging data sets: 1) CASIA and 2) REPLAY-ATTACK demonstrate the prospect of the proposed approach.
AbstractList Face antispoofing is important to practical face recognition systems. In previous works, a generic antispoofing classifier is trained to detect spoofing attacks on all subjects. However, due to the individual differences among subjects, the generic classifier cannot generalize well to all subjects. In this paper, we propose a person-specific face antispoofing approach. It recognizes spoofing attacks using a classifier specifically trained for each subject, which dismisses the interferences among subjects. Moreover, considering the scarce or void fake samples for training, we propose a subject domain adaptation method to synthesize virtual features, which makes it tractable to train well-performed individual face antispoofing classifiers. The extensive experiments on two challenging data sets: 1) CASIA and 2) REPLAY-ATTACK demonstrate the prospect of the proposed approach.
Author Li, Stan Z.
Dong Yi
Zhen Lei
Jianwei Yang
Author_xml – sequence: 1
  surname: Jianwei Yang
  fullname: Jianwei Yang
  email: yjwterry@163.com
  organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
– sequence: 2
  surname: Zhen Lei
  fullname: Zhen Lei
  email: zlei@cbsr.ia.ac.cn
  organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
– sequence: 3
  surname: Dong Yi
  fullname: Dong Yi
  email: dyi@cbsr.ia.ac.cn
  organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
– sequence: 4
  givenname: Stan Z.
  surname: Li
  fullname: Li, Stan Z.
  email: stan.zq.li@gmail.com
  organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
BookMark eNp9kE1PwkAQhjcGEwH9AcZL_0BxZr-gNwmKkpBoAsZjM93u6hLYbbr14L8XAuHgwdO8l2fmnWfAeiEGy9gtwggRivv1Yr4acUA14hKEAH3B-qiUzjVw7J0ziis2SGkDICXqSZ89vNk2xZCvGmu88yabk7HZNHQ-NTE6Hz6zD999ZavvamNNlz3GHfmQTWtqOup8DNfs0tE22ZvTHLL3-dN69pIvX58Xs-kyN1yrLneGnLKiErJGLLgkVVcSpcICCJzTvJZIMHbVhGpdFVYZs39CkKG6KJwAMWR43GvamFJrXdm0fkftT4lQHhSUBwXlQUF5UrBnxn8Y44-tu5b89l_y7kh6a-350hgkcoHiFx3va3M
CODEN ITIFA6
CitedBy_id crossref_primary_10_1007_s13042_025_02573_5
crossref_primary_10_1109_ACCESS_2020_2985453
crossref_primary_10_1109_TIFS_2022_3178240
crossref_primary_10_1049_iet_bmt_2017_0077
crossref_primary_10_1109_TCSVT_2019_2949868
crossref_primary_10_1109_TIFS_2021_3111766
crossref_primary_10_1016_j_patcog_2022_109148
crossref_primary_10_1117_1_JEI_26_4_043007
crossref_primary_10_55525_tjst_1142626
crossref_primary_10_1016_j_compeleceng_2021_107293
crossref_primary_10_1016_j_patcog_2021_107888
crossref_primary_10_1049_bme2_12041
crossref_primary_10_1109_TIFS_2022_3192999
crossref_primary_10_48175_IJARSCT_9732
crossref_primary_10_1109_TIFS_2020_2985530
crossref_primary_10_1016_j_imavis_2019_11_004
crossref_primary_10_1109_ACCESS_2017_2729161
crossref_primary_10_1016_j_jvcir_2019_102746
crossref_primary_10_1007_s00530_023_01070_5
crossref_primary_10_1109_TIFS_2021_3135748
crossref_primary_10_1016_j_eswa_2019_113002
crossref_primary_10_1109_ACCESS_2023_3292407
crossref_primary_10_1109_TIFS_2016_2555286
crossref_primary_10_1109_ACCESS_2021_3087917
crossref_primary_10_1186_s13635_022_00135_8
crossref_primary_10_3390_bdcc7010037
crossref_primary_10_1007_s11263_024_02178_5
crossref_primary_10_1016_j_patcog_2020_107696
crossref_primary_10_1109_TIFS_2020_3029879
crossref_primary_10_1007_s11042_023_14453_7
crossref_primary_10_1109_TBIOM_2022_3220406
crossref_primary_10_1109_TCSVT_2020_3046505
crossref_primary_10_1109_JSTSP_2020_3001719
crossref_primary_10_1109_TIFS_2018_2801312
crossref_primary_10_1016_j_inffus_2021_04_015
crossref_primary_10_1109_TCSVT_2021_3133620
crossref_primary_10_1109_TIFS_2023_3240841
crossref_primary_10_1371_journal_pone_0238058
crossref_primary_10_1002_cpe_4641
crossref_primary_10_1109_TBIOM_2023_3312128
crossref_primary_10_1109_TIFS_2020_3002390
crossref_primary_10_1109_TIFS_2023_3266138
crossref_primary_10_1007_s10044_020_00875_8
crossref_primary_10_3390_rs14205191
crossref_primary_10_1109_TIFS_2016_2578288
crossref_primary_10_1016_j_neucom_2020_12_095
crossref_primary_10_1109_ACCESS_2020_2969480
crossref_primary_10_1109_TIFS_2021_3125603
crossref_primary_10_1016_j_patcog_2018_08_019
crossref_primary_10_1109_TMM_2017_2750415
crossref_primary_10_1109_LSP_2016_2630740
crossref_primary_10_1109_TIFS_2015_2458700
Cites_doi 10.1109/TPAMI.2008.222
10.1109/IJCB.2011.6117509
10.1109/CVPRW.2013.22
10.1007/s11235-010-9313-3
10.1109/FG.2011.5771438
10.1016/0169-7439(87)80096-5
10.1109/CVBVS.2000.855246
10.1109/ICB.2013.6612968
10.1109/IJCB.2011.6117478
10.1109/ICB.2013.6612957
10.1109/CVPRW.2008.4563115
10.1109/IJCB.2011.6117510
10.5244/C.26.101
10.1109/FUZZY.2010.5584864
10.1109/ICCV.2007.4409068
10.1109/AUTOID.2005.20
10.1109/AFGR.2008.4813353
10.1109/ICCV.2003.1238414
10.1109/ICB.2013.6612955
10.1109/TIFS.2007.902037
10.1007/11752790_2
10.1109/ICB.2013.6612981
10.1109/ICB.2012.6199754
10.1109/ICCV.2013.398
10.1109/BTAS.2013.6712690
10.1109/CVPR.2010.5539975
10.1117/12.541955
10.1109/IJCB.2011.6117522
10.1049/iet-bmt.2012.0071
10.1109/ICIP.2011.6116484
10.1109/CVPR.1997.609330
10.1117/1.OE.52.11.113102
10.1109/ICB.2013.6613026
10.1109/CVPR.2013.454
10.1109/ICARCV.2012.6485156
10.1016/j.patrec.2013.02.002
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIFS.2015.2403306
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 809
ExternalDocumentID 10_1109_TIFS_2015_2403306
7041231
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61203267; 61375037; 61473291
  funderid: 10.13039/501100001809
– fundername: National Science and Technology Support Program
  grantid: 2013BAK02B01
– fundername: AuthenMetric Research and Development Funds
– fundername: Chinese Academy of Sciences, Beijing, China
  grantid: KGZD-EW-102-2
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c265t-fcaf5e3b34d11924a5db4145190a0ff62d41a07fb8ad6b9e5cc3063acad99f303
IEDL.DBID RIE
ISSN 1556-6013
IngestDate Tue Jul 01 02:34:10 EDT 2025
Thu Apr 24 23:10:59 EDT 2025
Tue Aug 26 16:50:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Face anti-spoofing
subject domain adaptation
person-specific
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-fcaf5e3b34d11924a5db4145190a0ff62d41a07fb8ad6b9e5cc3063acad99f303
PageCount 13
ParticipantIDs crossref_primary_10_1109_TIFS_2015_2403306
ieee_primary_7041231
crossref_citationtrail_10_1109_TIFS_2015_2403306
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-April
2015-4-00
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-April
PublicationDecade 2010
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref37
ref15
ref36
ref31
ref30
ref33
ref11
de freitas pereira (ref12) 2013
ref32
ref2
ref39
chingovska (ref10) 2012
ref16
ref19
tan (ref3) 2010
rosipal (ref42) 2006
erdogmus (ref24) 2013
tang (ref38) 2003
ref23
ref26
ref25
bao (ref18) 2009
ref20
ref41
ref44
ref21
ref43
chetty (ref17) 2005; 57
ref28
ref27
ref29
ref8
ref7
de marsico (ref22) 2012
ref9
ref4
ref6
ref5
ref40
määttä (ref1) 2011
sun (ref14) 2007
References_xml – start-page: 233
  year: 2009
  ident: ref18
  article-title: A liveness detection method for face recognition based on optical flow field
  publication-title: Proc Int Conf Image Anal Process
– ident: ref39
  doi: 10.1109/TPAMI.2008.222
– start-page: 252
  year: 2007
  ident: ref14
  article-title: Blinking-based live face detection using conditional random fields
  publication-title: Proc ICB
– ident: ref7
  doi: 10.1109/IJCB.2011.6117509
– start-page: 1
  year: 2012
  ident: ref10
  article-title: On the effectiveness of local binary patterns in face anti-spoofing
  publication-title: Proc Int Conf Biometrics Special Interest Group (BIOSIG)
– ident: ref31
  doi: 10.1109/CVPRW.2013.22
– ident: ref28
  doi: 10.1007/s11235-010-9313-3
– ident: ref26
  doi: 10.1109/FG.2011.5771438
– ident: ref43
  doi: 10.1016/0169-7439(87)80096-5
– ident: ref25
  doi: 10.1109/CVBVS.2000.855246
– start-page: 121
  year: 2013
  ident: ref12
  article-title: LBP - TOP based countermeasure against face spoofing attacks
  publication-title: Computer Vision
– ident: ref5
  doi: 10.1109/ICB.2013.6612968
– ident: ref33
  doi: 10.1109/IJCB.2011.6117478
– ident: ref23
  doi: 10.1109/ICB.2013.6612957
– ident: ref21
  doi: 10.1109/CVPRW.2008.4563115
– start-page: 1
  year: 2011
  ident: ref1
  article-title: Face spoofing detection from single images using micro-texture analysis
  publication-title: Proc Int Joint Conf Biometrics (IJCB 2011)
  doi: 10.1109/IJCB.2011.6117510
– start-page: 1
  year: 2013
  ident: ref24
  article-title: Spoofing 2D face recognition systems with 3D masks
  publication-title: Proc Int Conf Biometrics Special Interest Group (BIOSIG)
– ident: ref34
  doi: 10.5244/C.26.101
– ident: ref16
  doi: 10.1109/FUZZY.2010.5584864
– ident: ref2
  doi: 10.1109/ICCV.2007.4409068
– ident: ref19
  doi: 10.1109/AUTOID.2005.20
– ident: ref32
  doi: 10.1109/AFGR.2008.4813353
– start-page: 504
  year: 2010
  ident: ref3
  article-title: Face liveness detection from a single image with sparse low rank bilinear discriminative model
  publication-title: Proc 11th ECCV
– start-page: 687
  year: 2003
  ident: ref38
  article-title: Face sketch synthesis and recognition
  publication-title: Proc 9th IEEE Int Conf Comput Vis
  doi: 10.1109/ICCV.2003.1238414
– ident: ref11
  doi: 10.1109/ICB.2013.6612955
– ident: ref15
  doi: 10.1109/TIFS.2007.902037
– start-page: 34
  year: 2006
  ident: ref42
  article-title: Overview and recent advances in partial least squares
  publication-title: Subspace Latent Structure and Feature Selection
  doi: 10.1007/11752790_2
– ident: ref4
  doi: 10.1109/ICB.2013.6612981
– ident: ref40
  doi: 10.1109/ICB.2012.6199754
– ident: ref37
  doi: 10.1109/ICCV.2013.398
– ident: ref13
  doi: 10.1109/BTAS.2013.6712690
– volume: 57
  start-page: 17
  year: 2005
  ident: ref17
  article-title: Audio-visual multimodal fusion for biometric person authentication and liveness verification
  publication-title: Proc NICTA-HCSNet Multimodal User Interact Workshop (MMUI)
– ident: ref35
  doi: 10.1109/CVPR.2010.5539975
– ident: ref8
  doi: 10.1117/12.541955
– ident: ref29
  doi: 10.1109/IJCB.2011.6117522
– ident: ref20
  doi: 10.1049/iet-bmt.2012.0071
– ident: ref9
  doi: 10.1109/ICIP.2011.6116484
– ident: ref41
  doi: 10.1109/CVPR.1997.609330
– ident: ref27
  doi: 10.1117/1.OE.52.11.113102
– ident: ref6
  doi: 10.1109/ICB.2013.6613026
– ident: ref44
  doi: 10.1109/CVPR.2013.454
– ident: ref30
  doi: 10.1109/ICARCV.2012.6485156
– start-page: 73
  year: 2012
  ident: ref22
  article-title: Moving face spoofing detection via 3D projective invariants
  publication-title: Proc 5th IAPR Int Conf Biometrics (ICB)
– ident: ref36
  doi: 10.1016/j.patrec.2013.02.002
SSID ssj0044168
Score 2.370122
Snippet Face antispoofing is important to practical face recognition systems. In previous works, a generic antispoofing classifier is trained to detect spoofing...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 797
SubjectTerms Adaptation models
Face
Face anti-spoofing
Face recognition
Feature extraction
person-specific
Shape
subject domain adaptation
Training
Vectors
Title Person-Specific Face Antispoofing With Subject Domain Adaptation
URI https://ieeexplore.ieee.org/document/7041231
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9zT_rgdFOcX-TBJ7G1XZI2fXOoZQoTwQ33VtJ8aFG7Id2Lf725fowhIr6UUhIId9fcXXL3-yF0RpQwRBPqUKLtQxnP4URwh0sdyogHocehwXn8EIym9H7GZi10seqF0VqXxWfahdfyLl_N5RKOyi5DAIeCpukNm7hVvVrNrmu9etX2xljg2CSD1DeYvhddTu7iJyjiYi6AzxEgN1rzQWukKqVPiTto3KymKiV5c5dF6sqvH0CN_13uDtqug0s8rKxhF7V03kWdhrgB1_9xF22toRD20NVjGXU7JRW9ySSOhdR4mBeZTXmt7eUv-DkrXrHdY-DQBt_MP0SW46ESi-oefw9N49vJ9cipiRUcOQhY4RgpDNMkJVT5kIAJplIKlL2RJzxjgoGivvBCk3KhgjTSTEorNSKkUFFkrNPbR-18nusDhJnxB5KExFcDTY3h3Ne-ShXnFJDlhN9HXiPqRNao40B-8Z6U2YcXJaCdBLST1Nrpo_PVlEUFufHX4B4IfjWwlvnh75-P0CZMripvjlG7-FzqExtUFOlpaU3f0DHHdw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5ED-rBVxXrcw-exNRsN5tsbha11EeLYIu9hc0-tKipSHrx17uTpKWIiJcQwiYsM5OdnZ2Z7wM4YVpaZljgBcy4i7a-J5gUnlAmUrEII19gg3O3F3YGwe2QDxfgbNYLY4wpis9MA2-LXL4eqwkelZ1HCA6FTdNLzu9zWnZrTddd59fLxjfOQ8-FGazKYVI_Pu_ftB-xjIs3EH6OIb3RnBeao1UpvEp7HbrT-ZTFJK-NSZ421NcPqMb_TngD1qrtJWmV9rAJCybbgvUpdQOp_uQtWJ3DIazBxUOx7_YKMno7UqQtlSGtLB-5oNdZX_ZMnkb5C3GrDB7bkKvxuxxlpKXlR5nJ34ZB-7p_2fEqagVPNUOee1ZJyw1LWaAphmCS6zRA0t7Yl761YVMHVPqRTYXUYRobrpSTGpNK6ji2zu3twGI2zswuEG5pU7GIUd00gbVCUEN1qoUIEFtO0jr4U1EnqsIdR_qLt6SIP_w4Qe0kqJ2k0k4dTmevfJSgG38NrqHgZwMrme_9_vgYljv97n1yf9O724cV_FBZh3MAi_nnxBy6LUaeHhWW9Q1mzsrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Person-Specific+Face+Antispoofing+With+Subject+Domain+Adaptation&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Jianwei+Yang&rft.au=Zhen+Lei&rft.au=Dong+Yi&rft.au=Li%2C+Stan+Z.&rft.date=2015-04-01&rft.pub=IEEE&rft.issn=1556-6013&rft.volume=10&rft.issue=4&rft.spage=797&rft.epage=809&rft_id=info:doi/10.1109%2FTIFS.2015.2403306&rft.externalDocID=7041231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon