Heterogeneous Cooperative Co-Evolution Memetic Differential Evolution Algorithm for Big Data Optimization Problems

Evolutionary algorithms (EAs) have recently been suggested as a candidate for solving big data optimization problems that involve a very large number of variables and need to be analyzed in a short period of time. However, EAs face a scalability issue when dealing with big data problems. Moreover, t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 21; no. 2; pp. 315 - 327
Main Authors Sabar, Nasser R., Abawajy, Jemal, Yearwood, John
Format Journal Article
LanguageEnglish
Published IEEE 01.04.2017
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
DOI10.1109/TEVC.2016.2602860

Cover

Abstract Evolutionary algorithms (EAs) have recently been suggested as a candidate for solving big data optimization problems that involve a very large number of variables and need to be analyzed in a short period of time. However, EAs face a scalability issue when dealing with big data problems. Moreover, the performance of EAs critically hinges on the utilized parameter values and operator types, thus it is impossible to design a single EA that can outperform all others in every problem instance. To address these challenges, we propose a heterogeneous framework that integrates a cooperative co-evolution method with various types of memetic algorithms. We use the cooperative co-evolution method to split the big problem into subproblems in order to increase the efficiency of the solving process. The subproblems are then solved using various heterogeneous memetic algorithms. The proposed heterogeneous framework adaptively assigns, for each solution, different operators, parameter values and a local search algorithm to efficiently explore and exploit the search space of the given problem instance. The performance of the proposed algorithm is assessed using the Big Data 2015 competition benchmark problems that contain data with and without noise. Experimental results demonstrate that the proposed algorithm, with the cooperative co-evolution method, performs better than without the cooperative co-evolution method. Furthermore, it obtained very competitive results for all tested instances, if not better, when compared to other algorithms using lower computational times.
AbstractList Evolutionary algorithms (EAs) have recently been suggested as a candidate for solving big data optimization problems that involve a very large number of variables and need to be analyzed in a short period of time. However, EAs face a scalability issue when dealing with big data problems. Moreover, the performance of EAs critically hinges on the utilized parameter values and operator types, thus it is impossible to design a single EA that can outperform all others in every problem instance. To address these challenges, we propose a heterogeneous framework that integrates a cooperative co-evolution method with various types of memetic algorithms. We use the cooperative co-evolution method to split the big problem into subproblems in order to increase the efficiency of the solving process. The subproblems are then solved using various heterogeneous memetic algorithms. The proposed heterogeneous framework adaptively assigns, for each solution, different operators, parameter values and a local search algorithm to efficiently explore and exploit the search space of the given problem instance. The performance of the proposed algorithm is assessed using the Big Data 2015 competition benchmark problems that contain data with and without noise. Experimental results demonstrate that the proposed algorithm, with the cooperative co-evolution method, performs better than without the cooperative co-evolution method. Furthermore, it obtained very competitive results for all tested instances, if not better, when compared to other algorithms using lower computational times.
Author Yearwood, John
Sabar, Nasser R.
Abawajy, Jemal
Author_xml – sequence: 1
  givenname: Nasser R.
  surname: Sabar
  fullname: Sabar, Nasser R.
  email: nasser.sabar@gmail.com
  organization: Sch. of Inf. Technol., Deakin Univ., Burwood, VIC, Australia
– sequence: 2
  givenname: Jemal
  surname: Abawajy
  fullname: Abawajy, Jemal
  email: jemal.abawajy@deakin.edu.au
  organization: Sch. of Inf. Technol., Deakin Univ., Burwood, VIC, Australia
– sequence: 3
  givenname: John
  surname: Yearwood
  fullname: Yearwood, John
  email: john.yearwood@deakin.edu.au
  organization: Sch. of Inf. Technol., Deakin Univ., Burwood, VIC, Australia
BookMark eNp9kMtKAzEUhoNUsK0-gLiZF5iaZCaXWda2WqFSF1XcDWlyUiMzk5JJC_r09oaCC1fnh_N_h8PXQ53GN4DQNcEDQnBxu5i8jgYUEz6gHFPJ8RnqkiInKcaUd3YZyyIVQr5doF7bfmBMckaKLgpTiBD8ChrwmzYZeb-GoKLbwi6nk62vNtH5JnmCGqLTydhZCwGa6FSV_K6H1coHF9_rxPqQ3LlVMlZRJfN1dLX7UofOc_DLCur2Ep1bVbVwdZp99HI_WYym6Wz-8DgazlJNOYupASGwAUNtQanNORdWY5Ba2iwTlFhjdSEN0zKnjBquMTaYMiONIpwslyzrI3G8q4Nv2wC21C4eXolBuaokuNyrK_fqyr268qRuR5I_5Dq4WoXPf5mbI-MA4KcvGKMsz7JvgAd-9Q
CODEN ITEVF5
CitedBy_id crossref_primary_10_1109_TEVC_2021_3130838
crossref_primary_10_1016_j_jestch_2023_101388
crossref_primary_10_1109_TEVC_2022_3199413
crossref_primary_10_1016_j_knosys_2021_107569
crossref_primary_10_1109_TETCI_2019_2939373
crossref_primary_10_1109_TEVC_2022_3170793
crossref_primary_10_1109_TIM_2022_3169551
crossref_primary_10_23919_CSMS_2022_0021
crossref_primary_10_1016_j_engappai_2017_04_021
crossref_primary_10_1109_ACCESS_2020_3027559
crossref_primary_10_1007_s11063_022_10850_5
crossref_primary_10_1016_j_apenergy_2024_124488
crossref_primary_10_3233_ICA_170555
crossref_primary_10_1109_TETCI_2024_3419723
crossref_primary_10_1016_j_ins_2018_12_065
crossref_primary_10_1016_j_future_2018_06_008
crossref_primary_10_1109_TNNLS_2019_2921926
crossref_primary_10_1142_S0219622020500078
crossref_primary_10_1002_cpe_5990
crossref_primary_10_1007_s10776_018_0388_1
crossref_primary_10_1088_1742_6596_1533_4_042071
crossref_primary_10_1109_ACCESS_2020_2984272
crossref_primary_10_1016_j_renene_2020_11_057
crossref_primary_10_1002_2050_7038_12589
crossref_primary_10_1007_s12293_020_00298_2
crossref_primary_10_1016_j_knosys_2022_108209
crossref_primary_10_1016_j_swevo_2020_100738
crossref_primary_10_1080_0952813X_2020_1785018
crossref_primary_10_1109_ACCESS_2020_3004255
crossref_primary_10_3390_a15120451
crossref_primary_10_1109_TCYB_2018_2859635
crossref_primary_10_1007_s13198_022_01727_w
crossref_primary_10_1016_j_asoc_2019_106053
crossref_primary_10_1109_ACCESS_2020_2979738
crossref_primary_10_1016_j_apm_2019_10_069
crossref_primary_10_1016_j_asoc_2020_106251
crossref_primary_10_1016_j_swevo_2017_12_002
crossref_primary_10_1109_TEVC_2019_2893447
crossref_primary_10_4018_IJISMD_2017070102
crossref_primary_10_1109_TCYB_2022_3217074
crossref_primary_10_1007_s10710_017_9305_0
crossref_primary_10_1016_j_ins_2018_10_005
crossref_primary_10_1016_j_swevo_2020_100730
crossref_primary_10_1016_j_swevo_2017_10_006
crossref_primary_10_3390_su15075840
crossref_primary_10_1109_ACCESS_2019_2931824
crossref_primary_10_1109_TCYB_2018_2859342
crossref_primary_10_1109_TEVC_2019_2910721
crossref_primary_10_1007_s10489_018_1279_y
crossref_primary_10_1016_j_asoc_2017_06_029
crossref_primary_10_1016_j_ins_2021_07_082
crossref_primary_10_17341_gazimmfd_986747
crossref_primary_10_1109_ACCESS_2020_2995790
crossref_primary_10_1109_TCYB_2020_3025577
crossref_primary_10_1371_journal_pone_0216906
crossref_primary_10_1109_TEVC_2022_3150771
crossref_primary_10_1155_2022_7237099
crossref_primary_10_1016_j_asoc_2021_107855
crossref_primary_10_1007_s12652_018_0858_4
crossref_primary_10_1016_j_swevo_2018_10_015
crossref_primary_10_1007_s11277_021_08089_9
crossref_primary_10_1109_TSMC_2019_2956121
crossref_primary_10_1109_TSMC_2021_3096013
crossref_primary_10_1007_s10586_017_1182_z
crossref_primary_10_1016_j_asoc_2024_112232
crossref_primary_10_1109_MCI_2023_3304081
crossref_primary_10_1109_TCYB_2019_2950626
crossref_primary_10_1109_ACCESS_2018_2801792
crossref_primary_10_1109_TEVC_2022_3185665
crossref_primary_10_1007_s13042_023_02006_1
crossref_primary_10_1016_j_swevo_2018_08_005
crossref_primary_10_1109_TEVC_2018_2817889
crossref_primary_10_3390_s22051999
crossref_primary_10_1016_j_cie_2021_107481
crossref_primary_10_1016_j_swevo_2023_101466
Cites_doi 10.1023/A:1008202821328
10.1109/CEC.2015.7257307
10.1109/MCI.2014.2350953
10.1007/978-3-319-11056-1
10.1109/MIC.2012.50
10.1016/j.ins.2014.10.042
10.1109/ICEC.1994.350039
10.1007/s00500-015-1587-7
10.1109/TEVC.2015.2428292
10.1007/s12293-010-0032-9
10.1155/2015/246139
10.1016/j.ins.2008.02.017
10.1109/CEC.2010.5586034
10.1109/TEVC.2003.819944
10.1109/TEVC.2014.2362558
10.1145/2791291
10.1109/CEC.2013.6557798
10.1155/2014/203545
10.1007/s10472-010-9213-y
10.1109/TEVC.2011.2132725
10.1093/comjnl/7.2.155
10.1162/106365600568086
10.1109/TCYB.2014.2323936
10.1109/LGRS.2014.2337320
10.1057/jors.2015.77
10.1016/j.swevo.2011.11.003
10.1109/TEVC.2009.2014613
10.1093/comjnl/3.3.175
10.1109/TEVC.2013.2281543
10.1109/DMO.2009.5341899
10.1109/TEVC.2014.2319051
10.1162/EVCO_a_00087
10.1109/TEVC.2015.2477402
10.1109/TEVC.2015.2424410
10.1007/3-540-58484-6_269
10.1080/17445760.2014.925548
10.1016/j.ins.2014.12.062
10.1016/j.jnca.2014.07.032
10.1109/TEVC.2014.2308294
10.1109/TSMCB.2005.856143
10.1109/TEVC.2010.2059031
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2016.2602860
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 327
ExternalDocumentID 10_1109_TEVC_2016_2602860
7552543
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c265t-de770ded2f922f4667fc0e8c8f33721fdfc98d5c84252d6c00d025d8da161bb53
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Tue Jul 01 01:56:21 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
Tue Aug 26 16:43:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/Crown.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-de770ded2f922f4667fc0e8c8f33721fdfc98d5c84252d6c00d025d8da161bb53
ORCID 0000-0002-0276-4704
PageCount 13
ParticipantIDs ieee_primary_7552543
crossref_primary_10_1109_TEVC_2016_2602860
crossref_citationtrail_10_1109_TEVC_2016_2602860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-April
2017-4-00
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-April
PublicationDecade 2010
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref34
ref12
ref37
ref15
ref36
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref16
ref19
ref18
ong (ref28) 2006; 36
moscato (ref23) 1989
ref24
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref27
hassanien (ref14) 2015; 9
ref29
potter (ref31) 1994
ref8
ref7
ref9
sebastião (ref38) 2009
ref4
ref3
ref5
ref40
hansen (ref13) 2011
elsayed (ref6) 2015
References_xml – ident: ref40
  doi: 10.1023/A:1008202821328
– year: 2011
  ident: ref13
  article-title: The CMA evolution strategy: A tutorial
– ident: ref11
  doi: 10.1109/CEC.2015.7257307
– ident: ref45
  doi: 10.1109/MCI.2014.2350953
– volume: 9
  year: 2015
  ident: ref14
  publication-title: Big Data in Complex Systems Challenges and Opportunities
  doi: 10.1007/978-3-319-11056-1
– ident: ref18
  doi: 10.1109/MIC.2012.50
– ident: ref20
  doi: 10.1016/j.ins.2014.10.042
– ident: ref2
  doi: 10.1109/ICEC.1994.350039
– ident: ref10
  doi: 10.1007/s00500-015-1587-7
– ident: ref19
  doi: 10.1109/TEVC.2015.2428292
– ident: ref17
  doi: 10.1007/s12293-010-0032-9
– ident: ref29
  doi: 10.1155/2015/246139
– ident: ref42
  doi: 10.1016/j.ins.2008.02.017
– ident: ref22
  doi: 10.1109/CEC.2010.5586034
– ident: ref27
  doi: 10.1109/TEVC.2003.819944
– ident: ref7
  doi: 10.1109/TEVC.2014.2362558
– ident: ref21
  doi: 10.1145/2791291
– ident: ref41
  doi: 10.1109/CEC.2013.6557798
– ident: ref39
  doi: 10.1155/2014/203545
– ident: ref8
  doi: 10.1007/s10472-010-9213-y
– ident: ref4
  doi: 10.1109/TEVC.2011.2132725
– ident: ref33
  doi: 10.1093/comjnl/7.2.155
– ident: ref32
  doi: 10.1162/106365600568086
– ident: ref37
  doi: 10.1109/TCYB.2014.2323936
– start-page: 353
  year: 2009
  ident: ref38
  article-title: A study on change detection methods
  publication-title: Proc of the Portuguese Conf on Artificial Intelligence
– ident: ref9
  doi: 10.1109/LGRS.2014.2337320
– ident: ref16
  doi: 10.1057/jors.2015.77
– ident: ref24
  doi: 10.1016/j.swevo.2011.11.003
– ident: ref43
  doi: 10.1109/TEVC.2009.2014613
– start-page: 695
  year: 2015
  ident: ref6
  article-title: An adaptive configuration of differential evolution algorithms for big data
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref34
  doi: 10.1093/comjnl/3.3.175
– year: 1989
  ident: ref23
  article-title: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms
– ident: ref25
  doi: 10.1109/TEVC.2013.2281543
– ident: ref36
  doi: 10.1109/DMO.2009.5341899
– ident: ref35
  doi: 10.1109/TEVC.2014.2319051
– ident: ref30
  doi: 10.1162/EVCO_a_00087
– ident: ref12
  doi: 10.1109/TEVC.2015.2477402
– ident: ref44
  doi: 10.1109/TEVC.2015.2424410
– start-page: 249
  year: 1994
  ident: ref31
  article-title: A cooperative coevolutionary approach to function optimization
  publication-title: Parallel Problem Solving from Nature - PPSN III
  doi: 10.1007/3-540-58484-6_269
– ident: ref1
  doi: 10.1080/17445760.2014.925548
– ident: ref26
  doi: 10.1016/j.ins.2014.12.062
– ident: ref3
  doi: 10.1016/j.jnca.2014.07.032
– ident: ref15
  doi: 10.1109/TEVC.2014.2308294
– volume: 36
  start-page: 141
  year: 2006
  ident: ref28
  article-title: Classification of adaptive memetic algorithms: A comparative study
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2005.856143
– ident: ref5
  doi: 10.1109/TEVC.2010.2059031
SSID ssj0014519
Score 2.5163255
Snippet Evolutionary algorithms (EAs) have recently been suggested as a candidate for solving big data optimization problems that involve a very large number of...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 315
SubjectTerms Adaptive algorithm
Benchmark testing
Big data
differential evolution (DE)
Evolutionary computation
memetic algorithm
Memetics
meta-heuristics
Optimization
Search problems
Sociology
Title Heterogeneous Cooperative Co-Evolution Memetic Differential Evolution Algorithm for Big Data Optimization Problems
URI https://ieeexplore.ieee.org/document/7552543
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ2gJz2Iokb8yh48GYvLtt22RwQMMUE9gOHWtPuhRKAEiwd_vTvtgsYY423TbpNNZnbnbefNG4ALFDxxdbPp8DSljpcolLxlTcdgB4lpmiDxsXa4f897Q-9u5I8qcLWuhVFKFeQz1cBhkcuXmVjir7LrwPexdnsDNoyblbVa64wByqSUZPrIIMZwZDOYTRpdD7pPbSRx8YYB7yws1Ci_YtC3pipFTLmtQn-1mpJK8tpY5mlDfPwQavzvcndhx4JL0iq9YQ8qalaD6qpxA7H7uAbb31QI92HRQ0pMZjxJZcs30s6yuSr1wM3Y6b5b5yR9NcWKR9KxPVXM2TAhX69bk-dsMc5fpsTgYHIzfiadJE_IgzmTprbYkzyW7WveDmB42x20e45txeAIxv3ckSoIqFSS6Ygx7XEeaEFVKELtuuYOqaUWUSh9gUk9JrmgVBowJUOZGESZpr57CJuzbKaOgCgvETTSNHK59AKfm_DI8Z7sSu2xIOJ1oCvjxMLqlGO7jElc3FdoFKM9Y7RnbO1Zh8v1J_NSpOOvyftoqvVEa6Xj3x-fwBbDQF5wdU5hM18s1ZmBIXl6XvjfJ03f2as
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5ReqAcSgtUDY-yB04Ih83au7aPEIJSSoBDQLlZ9j7SqEkcJU4P_Hp27M1DCFW9rey1tNLM7nzr-eYbgFMUPPFNo-GJLKNekGqUvGUNz2IHhWmaMOVYO9y5F-2n4LbHextwvqyF0VqX5DNdx2GZy1e5nOOvsouQc6zd_gAfbdwPeFWttcwZoFBKRaePLWaMei6H2aDxRbf13EQal6hb-M6iUo9yFYXW2qqUUeVmBzqL9VRkkj_1eZHV5csbqcb_XfAX-OzgJbms_OErbOjxLuwsWjcQt5N3YXtNh3APpm0kxeTWl3Q-n5Fmnk90pQhux17rr3NP0tEjrHkk166rij0dhmT1-nLYz6eD4veIWCRMrgZ9cp0WKXmwp9LIlXuSx6qBzWwfnm5a3Wbbc80YPMkELzylw5AqrZiJGTOBEKGRVEcyMr5vb5FGGRlHiktM6zElJKXKwikVqdRiyizj_jfYHOdj_R2IDlJJY0NjX6gg5MIGSIE3ZV-ZgIWxqAFdGCeRTqkcG2YMk_LGQuME7ZmgPRNnzxqcLT-ZVDId_5q8h6ZaTnRWOnj_8Qlstbudu-Tu5_2vQ_jEMKyXzJ0j2Cymc31sQUmR_Sh98RXaG9z4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Cooperative+Co-Evolution+Memetic+Differential+Evolution+Algorithm+for+Big+Data+Optimization+Problems&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Sabar%2C+Nasser+R.&rft.au=Abawajy%2C+Jemal&rft.au=Yearwood%2C+John&rft.date=2017-04-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=21&rft.issue=2&rft.spage=315&rft.epage=327&rft_id=info:doi/10.1109%2FTEVC.2016.2602860&rft.externalDocID=7552543
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon