Heterogeneous Cooperative Co-Evolution Memetic Differential Evolution Algorithm for Big Data Optimization Problems
Evolutionary algorithms (EAs) have recently been suggested as a candidate for solving big data optimization problems that involve a very large number of variables and need to be analyzed in a short period of time. However, EAs face a scalability issue when dealing with big data problems. Moreover, t...
Saved in:
Published in | IEEE transactions on evolutionary computation Vol. 21; no. 2; pp. 315 - 327 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.04.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1089-778X 1941-0026 |
DOI | 10.1109/TEVC.2016.2602860 |
Cover
Abstract | Evolutionary algorithms (EAs) have recently been suggested as a candidate for solving big data optimization problems that involve a very large number of variables and need to be analyzed in a short period of time. However, EAs face a scalability issue when dealing with big data problems. Moreover, the performance of EAs critically hinges on the utilized parameter values and operator types, thus it is impossible to design a single EA that can outperform all others in every problem instance. To address these challenges, we propose a heterogeneous framework that integrates a cooperative co-evolution method with various types of memetic algorithms. We use the cooperative co-evolution method to split the big problem into subproblems in order to increase the efficiency of the solving process. The subproblems are then solved using various heterogeneous memetic algorithms. The proposed heterogeneous framework adaptively assigns, for each solution, different operators, parameter values and a local search algorithm to efficiently explore and exploit the search space of the given problem instance. The performance of the proposed algorithm is assessed using the Big Data 2015 competition benchmark problems that contain data with and without noise. Experimental results demonstrate that the proposed algorithm, with the cooperative co-evolution method, performs better than without the cooperative co-evolution method. Furthermore, it obtained very competitive results for all tested instances, if not better, when compared to other algorithms using lower computational times. |
---|---|
AbstractList | Evolutionary algorithms (EAs) have recently been suggested as a candidate for solving big data optimization problems that involve a very large number of variables and need to be analyzed in a short period of time. However, EAs face a scalability issue when dealing with big data problems. Moreover, the performance of EAs critically hinges on the utilized parameter values and operator types, thus it is impossible to design a single EA that can outperform all others in every problem instance. To address these challenges, we propose a heterogeneous framework that integrates a cooperative co-evolution method with various types of memetic algorithms. We use the cooperative co-evolution method to split the big problem into subproblems in order to increase the efficiency of the solving process. The subproblems are then solved using various heterogeneous memetic algorithms. The proposed heterogeneous framework adaptively assigns, for each solution, different operators, parameter values and a local search algorithm to efficiently explore and exploit the search space of the given problem instance. The performance of the proposed algorithm is assessed using the Big Data 2015 competition benchmark problems that contain data with and without noise. Experimental results demonstrate that the proposed algorithm, with the cooperative co-evolution method, performs better than without the cooperative co-evolution method. Furthermore, it obtained very competitive results for all tested instances, if not better, when compared to other algorithms using lower computational times. |
Author | Yearwood, John Sabar, Nasser R. Abawajy, Jemal |
Author_xml | – sequence: 1 givenname: Nasser R. surname: Sabar fullname: Sabar, Nasser R. email: nasser.sabar@gmail.com organization: Sch. of Inf. Technol., Deakin Univ., Burwood, VIC, Australia – sequence: 2 givenname: Jemal surname: Abawajy fullname: Abawajy, Jemal email: jemal.abawajy@deakin.edu.au organization: Sch. of Inf. Technol., Deakin Univ., Burwood, VIC, Australia – sequence: 3 givenname: John surname: Yearwood fullname: Yearwood, John email: john.yearwood@deakin.edu.au organization: Sch. of Inf. Technol., Deakin Univ., Burwood, VIC, Australia |
BookMark | eNp9kMtKAzEUhoNUsK0-gLiZF5iaZCaXWda2WqFSF1XcDWlyUiMzk5JJC_r09oaCC1fnh_N_h8PXQ53GN4DQNcEDQnBxu5i8jgYUEz6gHFPJ8RnqkiInKcaUd3YZyyIVQr5doF7bfmBMckaKLgpTiBD8ChrwmzYZeb-GoKLbwi6nk62vNtH5JnmCGqLTydhZCwGa6FSV_K6H1coHF9_rxPqQ3LlVMlZRJfN1dLX7UofOc_DLCur2Ep1bVbVwdZp99HI_WYym6Wz-8DgazlJNOYupASGwAUNtQanNORdWY5Ba2iwTlFhjdSEN0zKnjBquMTaYMiONIpwslyzrI3G8q4Nv2wC21C4eXolBuaokuNyrK_fqyr268qRuR5I_5Dq4WoXPf5mbI-MA4KcvGKMsz7JvgAd-9Q |
CODEN | ITEVF5 |
CitedBy_id | crossref_primary_10_1109_TEVC_2021_3130838 crossref_primary_10_1016_j_jestch_2023_101388 crossref_primary_10_1109_TEVC_2022_3199413 crossref_primary_10_1016_j_knosys_2021_107569 crossref_primary_10_1109_TETCI_2019_2939373 crossref_primary_10_1109_TEVC_2022_3170793 crossref_primary_10_1109_TIM_2022_3169551 crossref_primary_10_23919_CSMS_2022_0021 crossref_primary_10_1016_j_engappai_2017_04_021 crossref_primary_10_1109_ACCESS_2020_3027559 crossref_primary_10_1007_s11063_022_10850_5 crossref_primary_10_1016_j_apenergy_2024_124488 crossref_primary_10_3233_ICA_170555 crossref_primary_10_1109_TETCI_2024_3419723 crossref_primary_10_1016_j_ins_2018_12_065 crossref_primary_10_1016_j_future_2018_06_008 crossref_primary_10_1109_TNNLS_2019_2921926 crossref_primary_10_1142_S0219622020500078 crossref_primary_10_1002_cpe_5990 crossref_primary_10_1007_s10776_018_0388_1 crossref_primary_10_1088_1742_6596_1533_4_042071 crossref_primary_10_1109_ACCESS_2020_2984272 crossref_primary_10_1016_j_renene_2020_11_057 crossref_primary_10_1002_2050_7038_12589 crossref_primary_10_1007_s12293_020_00298_2 crossref_primary_10_1016_j_knosys_2022_108209 crossref_primary_10_1016_j_swevo_2020_100738 crossref_primary_10_1080_0952813X_2020_1785018 crossref_primary_10_1109_ACCESS_2020_3004255 crossref_primary_10_3390_a15120451 crossref_primary_10_1109_TCYB_2018_2859635 crossref_primary_10_1007_s13198_022_01727_w crossref_primary_10_1016_j_asoc_2019_106053 crossref_primary_10_1109_ACCESS_2020_2979738 crossref_primary_10_1016_j_apm_2019_10_069 crossref_primary_10_1016_j_asoc_2020_106251 crossref_primary_10_1016_j_swevo_2017_12_002 crossref_primary_10_1109_TEVC_2019_2893447 crossref_primary_10_4018_IJISMD_2017070102 crossref_primary_10_1109_TCYB_2022_3217074 crossref_primary_10_1007_s10710_017_9305_0 crossref_primary_10_1016_j_ins_2018_10_005 crossref_primary_10_1016_j_swevo_2020_100730 crossref_primary_10_1016_j_swevo_2017_10_006 crossref_primary_10_3390_su15075840 crossref_primary_10_1109_ACCESS_2019_2931824 crossref_primary_10_1109_TCYB_2018_2859342 crossref_primary_10_1109_TEVC_2019_2910721 crossref_primary_10_1007_s10489_018_1279_y crossref_primary_10_1016_j_asoc_2017_06_029 crossref_primary_10_1016_j_ins_2021_07_082 crossref_primary_10_17341_gazimmfd_986747 crossref_primary_10_1109_ACCESS_2020_2995790 crossref_primary_10_1109_TCYB_2020_3025577 crossref_primary_10_1371_journal_pone_0216906 crossref_primary_10_1109_TEVC_2022_3150771 crossref_primary_10_1155_2022_7237099 crossref_primary_10_1016_j_asoc_2021_107855 crossref_primary_10_1007_s12652_018_0858_4 crossref_primary_10_1016_j_swevo_2018_10_015 crossref_primary_10_1007_s11277_021_08089_9 crossref_primary_10_1109_TSMC_2019_2956121 crossref_primary_10_1109_TSMC_2021_3096013 crossref_primary_10_1007_s10586_017_1182_z crossref_primary_10_1016_j_asoc_2024_112232 crossref_primary_10_1109_MCI_2023_3304081 crossref_primary_10_1109_TCYB_2019_2950626 crossref_primary_10_1109_ACCESS_2018_2801792 crossref_primary_10_1109_TEVC_2022_3185665 crossref_primary_10_1007_s13042_023_02006_1 crossref_primary_10_1016_j_swevo_2018_08_005 crossref_primary_10_1109_TEVC_2018_2817889 crossref_primary_10_3390_s22051999 crossref_primary_10_1016_j_cie_2021_107481 crossref_primary_10_1016_j_swevo_2023_101466 |
Cites_doi | 10.1023/A:1008202821328 10.1109/CEC.2015.7257307 10.1109/MCI.2014.2350953 10.1007/978-3-319-11056-1 10.1109/MIC.2012.50 10.1016/j.ins.2014.10.042 10.1109/ICEC.1994.350039 10.1007/s00500-015-1587-7 10.1109/TEVC.2015.2428292 10.1007/s12293-010-0032-9 10.1155/2015/246139 10.1016/j.ins.2008.02.017 10.1109/CEC.2010.5586034 10.1109/TEVC.2003.819944 10.1109/TEVC.2014.2362558 10.1145/2791291 10.1109/CEC.2013.6557798 10.1155/2014/203545 10.1007/s10472-010-9213-y 10.1109/TEVC.2011.2132725 10.1093/comjnl/7.2.155 10.1162/106365600568086 10.1109/TCYB.2014.2323936 10.1109/LGRS.2014.2337320 10.1057/jors.2015.77 10.1016/j.swevo.2011.11.003 10.1109/TEVC.2009.2014613 10.1093/comjnl/3.3.175 10.1109/TEVC.2013.2281543 10.1109/DMO.2009.5341899 10.1109/TEVC.2014.2319051 10.1162/EVCO_a_00087 10.1109/TEVC.2015.2477402 10.1109/TEVC.2015.2424410 10.1007/3-540-58484-6_269 10.1080/17445760.2014.925548 10.1016/j.ins.2014.12.062 10.1016/j.jnca.2014.07.032 10.1109/TEVC.2014.2308294 10.1109/TSMCB.2005.856143 10.1109/TEVC.2010.2059031 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TEVC.2016.2602860 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0026 |
EndPage | 327 |
ExternalDocumentID | 10_1109_TEVC_2016_2602860 7552543 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYOK AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c265t-de770ded2f922f4667fc0e8c8f33721fdfc98d5c84252d6c00d025d8da161bb53 |
IEDL.DBID | RIE |
ISSN | 1089-778X |
IngestDate | Tue Jul 01 01:56:21 EDT 2025 Thu Apr 24 22:59:52 EDT 2025 Tue Aug 26 16:43:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/Crown.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-de770ded2f922f4667fc0e8c8f33721fdfc98d5c84252d6c00d025d8da161bb53 |
ORCID | 0000-0002-0276-4704 |
PageCount | 13 |
ParticipantIDs | ieee_primary_7552543 crossref_primary_10_1109_TEVC_2016_2602860 crossref_citationtrail_10_1109_TEVC_2016_2602860 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-April 2017-4-00 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-April |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on evolutionary computation |
PublicationTitleAbbrev | TEVC |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref34 ref12 ref37 ref15 ref36 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref16 ref19 ref18 ong (ref28) 2006; 36 moscato (ref23) 1989 ref24 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref27 hassanien (ref14) 2015; 9 ref29 potter (ref31) 1994 ref8 ref7 ref9 sebastião (ref38) 2009 ref4 ref3 ref5 ref40 hansen (ref13) 2011 elsayed (ref6) 2015 |
References_xml | – ident: ref40 doi: 10.1023/A:1008202821328 – year: 2011 ident: ref13 article-title: The CMA evolution strategy: A tutorial – ident: ref11 doi: 10.1109/CEC.2015.7257307 – ident: ref45 doi: 10.1109/MCI.2014.2350953 – volume: 9 year: 2015 ident: ref14 publication-title: Big Data in Complex Systems Challenges and Opportunities doi: 10.1007/978-3-319-11056-1 – ident: ref18 doi: 10.1109/MIC.2012.50 – ident: ref20 doi: 10.1016/j.ins.2014.10.042 – ident: ref2 doi: 10.1109/ICEC.1994.350039 – ident: ref10 doi: 10.1007/s00500-015-1587-7 – ident: ref19 doi: 10.1109/TEVC.2015.2428292 – ident: ref17 doi: 10.1007/s12293-010-0032-9 – ident: ref29 doi: 10.1155/2015/246139 – ident: ref42 doi: 10.1016/j.ins.2008.02.017 – ident: ref22 doi: 10.1109/CEC.2010.5586034 – ident: ref27 doi: 10.1109/TEVC.2003.819944 – ident: ref7 doi: 10.1109/TEVC.2014.2362558 – ident: ref21 doi: 10.1145/2791291 – ident: ref41 doi: 10.1109/CEC.2013.6557798 – ident: ref39 doi: 10.1155/2014/203545 – ident: ref8 doi: 10.1007/s10472-010-9213-y – ident: ref4 doi: 10.1109/TEVC.2011.2132725 – ident: ref33 doi: 10.1093/comjnl/7.2.155 – ident: ref32 doi: 10.1162/106365600568086 – ident: ref37 doi: 10.1109/TCYB.2014.2323936 – start-page: 353 year: 2009 ident: ref38 article-title: A study on change detection methods publication-title: Proc of the Portuguese Conf on Artificial Intelligence – ident: ref9 doi: 10.1109/LGRS.2014.2337320 – ident: ref16 doi: 10.1057/jors.2015.77 – ident: ref24 doi: 10.1016/j.swevo.2011.11.003 – ident: ref43 doi: 10.1109/TEVC.2009.2014613 – start-page: 695 year: 2015 ident: ref6 article-title: An adaptive configuration of differential evolution algorithms for big data publication-title: Proc IEEE Congr Evol Comput (CEC) – ident: ref34 doi: 10.1093/comjnl/3.3.175 – year: 1989 ident: ref23 article-title: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms – ident: ref25 doi: 10.1109/TEVC.2013.2281543 – ident: ref36 doi: 10.1109/DMO.2009.5341899 – ident: ref35 doi: 10.1109/TEVC.2014.2319051 – ident: ref30 doi: 10.1162/EVCO_a_00087 – ident: ref12 doi: 10.1109/TEVC.2015.2477402 – ident: ref44 doi: 10.1109/TEVC.2015.2424410 – start-page: 249 year: 1994 ident: ref31 article-title: A cooperative coevolutionary approach to function optimization publication-title: Parallel Problem Solving from Nature - PPSN III doi: 10.1007/3-540-58484-6_269 – ident: ref1 doi: 10.1080/17445760.2014.925548 – ident: ref26 doi: 10.1016/j.ins.2014.12.062 – ident: ref3 doi: 10.1016/j.jnca.2014.07.032 – ident: ref15 doi: 10.1109/TEVC.2014.2308294 – volume: 36 start-page: 141 year: 2006 ident: ref28 article-title: Classification of adaptive memetic algorithms: A comparative study publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2005.856143 – ident: ref5 doi: 10.1109/TEVC.2010.2059031 |
SSID | ssj0014519 |
Score | 2.5163255 |
Snippet | Evolutionary algorithms (EAs) have recently been suggested as a candidate for solving big data optimization problems that involve a very large number of... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 315 |
SubjectTerms | Adaptive algorithm Benchmark testing Big data differential evolution (DE) Evolutionary computation memetic algorithm Memetics meta-heuristics Optimization Search problems Sociology |
Title | Heterogeneous Cooperative Co-Evolution Memetic Differential Evolution Algorithm for Big Data Optimization Problems |
URI | https://ieeexplore.ieee.org/document/7552543 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ2gJz2Iokb8yh48GYvLtt22RwQMMUE9gOHWtPuhRKAEiwd_vTvtgsYY423TbpNNZnbnbefNG4ALFDxxdbPp8DSljpcolLxlTcdgB4lpmiDxsXa4f897Q-9u5I8qcLWuhVFKFeQz1cBhkcuXmVjir7LrwPexdnsDNoyblbVa64wByqSUZPrIIMZwZDOYTRpdD7pPbSRx8YYB7yws1Ci_YtC3pipFTLmtQn-1mpJK8tpY5mlDfPwQavzvcndhx4JL0iq9YQ8qalaD6qpxA7H7uAbb31QI92HRQ0pMZjxJZcs30s6yuSr1wM3Y6b5b5yR9NcWKR9KxPVXM2TAhX69bk-dsMc5fpsTgYHIzfiadJE_IgzmTprbYkzyW7WveDmB42x20e45txeAIxv3ckSoIqFSS6Ygx7XEeaEFVKELtuuYOqaUWUSh9gUk9JrmgVBowJUOZGESZpr57CJuzbKaOgCgvETTSNHK59AKfm_DI8Z7sSu2xIOJ1oCvjxMLqlGO7jElc3FdoFKM9Y7RnbO1Zh8v1J_NSpOOvyftoqvVEa6Xj3x-fwBbDQF5wdU5hM18s1ZmBIXl6XvjfJ03f2as |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5ReqAcSgtUDY-yB04Ih83au7aPEIJSSoBDQLlZ9j7SqEkcJU4P_Hp27M1DCFW9rey1tNLM7nzr-eYbgFMUPPFNo-GJLKNekGqUvGUNz2IHhWmaMOVYO9y5F-2n4LbHextwvqyF0VqX5DNdx2GZy1e5nOOvsouQc6zd_gAfbdwPeFWttcwZoFBKRaePLWaMei6H2aDxRbf13EQal6hb-M6iUo9yFYXW2qqUUeVmBzqL9VRkkj_1eZHV5csbqcb_XfAX-OzgJbms_OErbOjxLuwsWjcQt5N3YXtNh3APpm0kxeTWl3Q-n5Fmnk90pQhux17rr3NP0tEjrHkk166rij0dhmT1-nLYz6eD4veIWCRMrgZ9cp0WKXmwp9LIlXuSx6qBzWwfnm5a3Wbbc80YPMkELzylw5AqrZiJGTOBEKGRVEcyMr5vb5FGGRlHiktM6zElJKXKwikVqdRiyizj_jfYHOdj_R2IDlJJY0NjX6gg5MIGSIE3ZV-ZgIWxqAFdGCeRTqkcG2YMk_LGQuME7ZmgPRNnzxqcLT-ZVDId_5q8h6ZaTnRWOnj_8Qlstbudu-Tu5_2vQ_jEMKyXzJ0j2Cymc31sQUmR_Sh98RXaG9z4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Cooperative+Co-Evolution+Memetic+Differential+Evolution+Algorithm+for+Big+Data+Optimization+Problems&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Sabar%2C+Nasser+R.&rft.au=Abawajy%2C+Jemal&rft.au=Yearwood%2C+John&rft.date=2017-04-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=21&rft.issue=2&rft.spage=315&rft.epage=327&rft_id=info:doi/10.1109%2FTEVC.2016.2602860&rft.externalDocID=7552543 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |