High p-xylene selectivity in aluminum-based metal–organic framework with 1-D channels
[Display omitted] •MIL-120(Al) showed high pX selectivity superior to reported values in MOFs and zeolites.•MIL-120(Al) exhibited good cyclic adsorption properties and excellent stabilities.•A dynamic simulation showed a potential of pX separation using a SMB with MIL-120(Al).•High pX selectivity ca...
Saved in:
Published in | Journal of industrial and engineering chemistry (Seoul, Korea) Vol. 117; pp. 333 - 341 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
25.01.2023
한국공업화학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•MIL-120(Al) showed high pX selectivity superior to reported values in MOFs and zeolites.•MIL-120(Al) exhibited good cyclic adsorption properties and excellent stabilities.•A dynamic simulation showed a potential of pX separation using a SMB with MIL-120(Al).•High pX selectivity can be attained within 1-D channels of approximately 7 Å.
The separation of highly pure p-xylene (pX) from xylene isomers is an industrially important and challenging issue. Although simulated moving bed (SMB) processes using faujasite zeolites are currently used for pX separation, developing novel adsorbents with improved pX separation performances is strongly needed. In this study, an aluminum-based metal–organic framework (MOF), MIL-120(Al) with 1-D channels of approximately 7 Å, exhibited considerably high pX selectivities compared to xylene isomers (αpX/oX: ∼31; αpX/mX: ∼17; αpX/EB: ∼7.5; αpX/OME: ∼11), which are superior to reported values for other MOFs and zeolites under similar conditions. Such high selectivities may originate from the proper pore shape and size of MIL-120(Al). MIL-120(Al) also showed good cyclic adsorption properties as well as superior hydrothermal and chemical stabilities. Finally, a dynamic simulation showed that MIL-120(Al) could achieve approximately complete separation of pX from a xylene isomer mixture using an SMB process. |
---|---|
AbstractList | [Display omitted]
•MIL-120(Al) showed high pX selectivity superior to reported values in MOFs and zeolites.•MIL-120(Al) exhibited good cyclic adsorption properties and excellent stabilities.•A dynamic simulation showed a potential of pX separation using a SMB with MIL-120(Al).•High pX selectivity can be attained within 1-D channels of approximately 7 Å.
The separation of highly pure p-xylene (pX) from xylene isomers is an industrially important and challenging issue. Although simulated moving bed (SMB) processes using faujasite zeolites are currently used for pX separation, developing novel adsorbents with improved pX separation performances is strongly needed. In this study, an aluminum-based metal–organic framework (MOF), MIL-120(Al) with 1-D channels of approximately 7 Å, exhibited considerably high pX selectivities compared to xylene isomers (αpX/oX: ∼31; αpX/mX: ∼17; αpX/EB: ∼7.5; αpX/OME: ∼11), which are superior to reported values for other MOFs and zeolites under similar conditions. Such high selectivities may originate from the proper pore shape and size of MIL-120(Al). MIL-120(Al) also showed good cyclic adsorption properties as well as superior hydrothermal and chemical stabilities. Finally, a dynamic simulation showed that MIL-120(Al) could achieve approximately complete separation of pX from a xylene isomer mixture using an SMB process. The separation of highly pure p-xylene (pX) from xylene isomers is an industrially important and challengingissue. Although simulated moving bed (SMB) processes using faujasite zeolites are currently usedfor pX separation, developing novel adsorbents with improved pX separation performances is stronglyneeded. In this study, an aluminum-based metal–organic framework (MOF), MIL-120(Al) with 1-D channelsof approximately 7 Å, exhibited considerably high pX selectivities compared to xylene isomers(apX/oX: 31; apX/mX: 17; apX/EB: 7.5; apX/OME: 11), which are superior to reported values for otherMOFs and zeolites under similar conditions. Such high selectivities may originate from the proper poreshape and size of MIL-120(Al). MIL-120(Al) also showed good cyclic adsorption properties as well assuperior hydrothermal and chemical stabilities. Finally, a dynamic simulation showed that MIL-120(Al)could achieve approximately complete separation of pX from a xylene isomer mixture using an SMBprocess. KCI Citation Count: 0 |
Author | Bae, Youn-Sang Bae, Hyun Jin Choi, Yujin Kim, Kyung-Min Kim, Seung-Ik |
Author_xml | – sequence: 1 givenname: Hyun Jin surname: Bae fullname: Bae, Hyun Jin organization: Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, South Korea – sequence: 2 givenname: Seung-Ik surname: Kim fullname: Kim, Seung-Ik organization: Environmental and Sustainable Resources Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea – sequence: 3 givenname: Yujin surname: Choi fullname: Choi, Yujin organization: Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, South Korea – sequence: 4 givenname: Kyung-Min surname: Kim fullname: Kim, Kyung-Min email: kmkim@gwnu.ac.kr organization: Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung-si, Gangwon-do, South Korea – sequence: 5 givenname: Youn-Sang surname: Bae fullname: Bae, Youn-Sang email: mowbae@yonsei.ac.kr organization: Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, South Korea |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002936905$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kL1OwzAUhS0EEqXwAkyekVIcN3FSiQXxL1VCQkV0sxznur1p4iA7ULrxDrwhT4JDmRg6nauj893hOyL7trVAyGnMRjGLxXk1qhD0iDPOQzFiPN4jgzjPRJRNkvl-uDkXEcvF_JAceV8xJtg4FwPyco-LJX2NPjY1WKAeatAdvmO3oWipqt8atG9NVCgPJW2gU_X351frFsqipsapBtatW9E1dksaR9dUL5W1UPtjcmBU7eHkL4fk-fZmdnUfTR_vHq4up5HmIu2iPDWp5lBOCsUMN2kiUmWYHse6LLMiFTFLDFMKGDemyNI8KcxE8UIUAeIa2HhIzrZ_rTNypVG2Cn9z0cqVk5dPswcZDOWcJVkY59uxdq33DozU2KkOW9s5hXUY9lshK9nblL3Nvgs2A8r_oa8OG-U2u6GLLRSEwDuCk14jWA0luqBZli3uwn8A9S2Sng |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_216229 crossref_primary_10_1016_j_jiec_2025_01_009 crossref_primary_10_1016_j_seppur_2024_129062 crossref_primary_10_1021_jacs_3c07198 crossref_primary_10_1016_j_jece_2023_111027 crossref_primary_10_1039_D4TA09271F crossref_primary_10_1002_smll_202503221 crossref_primary_10_1016_j_seppur_2024_129129 crossref_primary_10_1021_acscentsci_4c00876 crossref_primary_10_1002_adma_202413506 crossref_primary_10_1002_sstr_202300302 crossref_primary_10_3390_pr12112331 |
Cites_doi | 10.1016/j.micromeso.2012.01.033 10.1627/jpi.64.147 10.1002/aic.11062 10.1021/cr200324t 10.1016/j.apsusc.2019.02.130 10.1021/cm9023106 10.1021/acsami.9b11343 10.1021/jp960226h 10.1021/ja207287h 10.1016/j.cej.2019.01.182 10.1016/j.ces.2016.10.039 10.1039/D0CY00833H 10.1002/bkcs.12225 10.1016/j.seppur.2017.11.056 10.1016/j.jiec.2019.06.043 10.1021/acs.inorgchem.0c02496 10.1021/ie010095t 10.1016/j.ccr.2017.09.027 10.1002/anie.201807935 10.1016/j.micromeso.2016.01.044 10.1039/C9CS00756C 10.1002/anie.201402894 10.1039/b807080f 10.1038/532435a 10.1039/C7DT03304D 10.1016/j.ccr.2018.04.001 10.1016/j.jcat.2011.01.019 10.1016/S1383-5866(00)00069-1 10.1021/jacs.9b11314 10.1016/S0021-9673(97)00048-4 10.1002/ceat.201100672 10.1021/acs.iecr.7b03127 10.1002/9783527629565 10.1016/j.ccr.2018.06.011 10.1007/s11814-020-0730-z 10.1021/i200018a016 10.1007/s10450-018-9976-8 10.1021/jacs.1c08749 10.1016/j.micromeso.2017.10.018 10.1002/anie.200700056 10.1039/C1CS15196G 10.1039/D0SC02123G 10.1021/ar1000617 10.1021/jacs.7b13825 10.1016/j.jiec.2020.04.032 10.1021/la100449z 10.1002/anie.201307656 10.1016/j.micromeso.2011.09.013 10.1016/j.seppur.2020.116758 10.1002/adma.201705189 10.1038/srep05761 |
ContentType | Journal Article |
Copyright | 2022 The Korean Society of Industrial and Engineering Chemistry |
Copyright_xml | – notice: 2022 The Korean Society of Industrial and Engineering Chemistry |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1016/j.jiec.2022.10.021 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1876-794X |
EndPage | 341 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10182047 10_1016_j_jiec_2022_10_021 S1226086X22005603 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9ZL AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO9 EP2 EP3 FDB FIRID FNPLU FYGXN GBLVA HH5 IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SSG SSZ T5K ~G- 2WC AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION EJD HZ~ MZR OK1 RIG SSH ZY4 ZZE ABTAH ACYCR |
ID | FETCH-LOGICAL-c265t-85f5c2ed9ba0f2f5465af0c31cdd7b56104f0aae02ffb7584bf9a2b6bc2e2ce03 |
IEDL.DBID | .~1 |
ISSN | 1226-086X |
IngestDate | Fri May 31 03:51:28 EDT 2024 Tue Jul 01 03:34:26 EDT 2025 Thu Apr 24 23:09:11 EDT 2025 Fri Feb 23 02:40:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Xylene isomer separation Adsorption Simulated moving bed (SMB) Metal-organic framework (MOF) p-Xylene (pX) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-85f5c2ed9ba0f2f5465af0c31cdd7b56104f0aae02ffb7584bf9a2b6bc2e2ce03 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10182047 crossref_citationtrail_10_1016_j_jiec_2022_10_021 crossref_primary_10_1016_j_jiec_2022_10_021 elsevier_sciencedirect_doi_10_1016_j_jiec_2022_10_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-25 |
PublicationDateYYYYMMDD | 2023-01-25 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Journal of industrial and engineering chemistry (Seoul, Korea) |
PublicationYear | 2023 |
Publisher | Elsevier B.V 한국공업화학회 |
Publisher_xml | – name: Elsevier B.V – name: 한국공업화학회 |
References | Yoon, Ahn, Kim, Notestein, Farha, Bae (b0115) 2020; 10 Minceva, Rodrigues (b0015) 2007; 53 Chen, Mian, Lee, Chen, Zhang, Kirlikovali (b0070) 2021; 143 du Plessis, Nikolayenko, Barbour (b0145) 2020; 142 Mazzotti, Storti, Morbidelli (b0255) 1997; 769 Mukherjee, Desai, Ghosh (b0095) 2018; 367 Silva, Moreira, Ferreira, Santos, Silva, Gomes (b0035) 2012; 35 Wu, Wei, Jiang, Caro, Huang (b0160) 2018; 57 Gonzalez, Kapelewski, Bloch, Milner, Reed, Hudson (b0215) 2018; 140 Farha, Hupp (b0055) 2010; 43 Kim, Kang, Kim, Bae (b0075) 2019; 365 Samokhvalov (b0235) 2018; 374 Zhang, Peh, Kang, Chai, Zhao (b0050) 2021; 3 Alaerts, Kirschhock, Maes, van der Veen, Finsy, Depla (b0190) 2007; 46 Hasan, First, Floudas (b0040) 2017; 159 Zhao, Wang, Li, Bu, Feng (b0065) 2018; 30 Yonezawa, Tanaka, Hayase, Sano, Suzuki, Miyake (b0165) 2021; 64 S. Kulprathipanja, Zeolites in industrial separation and catalysis, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010). Baertsch, Funke, Falconer, Noble (b0220) 1996; 100 Jae, Tompsett, Foster, Hammond, Auerbach, Lobo (b0225) 2011; 279 Torres-Knoop, Krishna, Dubbeldam (b0200) 2014; 53 Bae, Yazaydin, Snurr (b0250) 2010; 26 Shivanna, Otake, Zheng, Sakaki, Kitagawa (b0185) 2020; 56 Mukherjee, Joarder, Manna, Desai, Chaudhari, Ghosh (b0180) 2014; 4 Kim, Kim, Lee, Park, Bae, Kim (b0130) 2019; 479 Kim, Kim, Kim, Lee, Bae (b0105) 2020; 242 Vermoortele, Maes, Moghadam, Lennox, Ragon, Boulhout (b0150) 2011; 133 Bárcia, Nicolau, Gallegos, Chen, Rodrigues, Silva (b0210) 2012; 155 Kim, Han, Kim, Bae (b0270) 2020; 88 Lin, Xiang, Xing, Zhou, Chen (b0085) 2019; 378 Warren, Perkins, Jelfs, Boldrin, Chater, Miller (b0175) 2014; 53 Kumar, Wang, Mukherjee, Bezrukov, Patyk-Kaźmierczak, O'Nolan (b0140) 2020; 11 Sholl, Lively (b0010) 2016; 532 Migliorini, Mazzotti, Morbidelli (b0260) 2000; 20 Lannoeye, Van de Voorde, Bozbiyik, Reinsch, Denayer, De Vos (b0155) 2016; 226 Kim, Kim, Bae, Kim, Ravi, Kim (b0100) 2021; 425 Yang (b0245) 2003 Rasouli, Yaghobi, Chitsazan, Sayyar (b0135) 2012; 150 Lee, Farha, Roberts, Scheidt, Nguyen, Hupp (b0110) 2009; 38 Santacesaria, Morbidelli, Danise, Mercenari, Carra (b0280) 1982; 21 Yang, Qian, Wang, Cui, Chen, Xing (b0025) 2020; 49 Yoon, Lee, Piburn, Cho, Jeon, Lim (b0205) 2017; 46 Chebbi, Azambre, Volkringer, Loiseau (b0240) 2018; 259 Minceva, Rodrigues (b0030) 2002; 41 Moreira, Santos, Silva, Loureiro, Chang, Serre (b0275) 2018; 24 Volkringer, Loiseau, Haouas, Taulelle, Popov, Burghammer (b0230) 2009; 21 Yu, Won, Lee, Ahn (b0120) 2021; 38 Kim, Yoon, Oh, Kwak, Bae, Kim (b0080) 2020; 59 Krishna (b0005) 2018; 194 Han, Kim, Han, Kim, Bae (b0265) 2019; 79 Kreno, Leong, Farha, Allendorf, Van Duyne, Hupp (b0125) 2012; 112 Kim, Lee, Chung, Bae (b0195) 2019; 11 Xuan, Zhu, Liu, Cui (b0060) 2012; 41 Yang, Bai, Guo (b0020) 2017; 56 Han, Kim, Kim, Bae (b0090) 2021; 42 Yan, Li, Chen, Zhang, Chen, He (b0170) 2022; 307 Moreira (10.1016/j.jiec.2022.10.021_b0275) 2018; 24 Yoon (10.1016/j.jiec.2022.10.021_b0115) 2020; 10 Jae (10.1016/j.jiec.2022.10.021_b0225) 2011; 279 Torres-Knoop (10.1016/j.jiec.2022.10.021_b0200) 2014; 53 Hasan (10.1016/j.jiec.2022.10.021_b0040) 2017; 159 Kreno (10.1016/j.jiec.2022.10.021_b0125) 2012; 112 Baertsch (10.1016/j.jiec.2022.10.021_b0220) 1996; 100 10.1016/j.jiec.2022.10.021_b0045 Sholl (10.1016/j.jiec.2022.10.021_b0010) 2016; 532 Yoon (10.1016/j.jiec.2022.10.021_b0205) 2017; 46 Yan (10.1016/j.jiec.2022.10.021_b0170) 2022; 307 Chebbi (10.1016/j.jiec.2022.10.021_b0240) 2018; 259 Yang (10.1016/j.jiec.2022.10.021_b0025) 2020; 49 Volkringer (10.1016/j.jiec.2022.10.021_b0230) 2009; 21 Wu (10.1016/j.jiec.2022.10.021_b0160) 2018; 57 Chen (10.1016/j.jiec.2022.10.021_b0070) 2021; 143 Zhang (10.1016/j.jiec.2022.10.021_b0050) 2021; 3 Yang (10.1016/j.jiec.2022.10.021_b0020) 2017; 56 Silva (10.1016/j.jiec.2022.10.021_b0035) 2012; 35 Kim (10.1016/j.jiec.2022.10.021_b0080) 2020; 59 Xuan (10.1016/j.jiec.2022.10.021_b0060) 2012; 41 Lannoeye (10.1016/j.jiec.2022.10.021_b0155) 2016; 226 Warren (10.1016/j.jiec.2022.10.021_b0175) 2014; 53 Yonezawa (10.1016/j.jiec.2022.10.021_b0165) 2021; 64 Farha (10.1016/j.jiec.2022.10.021_b0055) 2010; 43 Yang (10.1016/j.jiec.2022.10.021_b0245) 2003 Bárcia (10.1016/j.jiec.2022.10.021_b0210) 2012; 155 Samokhvalov (10.1016/j.jiec.2022.10.021_b0235) 2018; 374 Kim (10.1016/j.jiec.2022.10.021_b0195) 2019; 11 Mukherjee (10.1016/j.jiec.2022.10.021_b0180) 2014; 4 Lee (10.1016/j.jiec.2022.10.021_b0110) 2009; 38 Han (10.1016/j.jiec.2022.10.021_b0265) 2019; 79 Migliorini (10.1016/j.jiec.2022.10.021_b0260) 2000; 20 Kumar (10.1016/j.jiec.2022.10.021_b0140) 2020; 11 Shivanna (10.1016/j.jiec.2022.10.021_b0185) 2020; 56 Vermoortele (10.1016/j.jiec.2022.10.021_b0150) 2011; 133 Kim (10.1016/j.jiec.2022.10.021_b0270) 2020; 88 Lin (10.1016/j.jiec.2022.10.021_b0085) 2019; 378 Mazzotti (10.1016/j.jiec.2022.10.021_b0255) 1997; 769 Minceva (10.1016/j.jiec.2022.10.021_b0015) 2007; 53 Zhao (10.1016/j.jiec.2022.10.021_b0065) 2018; 30 Kim (10.1016/j.jiec.2022.10.021_b0100) 2021; 425 Kim (10.1016/j.jiec.2022.10.021_b0105) 2020; 242 du Plessis (10.1016/j.jiec.2022.10.021_b0145) 2020; 142 Santacesaria (10.1016/j.jiec.2022.10.021_b0280) 1982; 21 Minceva (10.1016/j.jiec.2022.10.021_b0030) 2002; 41 Alaerts (10.1016/j.jiec.2022.10.021_b0190) 2007; 46 Rasouli (10.1016/j.jiec.2022.10.021_b0135) 2012; 150 Gonzalez (10.1016/j.jiec.2022.10.021_b0215) 2018; 140 Mukherjee (10.1016/j.jiec.2022.10.021_b0095) 2018; 367 Han (10.1016/j.jiec.2022.10.021_b0090) 2021; 42 Bae (10.1016/j.jiec.2022.10.021_b0250) 2010; 26 Kim (10.1016/j.jiec.2022.10.021_b0130) 2019; 479 Kim (10.1016/j.jiec.2022.10.021_b0075) 2019; 365 Yu (10.1016/j.jiec.2022.10.021_b0120) 2021; 38 Krishna (10.1016/j.jiec.2022.10.021_b0005) 2018; 194 |
References_xml | – year: 2003 ident: b0245 article-title: Adsorbents: Fundamentals and Applications – volume: 35 start-page: 1777 year: 2012 end-page: 1785 ident: b0035 publication-title: Chem. Eng. Technol. – volume: 88 start-page: 328 year: 2020 end-page: 338 ident: b0270 publication-title: J. Ind. Eng. Chem. – volume: 133 start-page: 18526 year: 2011 end-page: 18529 ident: b0150 publication-title: J. Am. Chem. Soc. – volume: 150 start-page: 47 year: 2012 end-page: 54 ident: b0135 publication-title: Microporous Mesoporous Mater. – volume: 367 start-page: 82 year: 2018 end-page: 126 ident: b0095 publication-title: Coord. Chem. Rev. – volume: 425 year: 2021 ident: b0100 publication-title: Chem. Eng. J. – volume: 4 start-page: 5761 year: 2014 ident: b0180 publication-title: Sci. Rep. – volume: 479 start-page: 720 year: 2019 end-page: 726 ident: b0130 publication-title: Appl. Surf. Sci. – volume: 21 start-page: 5783 year: 2009 end-page: 5791 ident: b0230 publication-title: Chem. Mater. – volume: 41 start-page: 1677 year: 2012 end-page: 1695 ident: b0060 publication-title: Chem. Soc. Rev. – volume: 242 year: 2020 ident: b0105 publication-title: Sep. Purif. Technol. – volume: 769 start-page: 3 year: 1997 end-page: 24 ident: b0255 publication-title: J. Chromatogr. A. – volume: 365 start-page: 242 year: 2019 end-page: 248 ident: b0075 publication-title: Chem. Eng. J. – volume: 100 start-page: 7676 year: 1996 end-page: 7679 ident: b0220 publication-title: J. Phys. Chem. – volume: 24 start-page: 715 year: 2018 end-page: 724 ident: b0275 publication-title: Adsorption – volume: 43 start-page: 1166 year: 2010 end-page: 1175 ident: b0055 publication-title: Acc. Chem. Res. – volume: 59 start-page: 18048 year: 2020 end-page: 18054 ident: b0080 publication-title: Inorg. Chem. – volume: 155 start-page: 220 year: 2012 end-page: 226 ident: b0210 publication-title: Microporous Mesoporous Mater. – volume: 259 start-page: 244 year: 2018 end-page: 254 ident: b0240 publication-title: Microporous Mesoporous Mater. – volume: 279 start-page: 257 year: 2011 end-page: 268 ident: b0225 publication-title: J. Catal. – volume: 53 start-page: 138 year: 2007 end-page: 149 ident: b0015 publication-title: AIChE. J. – volume: 46 start-page: 16096 year: 2017 end-page: 16101 ident: b0205 publication-title: Dalton Trans. – volume: 194 start-page: 281 year: 2018 end-page: 300 ident: b0005 publication-title: Sep. Purif. Technol. – volume: 11 start-page: 6889 year: 2020 end-page: 6895 ident: b0140 publication-title: Chem. Sci. – volume: 56 start-page: 14725 year: 2017 end-page: 14753 ident: b0020 publication-title: Ind. Eng. Chem. Res. – volume: 142 start-page: 4529 year: 2020 end-page: 4533 ident: b0145 publication-title: J. Am. Chem. Soc. – reference: S. Kulprathipanja, Zeolites in industrial separation and catalysis, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010). – volume: 374 start-page: 236 year: 2018 end-page: 253 ident: b0235 publication-title: Coord. Chem. Rev. – volume: 42 start-page: 471 year: 2021 end-page: 476 ident: b0090 publication-title: Bull. Korean. Chem. Soc. – volume: 57 start-page: 15354 year: 2018 end-page: 15358 ident: b0160 publication-title: Angew. Chem. Int. Ed. – volume: 64 start-page: 147 year: 2021 end-page: 154 ident: b0165 publication-title: J. Japan. Pet. Inst. – volume: 140 start-page: 3412 year: 2018 end-page: 3422 ident: b0215 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 1450 year: 2009 end-page: 1459 ident: b0110 publication-title: Chem. Soc. Rev. – volume: 38 start-page: 653 year: 2021 end-page: 673 ident: b0120 publication-title: Korean J. Chem. Eng. – volume: 26 start-page: 5475 year: 2010 end-page: 5483 ident: b0250 publication-title: Langmuir – volume: 21 start-page: 440 year: 1982 end-page: 445 ident: b0280 publication-title: Ind. Eng. Chem. Process. Des. Dev. – volume: 226 start-page: 292 year: 2016 end-page: 298 ident: b0155 publication-title: Microporous Mesoporous Mater. – volume: 532 start-page: 435 year: 2016 end-page: 437 ident: b0010 publication-title: Nature – volume: 307 year: 2022 ident: b0170 publication-title: J. Solid State Chem. – volume: 112 start-page: 1105 year: 2012 end-page: 1125 ident: b0125 publication-title: Chem. Rev. – volume: 20 start-page: 79 year: 2000 end-page: 96 ident: b0260 publication-title: Sep. Purif. Technol. – volume: 378 start-page: 87 year: 2019 end-page: 103 ident: b0085 publication-title: Coord. Chem. Rev. – volume: 159 start-page: 3 year: 2017 end-page: 17 ident: b0040 publication-title: Chem. Eng. Sci. – volume: 56 start-page: 9632 year: 2020 end-page: 9635 ident: b0185 publication-title: ChemComm. – volume: 79 start-page: 226 year: 2019 end-page: 235 ident: b0265 publication-title: J. Ind. Eng. Chem. – volume: 46 start-page: 4293 year: 2007 end-page: 4297 ident: b0190 publication-title: Angew. Chem. Int. Ed. – volume: 41 start-page: 3454 year: 2002 end-page: 3461 ident: b0030 publication-title: Ind. Eng. Chem. Res. – volume: 143 start-page: 18838 year: 2021 end-page: 18843 ident: b0070 publication-title: J. Am. Chem. Soc. – volume: 3 year: 2021 ident: b0050 publication-title: EnergyChem. – volume: 11 start-page: 31227 year: 2019 end-page: 31236 ident: b0195 publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 7774 year: 2014 end-page: 7778 ident: b0200 publication-title: Angew. Chem. Int. Ed. – volume: 49 start-page: 5359 year: 2020 end-page: 5406 ident: b0025 publication-title: Chem. Soc. Rev. – volume: 53 start-page: 4592 year: 2014 end-page: 4596 ident: b0175 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 4580 year: 2020 end-page: 4585 ident: b0115 publication-title: Catal. Sci. Technol. – volume: 30 start-page: 1705189 year: 2018 ident: b0065 publication-title: Adv. Mater. – volume: 155 start-page: 220 year: 2012 ident: 10.1016/j.jiec.2022.10.021_b0210 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2012.01.033 – volume: 64 start-page: 147 year: 2021 ident: 10.1016/j.jiec.2022.10.021_b0165 publication-title: J. Japan. Pet. Inst. doi: 10.1627/jpi.64.147 – volume: 53 start-page: 138 year: 2007 ident: 10.1016/j.jiec.2022.10.021_b0015 publication-title: AIChE. J. doi: 10.1002/aic.11062 – volume: 112 start-page: 1105 year: 2012 ident: 10.1016/j.jiec.2022.10.021_b0125 publication-title: Chem. Rev. doi: 10.1021/cr200324t – volume: 479 start-page: 720 year: 2019 ident: 10.1016/j.jiec.2022.10.021_b0130 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.02.130 – volume: 21 start-page: 5783 year: 2009 ident: 10.1016/j.jiec.2022.10.021_b0230 publication-title: Chem. Mater. doi: 10.1021/cm9023106 – volume: 11 start-page: 31227 year: 2019 ident: 10.1016/j.jiec.2022.10.021_b0195 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11343 – volume: 100 start-page: 7676 year: 1996 ident: 10.1016/j.jiec.2022.10.021_b0220 publication-title: J. Phys. Chem. doi: 10.1021/jp960226h – volume: 133 start-page: 18526 year: 2011 ident: 10.1016/j.jiec.2022.10.021_b0150 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207287h – volume: 365 start-page: 242 year: 2019 ident: 10.1016/j.jiec.2022.10.021_b0075 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.182 – volume: 159 start-page: 3 year: 2017 ident: 10.1016/j.jiec.2022.10.021_b0040 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.10.039 – volume: 10 start-page: 4580 year: 2020 ident: 10.1016/j.jiec.2022.10.021_b0115 publication-title: Catal. Sci. Technol. doi: 10.1039/D0CY00833H – volume: 42 start-page: 471 year: 2021 ident: 10.1016/j.jiec.2022.10.021_b0090 publication-title: Bull. Korean. Chem. Soc. doi: 10.1002/bkcs.12225 – volume: 194 start-page: 281 year: 2018 ident: 10.1016/j.jiec.2022.10.021_b0005 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.11.056 – volume: 79 start-page: 226 year: 2019 ident: 10.1016/j.jiec.2022.10.021_b0265 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2019.06.043 – volume: 59 start-page: 18048 year: 2020 ident: 10.1016/j.jiec.2022.10.021_b0080 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c02496 – volume: 41 start-page: 3454 year: 2002 ident: 10.1016/j.jiec.2022.10.021_b0030 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie010095t – volume: 3 year: 2021 ident: 10.1016/j.jiec.2022.10.021_b0050 publication-title: EnergyChem. – volume: 378 start-page: 87 year: 2019 ident: 10.1016/j.jiec.2022.10.021_b0085 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.09.027 – volume: 57 start-page: 15354 year: 2018 ident: 10.1016/j.jiec.2022.10.021_b0160 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201807935 – volume: 226 start-page: 292 year: 2016 ident: 10.1016/j.jiec.2022.10.021_b0155 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2016.01.044 – volume: 49 start-page: 5359 year: 2020 ident: 10.1016/j.jiec.2022.10.021_b0025 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00756C – volume: 56 start-page: 9632 year: 2020 ident: 10.1016/j.jiec.2022.10.021_b0185 publication-title: ChemComm. – volume: 53 start-page: 7774 year: 2014 ident: 10.1016/j.jiec.2022.10.021_b0200 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402894 – volume: 38 start-page: 1450 year: 2009 ident: 10.1016/j.jiec.2022.10.021_b0110 publication-title: Chem. Soc. Rev. doi: 10.1039/b807080f – volume: 307 year: 2022 ident: 10.1016/j.jiec.2022.10.021_b0170 publication-title: J. Solid State Chem. – volume: 532 start-page: 435 year: 2016 ident: 10.1016/j.jiec.2022.10.021_b0010 publication-title: Nature doi: 10.1038/532435a – volume: 46 start-page: 16096 year: 2017 ident: 10.1016/j.jiec.2022.10.021_b0205 publication-title: Dalton Trans. doi: 10.1039/C7DT03304D – volume: 367 start-page: 82 year: 2018 ident: 10.1016/j.jiec.2022.10.021_b0095 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.04.001 – volume: 279 start-page: 257 year: 2011 ident: 10.1016/j.jiec.2022.10.021_b0225 publication-title: J. Catal. doi: 10.1016/j.jcat.2011.01.019 – volume: 20 start-page: 79 year: 2000 ident: 10.1016/j.jiec.2022.10.021_b0260 publication-title: Sep. Purif. Technol. doi: 10.1016/S1383-5866(00)00069-1 – volume: 142 start-page: 4529 year: 2020 ident: 10.1016/j.jiec.2022.10.021_b0145 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11314 – volume: 769 start-page: 3 year: 1997 ident: 10.1016/j.jiec.2022.10.021_b0255 publication-title: J. Chromatogr. A. doi: 10.1016/S0021-9673(97)00048-4 – volume: 35 start-page: 1777 year: 2012 ident: 10.1016/j.jiec.2022.10.021_b0035 publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201100672 – volume: 56 start-page: 14725 year: 2017 ident: 10.1016/j.jiec.2022.10.021_b0020 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b03127 – ident: 10.1016/j.jiec.2022.10.021_b0045 doi: 10.1002/9783527629565 – volume: 374 start-page: 236 year: 2018 ident: 10.1016/j.jiec.2022.10.021_b0235 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.06.011 – volume: 38 start-page: 653 year: 2021 ident: 10.1016/j.jiec.2022.10.021_b0120 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-020-0730-z – volume: 21 start-page: 440 year: 1982 ident: 10.1016/j.jiec.2022.10.021_b0280 publication-title: Ind. Eng. Chem. Process. Des. Dev. doi: 10.1021/i200018a016 – volume: 24 start-page: 715 year: 2018 ident: 10.1016/j.jiec.2022.10.021_b0275 publication-title: Adsorption doi: 10.1007/s10450-018-9976-8 – volume: 143 start-page: 18838 year: 2021 ident: 10.1016/j.jiec.2022.10.021_b0070 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c08749 – volume: 259 start-page: 244 year: 2018 ident: 10.1016/j.jiec.2022.10.021_b0240 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2017.10.018 – volume: 425 year: 2021 ident: 10.1016/j.jiec.2022.10.021_b0100 publication-title: Chem. Eng. J. – volume: 46 start-page: 4293 year: 2007 ident: 10.1016/j.jiec.2022.10.021_b0190 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200700056 – volume: 41 start-page: 1677 year: 2012 ident: 10.1016/j.jiec.2022.10.021_b0060 publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15196G – volume: 11 start-page: 6889 year: 2020 ident: 10.1016/j.jiec.2022.10.021_b0140 publication-title: Chem. Sci. doi: 10.1039/D0SC02123G – volume: 43 start-page: 1166 year: 2010 ident: 10.1016/j.jiec.2022.10.021_b0055 publication-title: Acc. Chem. Res. doi: 10.1021/ar1000617 – year: 2003 ident: 10.1016/j.jiec.2022.10.021_b0245 – volume: 140 start-page: 3412 year: 2018 ident: 10.1016/j.jiec.2022.10.021_b0215 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13825 – volume: 88 start-page: 328 year: 2020 ident: 10.1016/j.jiec.2022.10.021_b0270 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2020.04.032 – volume: 26 start-page: 5475 year: 2010 ident: 10.1016/j.jiec.2022.10.021_b0250 publication-title: Langmuir doi: 10.1021/la100449z – volume: 53 start-page: 4592 year: 2014 ident: 10.1016/j.jiec.2022.10.021_b0175 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201307656 – volume: 150 start-page: 47 year: 2012 ident: 10.1016/j.jiec.2022.10.021_b0135 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2011.09.013 – volume: 242 year: 2020 ident: 10.1016/j.jiec.2022.10.021_b0105 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116758 – volume: 30 start-page: 1705189 year: 2018 ident: 10.1016/j.jiec.2022.10.021_b0065 publication-title: Adv. Mater. doi: 10.1002/adma.201705189 – volume: 4 start-page: 5761 year: 2014 ident: 10.1016/j.jiec.2022.10.021_b0180 publication-title: Sci. Rep. doi: 10.1038/srep05761 |
SSID | ssj0060386 ssib009049966 ssib053391666 |
Score | 2.393869 |
Snippet | [Display omitted]
•MIL-120(Al) showed high pX selectivity superior to reported values in MOFs and zeolites.•MIL-120(Al) exhibited good cyclic adsorption... The separation of highly pure p-xylene (pX) from xylene isomers is an industrially important and challengingissue. Although simulated moving bed (SMB)... |
SourceID | nrf crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 333 |
SubjectTerms | Adsorption Metal-organic framework (MOF) p-Xylene (pX) Simulated moving bed (SMB) Xylene isomer separation 화학공학 |
Title | High p-xylene selectivity in aluminum-based metal–organic framework with 1-D channels |
URI | https://dx.doi.org/10.1016/j.jiec.2022.10.021 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002936905 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Industrial and Engineering Chemistry, 2023, 117(0), , pp.333-341 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QL3owPiM-SBO9mcJu2V3YI0EJaOSiRG5Nu9uaBVkIQqIX43_wH_pLnNkHwYMcPG3SzGyaaTszbWa-j5BLZWw_tCVnCH7FHK0aTEqt4FwZo0Puh56N_c73Pa_Td24H7qBAWnkvDJZVZr4_9emJt85Gqpk1q9Moqj7YkDlAQj7g-DDiJYifjlPHXV75WJZ5wHjC9ojCDKWzxpm0xmsYaYQx5LyCFV7c_is4bcQzsxJ22rtkJ8sXaTOd0h4p6HifbK-gCB6QJ6zVoFP29g4RRNPXhNkm4YSgUUwleJ8oXowZxquQjjVk29-fXymbU0BNXpxF8UWW2uyaYi9wDLM6JP32zWOrwzK-BBZwz52zhmvcgOvQV9Iy3CDNuTRWULODMKwrTJQcY8FKWNwYBfcERxlfcuUpUOLIG3ZEivEk1seEgkDIPV0zlqccONfSIPGUCuA25fq-kSVi54YSQQYmjpwWLyKvGhsKNK5A4-IYGLdErpY60xRKY620m9tf_NoQAnz9Wr0LWCwxCiKByNn4fZ6I0UzA_aCLSpDyOPWTf_79lGwh3zy-wXD3jBTns4U-h6xkrsrJtiuTzWb3rtP7AZFW47Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTlaQk2ZJqYJG1GxEMttF1oRTfLjm2UQtOqtBJs_Af-Ib-EuzwQDHRgiuT4LOts352tu-8j5ERZN9Su5AzBr5hnVJ1JaRScK2uN5qEOXKx3bneCRs-77fv9ErksamEwrTK3_ZlNT6113lLNtVkdx3H13oXIAQLyPseHkQARPxcRncovk8WL5l2jUxhk-JUSPmJ_hgJ57UyW5jWIDSIZcn6GSV7c_cs_LSQT-8Pz3KyR1TxkpBfZrNZJySQbZOUHkOAmecB0DTpmr2_gRAx9ScltUloIGidUggGKk9mQocvSdGgg4P58_8gInSJqi_wsio-y1GVXFMuBE5jVFundXHcvGyynTGARD_wpq_vWj7jRoZKO5RaZzqV1onM30rqmMFbyrAOL4XBrFVwVPGVDyVWgQIgjddg2KSejxOwQCh00D8y5dQLlwdGWFrmnVAQXKj8MrawQt1CUiHI8caS1eBZF4thAoHIFKhfbQLkVcvotM87QNOb29gv9i197QoC5nyt3DIslnqJYIHg2fh9H4mki4IrQRCGIerza7j9HPyJLjW67JVrNzt0eWUb6eXyS4f4-KU8nM3MAQcpUHeab8AtkKOZl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+p-xylene+selectivity+in+aluminum-based+metal%E2%80%93organic+framework+with+1-D+channels&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=%EB%B0%B0%ED%98%84%EC%A7%84&rft.au=Seung-Ik+Kim%28Korea+Research+Institute+of+Chemical+Technology&rft.au=%EC%B5%9C%EC%9C%A0%EC%A7%84&rft.au=%EA%B9%80%EA%B2%BD%EB%AF%BC&rft.date=2023-01-25&rft.pub=%ED%95%9C%EA%B5%AD%EA%B3%B5%EC%97%85%ED%99%94%ED%95%99%ED%9A%8C&rft.issn=1226-086X&rft.eissn=1876-794X&rft.spage=333&rft.epage=341&rft_id=info:doi/10.1016%2Fj.jiec.2022.10.021&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10182047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon |