High p-xylene selectivity in aluminum-based metal–organic framework with 1-D channels

[Display omitted] •MIL-120(Al) showed high pX selectivity superior to reported values in MOFs and zeolites.•MIL-120(Al) exhibited good cyclic adsorption properties and excellent stabilities.•A dynamic simulation showed a potential of pX separation using a SMB with MIL-120(Al).•High pX selectivity ca...

Full description

Saved in:
Bibliographic Details
Published inJournal of industrial and engineering chemistry (Seoul, Korea) Vol. 117; pp. 333 - 341
Main Authors Bae, Hyun Jin, Kim, Seung-Ik, Choi, Yujin, Kim, Kyung-Min, Bae, Youn-Sang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.01.2023
한국공업화학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •MIL-120(Al) showed high pX selectivity superior to reported values in MOFs and zeolites.•MIL-120(Al) exhibited good cyclic adsorption properties and excellent stabilities.•A dynamic simulation showed a potential of pX separation using a SMB with MIL-120(Al).•High pX selectivity can be attained within 1-D channels of approximately 7 Å. The separation of highly pure p-xylene (pX) from xylene isomers is an industrially important and challenging issue. Although simulated moving bed (SMB) processes using faujasite zeolites are currently used for pX separation, developing novel adsorbents with improved pX separation performances is strongly needed. In this study, an aluminum-based metal–organic framework (MOF), MIL-120(Al) with 1-D channels of approximately 7 Å, exhibited considerably high pX selectivities compared to xylene isomers (αpX/oX: ∼31; αpX/mX: ∼17; αpX/EB: ∼7.5; αpX/OME: ∼11), which are superior to reported values for other MOFs and zeolites under similar conditions. Such high selectivities may originate from the proper pore shape and size of MIL-120(Al). MIL-120(Al) also showed good cyclic adsorption properties as well as superior hydrothermal and chemical stabilities. Finally, a dynamic simulation showed that MIL-120(Al) could achieve approximately complete separation of pX from a xylene isomer mixture using an SMB process.
AbstractList [Display omitted] •MIL-120(Al) showed high pX selectivity superior to reported values in MOFs and zeolites.•MIL-120(Al) exhibited good cyclic adsorption properties and excellent stabilities.•A dynamic simulation showed a potential of pX separation using a SMB with MIL-120(Al).•High pX selectivity can be attained within 1-D channels of approximately 7 Å. The separation of highly pure p-xylene (pX) from xylene isomers is an industrially important and challenging issue. Although simulated moving bed (SMB) processes using faujasite zeolites are currently used for pX separation, developing novel adsorbents with improved pX separation performances is strongly needed. In this study, an aluminum-based metal–organic framework (MOF), MIL-120(Al) with 1-D channels of approximately 7 Å, exhibited considerably high pX selectivities compared to xylene isomers (αpX/oX: ∼31; αpX/mX: ∼17; αpX/EB: ∼7.5; αpX/OME: ∼11), which are superior to reported values for other MOFs and zeolites under similar conditions. Such high selectivities may originate from the proper pore shape and size of MIL-120(Al). MIL-120(Al) also showed good cyclic adsorption properties as well as superior hydrothermal and chemical stabilities. Finally, a dynamic simulation showed that MIL-120(Al) could achieve approximately complete separation of pX from a xylene isomer mixture using an SMB process.
The separation of highly pure p-xylene (pX) from xylene isomers is an industrially important and challengingissue. Although simulated moving bed (SMB) processes using faujasite zeolites are currently usedfor pX separation, developing novel adsorbents with improved pX separation performances is stronglyneeded. In this study, an aluminum-based metal–organic framework (MOF), MIL-120(Al) with 1-D channelsof approximately 7 Å, exhibited considerably high pX selectivities compared to xylene isomers(apX/oX: 31; apX/mX: 17; apX/EB: 7.5; apX/OME: 11), which are superior to reported values for otherMOFs and zeolites under similar conditions. Such high selectivities may originate from the proper poreshape and size of MIL-120(Al). MIL-120(Al) also showed good cyclic adsorption properties as well assuperior hydrothermal and chemical stabilities. Finally, a dynamic simulation showed that MIL-120(Al)could achieve approximately complete separation of pX from a xylene isomer mixture using an SMBprocess. KCI Citation Count: 0
Author Bae, Youn-Sang
Bae, Hyun Jin
Choi, Yujin
Kim, Kyung-Min
Kim, Seung-Ik
Author_xml – sequence: 1
  givenname: Hyun Jin
  surname: Bae
  fullname: Bae, Hyun Jin
  organization: Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, South Korea
– sequence: 2
  givenname: Seung-Ik
  surname: Kim
  fullname: Kim, Seung-Ik
  organization: Environmental and Sustainable Resources Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea
– sequence: 3
  givenname: Yujin
  surname: Choi
  fullname: Choi, Yujin
  organization: Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, South Korea
– sequence: 4
  givenname: Kyung-Min
  surname: Kim
  fullname: Kim, Kyung-Min
  email: kmkim@gwnu.ac.kr
  organization: Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung-si, Gangwon-do, South Korea
– sequence: 5
  givenname: Youn-Sang
  surname: Bae
  fullname: Bae, Youn-Sang
  email: mowbae@yonsei.ac.kr
  organization: Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, South Korea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002936905$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kL1OwzAUhS0EEqXwAkyekVIcN3FSiQXxL1VCQkV0sxznur1p4iA7ULrxDrwhT4JDmRg6nauj893hOyL7trVAyGnMRjGLxXk1qhD0iDPOQzFiPN4jgzjPRJRNkvl-uDkXEcvF_JAceV8xJtg4FwPyco-LJX2NPjY1WKAeatAdvmO3oWipqt8atG9NVCgPJW2gU_X351frFsqipsapBtatW9E1dksaR9dUL5W1UPtjcmBU7eHkL4fk-fZmdnUfTR_vHq4up5HmIu2iPDWp5lBOCsUMN2kiUmWYHse6LLMiFTFLDFMKGDemyNI8KcxE8UIUAeIa2HhIzrZ_rTNypVG2Cn9z0cqVk5dPswcZDOWcJVkY59uxdq33DozU2KkOW9s5hXUY9lshK9nblL3Nvgs2A8r_oa8OG-U2u6GLLRSEwDuCk14jWA0luqBZli3uwn8A9S2Sng
CitedBy_id crossref_primary_10_1016_j_ccr_2024_216229
crossref_primary_10_1016_j_jiec_2025_01_009
crossref_primary_10_1016_j_seppur_2024_129062
crossref_primary_10_1021_jacs_3c07198
crossref_primary_10_1016_j_jece_2023_111027
crossref_primary_10_1039_D4TA09271F
crossref_primary_10_1002_smll_202503221
crossref_primary_10_1016_j_seppur_2024_129129
crossref_primary_10_1021_acscentsci_4c00876
crossref_primary_10_1002_adma_202413506
crossref_primary_10_1002_sstr_202300302
crossref_primary_10_3390_pr12112331
Cites_doi 10.1016/j.micromeso.2012.01.033
10.1627/jpi.64.147
10.1002/aic.11062
10.1021/cr200324t
10.1016/j.apsusc.2019.02.130
10.1021/cm9023106
10.1021/acsami.9b11343
10.1021/jp960226h
10.1021/ja207287h
10.1016/j.cej.2019.01.182
10.1016/j.ces.2016.10.039
10.1039/D0CY00833H
10.1002/bkcs.12225
10.1016/j.seppur.2017.11.056
10.1016/j.jiec.2019.06.043
10.1021/acs.inorgchem.0c02496
10.1021/ie010095t
10.1016/j.ccr.2017.09.027
10.1002/anie.201807935
10.1016/j.micromeso.2016.01.044
10.1039/C9CS00756C
10.1002/anie.201402894
10.1039/b807080f
10.1038/532435a
10.1039/C7DT03304D
10.1016/j.ccr.2018.04.001
10.1016/j.jcat.2011.01.019
10.1016/S1383-5866(00)00069-1
10.1021/jacs.9b11314
10.1016/S0021-9673(97)00048-4
10.1002/ceat.201100672
10.1021/acs.iecr.7b03127
10.1002/9783527629565
10.1016/j.ccr.2018.06.011
10.1007/s11814-020-0730-z
10.1021/i200018a016
10.1007/s10450-018-9976-8
10.1021/jacs.1c08749
10.1016/j.micromeso.2017.10.018
10.1002/anie.200700056
10.1039/C1CS15196G
10.1039/D0SC02123G
10.1021/ar1000617
10.1021/jacs.7b13825
10.1016/j.jiec.2020.04.032
10.1021/la100449z
10.1002/anie.201307656
10.1016/j.micromeso.2011.09.013
10.1016/j.seppur.2020.116758
10.1002/adma.201705189
10.1038/srep05761
ContentType Journal Article
Copyright 2022 The Korean Society of Industrial and Engineering Chemistry
Copyright_xml – notice: 2022 The Korean Society of Industrial and Engineering Chemistry
DBID AAYXX
CITATION
ACYCR
DOI 10.1016/j.jiec.2022.10.021
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1876-794X
EndPage 341
ExternalDocumentID oai_kci_go_kr_ARTI_10182047
10_1016_j_jiec_2022_10_021
S1226086X22005603
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9ZL
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
GBLVA
HH5
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SSG
SSZ
T5K
~G-
2WC
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
EJD
HZ~
MZR
OK1
RIG
SSH
ZY4
ZZE
ABTAH
ACYCR
ID FETCH-LOGICAL-c265t-85f5c2ed9ba0f2f5465af0c31cdd7b56104f0aae02ffb7584bf9a2b6bc2e2ce03
IEDL.DBID .~1
ISSN 1226-086X
IngestDate Fri May 31 03:51:28 EDT 2024
Tue Jul 01 03:34:26 EDT 2025
Thu Apr 24 23:09:11 EDT 2025
Fri Feb 23 02:40:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Xylene isomer separation
Adsorption
Simulated moving bed (SMB)
Metal-organic framework (MOF)
p-Xylene (pX)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-85f5c2ed9ba0f2f5465af0c31cdd7b56104f0aae02ffb7584bf9a2b6bc2e2ce03
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10182047
crossref_citationtrail_10_1016_j_jiec_2022_10_021
crossref_primary_10_1016_j_jiec_2022_10_021
elsevier_sciencedirect_doi_10_1016_j_jiec_2022_10_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-25
PublicationDateYYYYMMDD 2023-01-25
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-25
  day: 25
PublicationDecade 2020
PublicationTitle Journal of industrial and engineering chemistry (Seoul, Korea)
PublicationYear 2023
Publisher Elsevier B.V
한국공업화학회
Publisher_xml – name: Elsevier B.V
– name: 한국공업화학회
References Yoon, Ahn, Kim, Notestein, Farha, Bae (b0115) 2020; 10
Minceva, Rodrigues (b0015) 2007; 53
Chen, Mian, Lee, Chen, Zhang, Kirlikovali (b0070) 2021; 143
du Plessis, Nikolayenko, Barbour (b0145) 2020; 142
Mazzotti, Storti, Morbidelli (b0255) 1997; 769
Mukherjee, Desai, Ghosh (b0095) 2018; 367
Silva, Moreira, Ferreira, Santos, Silva, Gomes (b0035) 2012; 35
Wu, Wei, Jiang, Caro, Huang (b0160) 2018; 57
Gonzalez, Kapelewski, Bloch, Milner, Reed, Hudson (b0215) 2018; 140
Farha, Hupp (b0055) 2010; 43
Kim, Kang, Kim, Bae (b0075) 2019; 365
Samokhvalov (b0235) 2018; 374
Zhang, Peh, Kang, Chai, Zhao (b0050) 2021; 3
Alaerts, Kirschhock, Maes, van der Veen, Finsy, Depla (b0190) 2007; 46
Hasan, First, Floudas (b0040) 2017; 159
Zhao, Wang, Li, Bu, Feng (b0065) 2018; 30
Yonezawa, Tanaka, Hayase, Sano, Suzuki, Miyake (b0165) 2021; 64
S. Kulprathipanja, Zeolites in industrial separation and catalysis, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010).
Baertsch, Funke, Falconer, Noble (b0220) 1996; 100
Jae, Tompsett, Foster, Hammond, Auerbach, Lobo (b0225) 2011; 279
Torres-Knoop, Krishna, Dubbeldam (b0200) 2014; 53
Bae, Yazaydin, Snurr (b0250) 2010; 26
Shivanna, Otake, Zheng, Sakaki, Kitagawa (b0185) 2020; 56
Mukherjee, Joarder, Manna, Desai, Chaudhari, Ghosh (b0180) 2014; 4
Kim, Kim, Lee, Park, Bae, Kim (b0130) 2019; 479
Kim, Kim, Kim, Lee, Bae (b0105) 2020; 242
Vermoortele, Maes, Moghadam, Lennox, Ragon, Boulhout (b0150) 2011; 133
Bárcia, Nicolau, Gallegos, Chen, Rodrigues, Silva (b0210) 2012; 155
Kim, Han, Kim, Bae (b0270) 2020; 88
Lin, Xiang, Xing, Zhou, Chen (b0085) 2019; 378
Warren, Perkins, Jelfs, Boldrin, Chater, Miller (b0175) 2014; 53
Kumar, Wang, Mukherjee, Bezrukov, Patyk-Kaźmierczak, O'Nolan (b0140) 2020; 11
Sholl, Lively (b0010) 2016; 532
Migliorini, Mazzotti, Morbidelli (b0260) 2000; 20
Lannoeye, Van de Voorde, Bozbiyik, Reinsch, Denayer, De Vos (b0155) 2016; 226
Kim, Kim, Bae, Kim, Ravi, Kim (b0100) 2021; 425
Yang (b0245) 2003
Rasouli, Yaghobi, Chitsazan, Sayyar (b0135) 2012; 150
Lee, Farha, Roberts, Scheidt, Nguyen, Hupp (b0110) 2009; 38
Santacesaria, Morbidelli, Danise, Mercenari, Carra (b0280) 1982; 21
Yang, Qian, Wang, Cui, Chen, Xing (b0025) 2020; 49
Yoon, Lee, Piburn, Cho, Jeon, Lim (b0205) 2017; 46
Chebbi, Azambre, Volkringer, Loiseau (b0240) 2018; 259
Minceva, Rodrigues (b0030) 2002; 41
Moreira, Santos, Silva, Loureiro, Chang, Serre (b0275) 2018; 24
Volkringer, Loiseau, Haouas, Taulelle, Popov, Burghammer (b0230) 2009; 21
Yu, Won, Lee, Ahn (b0120) 2021; 38
Kim, Yoon, Oh, Kwak, Bae, Kim (b0080) 2020; 59
Krishna (b0005) 2018; 194
Han, Kim, Han, Kim, Bae (b0265) 2019; 79
Kreno, Leong, Farha, Allendorf, Van Duyne, Hupp (b0125) 2012; 112
Kim, Lee, Chung, Bae (b0195) 2019; 11
Xuan, Zhu, Liu, Cui (b0060) 2012; 41
Yang, Bai, Guo (b0020) 2017; 56
Han, Kim, Kim, Bae (b0090) 2021; 42
Yan, Li, Chen, Zhang, Chen, He (b0170) 2022; 307
Moreira (10.1016/j.jiec.2022.10.021_b0275) 2018; 24
Yoon (10.1016/j.jiec.2022.10.021_b0115) 2020; 10
Jae (10.1016/j.jiec.2022.10.021_b0225) 2011; 279
Torres-Knoop (10.1016/j.jiec.2022.10.021_b0200) 2014; 53
Hasan (10.1016/j.jiec.2022.10.021_b0040) 2017; 159
Kreno (10.1016/j.jiec.2022.10.021_b0125) 2012; 112
Baertsch (10.1016/j.jiec.2022.10.021_b0220) 1996; 100
10.1016/j.jiec.2022.10.021_b0045
Sholl (10.1016/j.jiec.2022.10.021_b0010) 2016; 532
Yoon (10.1016/j.jiec.2022.10.021_b0205) 2017; 46
Yan (10.1016/j.jiec.2022.10.021_b0170) 2022; 307
Chebbi (10.1016/j.jiec.2022.10.021_b0240) 2018; 259
Yang (10.1016/j.jiec.2022.10.021_b0025) 2020; 49
Volkringer (10.1016/j.jiec.2022.10.021_b0230) 2009; 21
Wu (10.1016/j.jiec.2022.10.021_b0160) 2018; 57
Chen (10.1016/j.jiec.2022.10.021_b0070) 2021; 143
Zhang (10.1016/j.jiec.2022.10.021_b0050) 2021; 3
Yang (10.1016/j.jiec.2022.10.021_b0020) 2017; 56
Silva (10.1016/j.jiec.2022.10.021_b0035) 2012; 35
Kim (10.1016/j.jiec.2022.10.021_b0080) 2020; 59
Xuan (10.1016/j.jiec.2022.10.021_b0060) 2012; 41
Lannoeye (10.1016/j.jiec.2022.10.021_b0155) 2016; 226
Warren (10.1016/j.jiec.2022.10.021_b0175) 2014; 53
Yonezawa (10.1016/j.jiec.2022.10.021_b0165) 2021; 64
Farha (10.1016/j.jiec.2022.10.021_b0055) 2010; 43
Yang (10.1016/j.jiec.2022.10.021_b0245) 2003
Bárcia (10.1016/j.jiec.2022.10.021_b0210) 2012; 155
Samokhvalov (10.1016/j.jiec.2022.10.021_b0235) 2018; 374
Kim (10.1016/j.jiec.2022.10.021_b0195) 2019; 11
Mukherjee (10.1016/j.jiec.2022.10.021_b0180) 2014; 4
Lee (10.1016/j.jiec.2022.10.021_b0110) 2009; 38
Han (10.1016/j.jiec.2022.10.021_b0265) 2019; 79
Migliorini (10.1016/j.jiec.2022.10.021_b0260) 2000; 20
Kumar (10.1016/j.jiec.2022.10.021_b0140) 2020; 11
Shivanna (10.1016/j.jiec.2022.10.021_b0185) 2020; 56
Vermoortele (10.1016/j.jiec.2022.10.021_b0150) 2011; 133
Kim (10.1016/j.jiec.2022.10.021_b0270) 2020; 88
Lin (10.1016/j.jiec.2022.10.021_b0085) 2019; 378
Mazzotti (10.1016/j.jiec.2022.10.021_b0255) 1997; 769
Minceva (10.1016/j.jiec.2022.10.021_b0015) 2007; 53
Zhao (10.1016/j.jiec.2022.10.021_b0065) 2018; 30
Kim (10.1016/j.jiec.2022.10.021_b0100) 2021; 425
Kim (10.1016/j.jiec.2022.10.021_b0105) 2020; 242
du Plessis (10.1016/j.jiec.2022.10.021_b0145) 2020; 142
Santacesaria (10.1016/j.jiec.2022.10.021_b0280) 1982; 21
Minceva (10.1016/j.jiec.2022.10.021_b0030) 2002; 41
Alaerts (10.1016/j.jiec.2022.10.021_b0190) 2007; 46
Rasouli (10.1016/j.jiec.2022.10.021_b0135) 2012; 150
Gonzalez (10.1016/j.jiec.2022.10.021_b0215) 2018; 140
Mukherjee (10.1016/j.jiec.2022.10.021_b0095) 2018; 367
Han (10.1016/j.jiec.2022.10.021_b0090) 2021; 42
Bae (10.1016/j.jiec.2022.10.021_b0250) 2010; 26
Kim (10.1016/j.jiec.2022.10.021_b0130) 2019; 479
Kim (10.1016/j.jiec.2022.10.021_b0075) 2019; 365
Yu (10.1016/j.jiec.2022.10.021_b0120) 2021; 38
Krishna (10.1016/j.jiec.2022.10.021_b0005) 2018; 194
References_xml – year: 2003
  ident: b0245
  article-title: Adsorbents: Fundamentals and Applications
– volume: 35
  start-page: 1777
  year: 2012
  end-page: 1785
  ident: b0035
  publication-title: Chem. Eng. Technol.
– volume: 88
  start-page: 328
  year: 2020
  end-page: 338
  ident: b0270
  publication-title: J. Ind. Eng. Chem.
– volume: 133
  start-page: 18526
  year: 2011
  end-page: 18529
  ident: b0150
  publication-title: J. Am. Chem. Soc.
– volume: 150
  start-page: 47
  year: 2012
  end-page: 54
  ident: b0135
  publication-title: Microporous Mesoporous Mater.
– volume: 367
  start-page: 82
  year: 2018
  end-page: 126
  ident: b0095
  publication-title: Coord. Chem. Rev.
– volume: 425
  year: 2021
  ident: b0100
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 5761
  year: 2014
  ident: b0180
  publication-title: Sci. Rep.
– volume: 479
  start-page: 720
  year: 2019
  end-page: 726
  ident: b0130
  publication-title: Appl. Surf. Sci.
– volume: 21
  start-page: 5783
  year: 2009
  end-page: 5791
  ident: b0230
  publication-title: Chem. Mater.
– volume: 41
  start-page: 1677
  year: 2012
  end-page: 1695
  ident: b0060
  publication-title: Chem. Soc. Rev.
– volume: 242
  year: 2020
  ident: b0105
  publication-title: Sep. Purif. Technol.
– volume: 769
  start-page: 3
  year: 1997
  end-page: 24
  ident: b0255
  publication-title: J. Chromatogr. A.
– volume: 365
  start-page: 242
  year: 2019
  end-page: 248
  ident: b0075
  publication-title: Chem. Eng. J.
– volume: 100
  start-page: 7676
  year: 1996
  end-page: 7679
  ident: b0220
  publication-title: J. Phys. Chem.
– volume: 24
  start-page: 715
  year: 2018
  end-page: 724
  ident: b0275
  publication-title: Adsorption
– volume: 43
  start-page: 1166
  year: 2010
  end-page: 1175
  ident: b0055
  publication-title: Acc. Chem. Res.
– volume: 59
  start-page: 18048
  year: 2020
  end-page: 18054
  ident: b0080
  publication-title: Inorg. Chem.
– volume: 155
  start-page: 220
  year: 2012
  end-page: 226
  ident: b0210
  publication-title: Microporous Mesoporous Mater.
– volume: 259
  start-page: 244
  year: 2018
  end-page: 254
  ident: b0240
  publication-title: Microporous Mesoporous Mater.
– volume: 279
  start-page: 257
  year: 2011
  end-page: 268
  ident: b0225
  publication-title: J. Catal.
– volume: 53
  start-page: 138
  year: 2007
  end-page: 149
  ident: b0015
  publication-title: AIChE. J.
– volume: 46
  start-page: 16096
  year: 2017
  end-page: 16101
  ident: b0205
  publication-title: Dalton Trans.
– volume: 194
  start-page: 281
  year: 2018
  end-page: 300
  ident: b0005
  publication-title: Sep. Purif. Technol.
– volume: 11
  start-page: 6889
  year: 2020
  end-page: 6895
  ident: b0140
  publication-title: Chem. Sci.
– volume: 56
  start-page: 14725
  year: 2017
  end-page: 14753
  ident: b0020
  publication-title: Ind. Eng. Chem. Res.
– volume: 142
  start-page: 4529
  year: 2020
  end-page: 4533
  ident: b0145
  publication-title: J. Am. Chem. Soc.
– reference: S. Kulprathipanja, Zeolites in industrial separation and catalysis, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010).
– volume: 374
  start-page: 236
  year: 2018
  end-page: 253
  ident: b0235
  publication-title: Coord. Chem. Rev.
– volume: 42
  start-page: 471
  year: 2021
  end-page: 476
  ident: b0090
  publication-title: Bull. Korean. Chem. Soc.
– volume: 57
  start-page: 15354
  year: 2018
  end-page: 15358
  ident: b0160
  publication-title: Angew. Chem. Int. Ed.
– volume: 64
  start-page: 147
  year: 2021
  end-page: 154
  ident: b0165
  publication-title: J. Japan. Pet. Inst.
– volume: 140
  start-page: 3412
  year: 2018
  end-page: 3422
  ident: b0215
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 1450
  year: 2009
  end-page: 1459
  ident: b0110
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 653
  year: 2021
  end-page: 673
  ident: b0120
  publication-title: Korean J. Chem. Eng.
– volume: 26
  start-page: 5475
  year: 2010
  end-page: 5483
  ident: b0250
  publication-title: Langmuir
– volume: 21
  start-page: 440
  year: 1982
  end-page: 445
  ident: b0280
  publication-title: Ind. Eng. Chem. Process. Des. Dev.
– volume: 226
  start-page: 292
  year: 2016
  end-page: 298
  ident: b0155
  publication-title: Microporous Mesoporous Mater.
– volume: 532
  start-page: 435
  year: 2016
  end-page: 437
  ident: b0010
  publication-title: Nature
– volume: 307
  year: 2022
  ident: b0170
  publication-title: J. Solid State Chem.
– volume: 112
  start-page: 1105
  year: 2012
  end-page: 1125
  ident: b0125
  publication-title: Chem. Rev.
– volume: 20
  start-page: 79
  year: 2000
  end-page: 96
  ident: b0260
  publication-title: Sep. Purif. Technol.
– volume: 378
  start-page: 87
  year: 2019
  end-page: 103
  ident: b0085
  publication-title: Coord. Chem. Rev.
– volume: 159
  start-page: 3
  year: 2017
  end-page: 17
  ident: b0040
  publication-title: Chem. Eng. Sci.
– volume: 56
  start-page: 9632
  year: 2020
  end-page: 9635
  ident: b0185
  publication-title: ChemComm.
– volume: 79
  start-page: 226
  year: 2019
  end-page: 235
  ident: b0265
  publication-title: J. Ind. Eng. Chem.
– volume: 46
  start-page: 4293
  year: 2007
  end-page: 4297
  ident: b0190
  publication-title: Angew. Chem. Int. Ed.
– volume: 41
  start-page: 3454
  year: 2002
  end-page: 3461
  ident: b0030
  publication-title: Ind. Eng. Chem. Res.
– volume: 143
  start-page: 18838
  year: 2021
  end-page: 18843
  ident: b0070
  publication-title: J. Am. Chem. Soc.
– volume: 3
  year: 2021
  ident: b0050
  publication-title: EnergyChem.
– volume: 11
  start-page: 31227
  year: 2019
  end-page: 31236
  ident: b0195
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 7774
  year: 2014
  end-page: 7778
  ident: b0200
  publication-title: Angew. Chem. Int. Ed.
– volume: 49
  start-page: 5359
  year: 2020
  end-page: 5406
  ident: b0025
  publication-title: Chem. Soc. Rev.
– volume: 53
  start-page: 4592
  year: 2014
  end-page: 4596
  ident: b0175
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 4580
  year: 2020
  end-page: 4585
  ident: b0115
  publication-title: Catal. Sci. Technol.
– volume: 30
  start-page: 1705189
  year: 2018
  ident: b0065
  publication-title: Adv. Mater.
– volume: 155
  start-page: 220
  year: 2012
  ident: 10.1016/j.jiec.2022.10.021_b0210
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2012.01.033
– volume: 64
  start-page: 147
  year: 2021
  ident: 10.1016/j.jiec.2022.10.021_b0165
  publication-title: J. Japan. Pet. Inst.
  doi: 10.1627/jpi.64.147
– volume: 53
  start-page: 138
  year: 2007
  ident: 10.1016/j.jiec.2022.10.021_b0015
  publication-title: AIChE. J.
  doi: 10.1002/aic.11062
– volume: 112
  start-page: 1105
  year: 2012
  ident: 10.1016/j.jiec.2022.10.021_b0125
  publication-title: Chem. Rev.
  doi: 10.1021/cr200324t
– volume: 479
  start-page: 720
  year: 2019
  ident: 10.1016/j.jiec.2022.10.021_b0130
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.02.130
– volume: 21
  start-page: 5783
  year: 2009
  ident: 10.1016/j.jiec.2022.10.021_b0230
  publication-title: Chem. Mater.
  doi: 10.1021/cm9023106
– volume: 11
  start-page: 31227
  year: 2019
  ident: 10.1016/j.jiec.2022.10.021_b0195
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b11343
– volume: 100
  start-page: 7676
  year: 1996
  ident: 10.1016/j.jiec.2022.10.021_b0220
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp960226h
– volume: 133
  start-page: 18526
  year: 2011
  ident: 10.1016/j.jiec.2022.10.021_b0150
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207287h
– volume: 365
  start-page: 242
  year: 2019
  ident: 10.1016/j.jiec.2022.10.021_b0075
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.182
– volume: 159
  start-page: 3
  year: 2017
  ident: 10.1016/j.jiec.2022.10.021_b0040
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2016.10.039
– volume: 10
  start-page: 4580
  year: 2020
  ident: 10.1016/j.jiec.2022.10.021_b0115
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D0CY00833H
– volume: 42
  start-page: 471
  year: 2021
  ident: 10.1016/j.jiec.2022.10.021_b0090
  publication-title: Bull. Korean. Chem. Soc.
  doi: 10.1002/bkcs.12225
– volume: 194
  start-page: 281
  year: 2018
  ident: 10.1016/j.jiec.2022.10.021_b0005
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.11.056
– volume: 79
  start-page: 226
  year: 2019
  ident: 10.1016/j.jiec.2022.10.021_b0265
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2019.06.043
– volume: 59
  start-page: 18048
  year: 2020
  ident: 10.1016/j.jiec.2022.10.021_b0080
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c02496
– volume: 41
  start-page: 3454
  year: 2002
  ident: 10.1016/j.jiec.2022.10.021_b0030
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie010095t
– volume: 3
  year: 2021
  ident: 10.1016/j.jiec.2022.10.021_b0050
  publication-title: EnergyChem.
– volume: 378
  start-page: 87
  year: 2019
  ident: 10.1016/j.jiec.2022.10.021_b0085
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.09.027
– volume: 57
  start-page: 15354
  year: 2018
  ident: 10.1016/j.jiec.2022.10.021_b0160
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201807935
– volume: 226
  start-page: 292
  year: 2016
  ident: 10.1016/j.jiec.2022.10.021_b0155
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2016.01.044
– volume: 49
  start-page: 5359
  year: 2020
  ident: 10.1016/j.jiec.2022.10.021_b0025
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00756C
– volume: 56
  start-page: 9632
  year: 2020
  ident: 10.1016/j.jiec.2022.10.021_b0185
  publication-title: ChemComm.
– volume: 53
  start-page: 7774
  year: 2014
  ident: 10.1016/j.jiec.2022.10.021_b0200
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402894
– volume: 38
  start-page: 1450
  year: 2009
  ident: 10.1016/j.jiec.2022.10.021_b0110
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b807080f
– volume: 307
  year: 2022
  ident: 10.1016/j.jiec.2022.10.021_b0170
  publication-title: J. Solid State Chem.
– volume: 532
  start-page: 435
  year: 2016
  ident: 10.1016/j.jiec.2022.10.021_b0010
  publication-title: Nature
  doi: 10.1038/532435a
– volume: 46
  start-page: 16096
  year: 2017
  ident: 10.1016/j.jiec.2022.10.021_b0205
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT03304D
– volume: 367
  start-page: 82
  year: 2018
  ident: 10.1016/j.jiec.2022.10.021_b0095
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.04.001
– volume: 279
  start-page: 257
  year: 2011
  ident: 10.1016/j.jiec.2022.10.021_b0225
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.01.019
– volume: 20
  start-page: 79
  year: 2000
  ident: 10.1016/j.jiec.2022.10.021_b0260
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/S1383-5866(00)00069-1
– volume: 142
  start-page: 4529
  year: 2020
  ident: 10.1016/j.jiec.2022.10.021_b0145
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11314
– volume: 769
  start-page: 3
  year: 1997
  ident: 10.1016/j.jiec.2022.10.021_b0255
  publication-title: J. Chromatogr. A.
  doi: 10.1016/S0021-9673(97)00048-4
– volume: 35
  start-page: 1777
  year: 2012
  ident: 10.1016/j.jiec.2022.10.021_b0035
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201100672
– volume: 56
  start-page: 14725
  year: 2017
  ident: 10.1016/j.jiec.2022.10.021_b0020
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b03127
– ident: 10.1016/j.jiec.2022.10.021_b0045
  doi: 10.1002/9783527629565
– volume: 374
  start-page: 236
  year: 2018
  ident: 10.1016/j.jiec.2022.10.021_b0235
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.06.011
– volume: 38
  start-page: 653
  year: 2021
  ident: 10.1016/j.jiec.2022.10.021_b0120
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-020-0730-z
– volume: 21
  start-page: 440
  year: 1982
  ident: 10.1016/j.jiec.2022.10.021_b0280
  publication-title: Ind. Eng. Chem. Process. Des. Dev.
  doi: 10.1021/i200018a016
– volume: 24
  start-page: 715
  year: 2018
  ident: 10.1016/j.jiec.2022.10.021_b0275
  publication-title: Adsorption
  doi: 10.1007/s10450-018-9976-8
– volume: 143
  start-page: 18838
  year: 2021
  ident: 10.1016/j.jiec.2022.10.021_b0070
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c08749
– volume: 259
  start-page: 244
  year: 2018
  ident: 10.1016/j.jiec.2022.10.021_b0240
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2017.10.018
– volume: 425
  year: 2021
  ident: 10.1016/j.jiec.2022.10.021_b0100
  publication-title: Chem. Eng. J.
– volume: 46
  start-page: 4293
  year: 2007
  ident: 10.1016/j.jiec.2022.10.021_b0190
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200700056
– volume: 41
  start-page: 1677
  year: 2012
  ident: 10.1016/j.jiec.2022.10.021_b0060
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15196G
– volume: 11
  start-page: 6889
  year: 2020
  ident: 10.1016/j.jiec.2022.10.021_b0140
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC02123G
– volume: 43
  start-page: 1166
  year: 2010
  ident: 10.1016/j.jiec.2022.10.021_b0055
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar1000617
– year: 2003
  ident: 10.1016/j.jiec.2022.10.021_b0245
– volume: 140
  start-page: 3412
  year: 2018
  ident: 10.1016/j.jiec.2022.10.021_b0215
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13825
– volume: 88
  start-page: 328
  year: 2020
  ident: 10.1016/j.jiec.2022.10.021_b0270
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2020.04.032
– volume: 26
  start-page: 5475
  year: 2010
  ident: 10.1016/j.jiec.2022.10.021_b0250
  publication-title: Langmuir
  doi: 10.1021/la100449z
– volume: 53
  start-page: 4592
  year: 2014
  ident: 10.1016/j.jiec.2022.10.021_b0175
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201307656
– volume: 150
  start-page: 47
  year: 2012
  ident: 10.1016/j.jiec.2022.10.021_b0135
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2011.09.013
– volume: 242
  year: 2020
  ident: 10.1016/j.jiec.2022.10.021_b0105
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.116758
– volume: 30
  start-page: 1705189
  year: 2018
  ident: 10.1016/j.jiec.2022.10.021_b0065
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705189
– volume: 4
  start-page: 5761
  year: 2014
  ident: 10.1016/j.jiec.2022.10.021_b0180
  publication-title: Sci. Rep.
  doi: 10.1038/srep05761
SSID ssj0060386
ssib009049966
ssib053391666
Score 2.393869
Snippet [Display omitted] •MIL-120(Al) showed high pX selectivity superior to reported values in MOFs and zeolites.•MIL-120(Al) exhibited good cyclic adsorption...
The separation of highly pure p-xylene (pX) from xylene isomers is an industrially important and challengingissue. Although simulated moving bed (SMB)...
SourceID nrf
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 333
SubjectTerms Adsorption
Metal-organic framework (MOF)
p-Xylene (pX)
Simulated moving bed (SMB)
Xylene isomer separation
화학공학
Title High p-xylene selectivity in aluminum-based metal–organic framework with 1-D channels
URI https://dx.doi.org/10.1016/j.jiec.2022.10.021
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002936905
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Industrial and Engineering Chemistry, 2023, 117(0), , pp.333-341
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QL3owPiM-SBO9mcJu2V3YI0EJaOSiRG5Nu9uaBVkIQqIX43_wH_pLnNkHwYMcPG3SzGyaaTszbWa-j5BLZWw_tCVnCH7FHK0aTEqt4FwZo0Puh56N_c73Pa_Td24H7qBAWnkvDJZVZr4_9emJt85Gqpk1q9Moqj7YkDlAQj7g-DDiJYifjlPHXV75WJZ5wHjC9ojCDKWzxpm0xmsYaYQx5LyCFV7c_is4bcQzsxJ22rtkJ8sXaTOd0h4p6HifbK-gCB6QJ6zVoFP29g4RRNPXhNkm4YSgUUwleJ8oXowZxquQjjVk29-fXymbU0BNXpxF8UWW2uyaYi9wDLM6JP32zWOrwzK-BBZwz52zhmvcgOvQV9Iy3CDNuTRWULODMKwrTJQcY8FKWNwYBfcERxlfcuUpUOLIG3ZEivEk1seEgkDIPV0zlqccONfSIPGUCuA25fq-kSVi54YSQQYmjpwWLyKvGhsKNK5A4-IYGLdErpY60xRKY620m9tf_NoQAnz9Wr0LWCwxCiKByNn4fZ6I0UzA_aCLSpDyOPWTf_79lGwh3zy-wXD3jBTns4U-h6xkrsrJtiuTzWb3rtP7AZFW47Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTlaQk2ZJqYJG1GxEMttF1oRTfLjm2UQtOqtBJs_Af-Ib-EuzwQDHRgiuT4LOts352tu-8j5ERZN9Su5AzBr5hnVJ1JaRScK2uN5qEOXKx3bneCRs-77fv9ErksamEwrTK3_ZlNT6113lLNtVkdx3H13oXIAQLyPseHkQARPxcRncovk8WL5l2jUxhk-JUSPmJ_hgJ57UyW5jWIDSIZcn6GSV7c_cs_LSQT-8Pz3KyR1TxkpBfZrNZJySQbZOUHkOAmecB0DTpmr2_gRAx9ScltUloIGidUggGKk9mQocvSdGgg4P58_8gInSJqi_wsio-y1GVXFMuBE5jVFundXHcvGyynTGARD_wpq_vWj7jRoZKO5RaZzqV1onM30rqmMFbyrAOL4XBrFVwVPGVDyVWgQIgjddg2KSejxOwQCh00D8y5dQLlwdGWFrmnVAQXKj8MrawQt1CUiHI8caS1eBZF4thAoHIFKhfbQLkVcvotM87QNOb29gv9i197QoC5nyt3DIslnqJYIHg2fh9H4mki4IrQRCGIerza7j9HPyJLjW67JVrNzt0eWUb6eXyS4f4-KU8nM3MAQcpUHeab8AtkKOZl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+p-xylene+selectivity+in+aluminum-based+metal%E2%80%93organic+framework+with+1-D+channels&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=%EB%B0%B0%ED%98%84%EC%A7%84&rft.au=Seung-Ik+Kim%28Korea+Research+Institute+of+Chemical+Technology&rft.au=%EC%B5%9C%EC%9C%A0%EC%A7%84&rft.au=%EA%B9%80%EA%B2%BD%EB%AF%BC&rft.date=2023-01-25&rft.pub=%ED%95%9C%EA%B5%AD%EA%B3%B5%EC%97%85%ED%99%94%ED%95%99%ED%9A%8C&rft.issn=1226-086X&rft.eissn=1876-794X&rft.spage=333&rft.epage=341&rft_id=info:doi/10.1016%2Fj.jiec.2022.10.021&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10182047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon