Failure analysis of spar buoy floating offshore wind turbine systems

Floating offshore wind energy is a new form of marine renewable energy which is attracting a great deal of attention worldwide. However, the concepts of floating offshore wind turbines (FOWTs) are still in early stages of development and their failure properties are not yet fully understood. Compare...

Full description

Saved in:
Bibliographic Details
Published inInnovative infrastructure solutions : the official journal of the Soil-Structure Interaction Group in Egypt (SSIGE) Vol. 8; no. 1
Main Author Shafiee, Mahmood
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Floating offshore wind energy is a new form of marine renewable energy which is attracting a great deal of attention worldwide. However, the concepts of floating offshore wind turbines (FOWTs) are still in early stages of development and their failure properties are not yet fully understood. Compared to bottom-fixed wind turbines, FOWTs are subject to more extreme environmental conditions and significant mechanical stresses which may cause a higher degradation rate and shorter mean-time-to-failure for components/structures. To fill the research gap, this paper aims to conduct qualitative and quantitative failure studies on an OC3 spar-type FOWT platform with 3 catenary mooring lines. The failure analyses are performed based on two well-established reliability engineering methodologies, namely, fault tree analysis (FTA) and failure mode and effects analysis (FMEA). The most critical FOWT components are prioritized according to their failure likelihood as well as the risk-priority-number. Our results show a good agreement between the two methods with regard to failure criticality rankings. However, some differences between the results are also observed that are attributed to the difference between FTA and FMEA methodologies as the former incorporates the causes of various failure modes into analysis, whereas the latter is mainly adopted for a single random failure analysis. The results obtained from the FMEA study for the FOWT system will also be compared with those reported for bottom-fixed offshore wind turbines and some interesting conclusions are derived.
AbstractList Floating offshore wind energy is a new form of marine renewable energy which is attracting a great deal of attention worldwide. However, the concepts of floating offshore wind turbines (FOWTs) are still in early stages of development and their failure properties are not yet fully understood. Compared to bottom-fixed wind turbines, FOWTs are subject to more extreme environmental conditions and significant mechanical stresses which may cause a higher degradation rate and shorter mean-time-to-failure for components/structures. To fill the research gap, this paper aims to conduct qualitative and quantitative failure studies on an OC3 spar-type FOWT platform with 3 catenary mooring lines. The failure analyses are performed based on two well-established reliability engineering methodologies, namely, fault tree analysis (FTA) and failure mode and effects analysis (FMEA). The most critical FOWT components are prioritized according to their failure likelihood as well as the risk-priority-number. Our results show a good agreement between the two methods with regard to failure criticality rankings. However, some differences between the results are also observed that are attributed to the difference between FTA and FMEA methodologies as the former incorporates the causes of various failure modes into analysis, whereas the latter is mainly adopted for a single random failure analysis. The results obtained from the FMEA study for the FOWT system will also be compared with those reported for bottom-fixed offshore wind turbines and some interesting conclusions are derived.
ArticleNumber 28
Author Shafiee, Mahmood
Author_xml – sequence: 1
  givenname: Mahmood
  orcidid: 0000-0002-6122-5719
  surname: Shafiee
  fullname: Shafiee, Mahmood
  email: m.shafiee@kent.ac.uk
  organization: Mechanical Engineering Group, School of Engineering, University of Kent
BookMark eNp9kNFOwyAUhonRxDn3Al71BaoHCi29NNOpyRJv9JpQCrNLBwunjevbi8544cUu_kBO-Dj5vyty7oO3hNxQuKUA1R1yCiXLgaVALVl-OCMzVpQ851Ty8797VV6SBeIWAFhFU-SMPKx014_RZtrrfsIOs-Ay3OuYNWOYMtcHPXR-k6YOP0J699n5NhvG2HTeZjjhYHd4TS6c7tEufs85eV89vi2f8_Xr08vyfp0bVoohl7RsuWBQi8Za0xjW1IKWUBRMNlIYEKyQtq25FNy02tpUzoFwlamAm8qJYk7Y8V8TA2K0Tu1jt9NxUhTUtwp1VKGSCvWjQh0SJP9BphtSqeCHmLqfRosjimmP39iotmGMSRSeor4AdLZ2HA
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2024_138840
crossref_primary_10_1016_j_engfailanal_2024_108929
crossref_primary_10_5194_wes_9_2175_2024
crossref_primary_10_1016_j_ocecoaman_2024_107316
crossref_primary_10_1016_j_oceaneng_2024_117424
crossref_primary_10_1016_j_rser_2024_114302
Cites_doi 10.1115/1.4026607
10.1115/OMAE2009-79229
10.1002/we.1508
10.1177/0309524X17723206
10.1016/j.renene.2009.04.014
10.1063/1.5048384
10.1002/9781119992714
10.1002/we.421
10.1115/OMAE2012-83559
10.2172/979456
10.1016/j.renene.2018.08.097
10.1016/j.rser.2013.03.018
10.1016/j.energy.2012.02.054
10.1016/j.egypro.2012.06.117
10.1016/j.ijnaoe.2017.09.010
10.1016/j.renene.2008.04.004
10.1016/j.jweia.2016.04.005
10.1016/j.renene.2020.09.033
10.2172/947422
10.1063/1.4880217
10.3390/en7020619
10.1016/j.renene.2015.09.038
10.3390/app9030608
10.1016/j.oceaneng.2016.11.048
10.1016/j.ijepes.2010.01.019
10.1115/OMAE2017-62710
10.3390/en14196026
10.1002/we.442
10.1016/j.ress.2017.10.025
ContentType Journal Article
Copyright The Author(s) 2022
Copyright_xml – notice: The Author(s) 2022
DBID C6C
AAYXX
CITATION
DOI 10.1007/s41062-022-00982-x
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2364-4184
ExternalDocumentID 10_1007_s41062_022_00982_x
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/L014106/1
  funderid: http://dx.doi.org/10.13039/501100000266
GroupedDBID -EM
0R~
203
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
AVWKF
AXYYD
AZFZN
BGNMA
C6C
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7Z
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c265t-816d452095beecbc2b951603328b85c05238ed94854cdaee100f05f7c704c7f53
IEDL.DBID C6C
ISSN 2364-4176
IngestDate Tue Jul 01 01:06:32 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Fri Feb 21 02:44:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Materials and structures
Floating offshore wind turbine (FOWT)
Failure mode and effects analysis (FMEA)
Fault tree analysis (FTA)
Mooring system
Failure analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-816d452095beecbc2b951603328b85c05238ed94854cdaee100f05f7c704c7f53
ORCID 0000-0002-6122-5719
OpenAccessLink https://doi.org/10.1007/s41062-022-00982-x
ParticipantIDs crossref_primary_10_1007_s41062_022_00982_x
crossref_citationtrail_10_1007_s41062_022_00982_x
springer_journals_10_1007_s41062_022_00982_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Innovative infrastructure solutions : the official journal of the Soil-Structure Interaction Group in Egypt (SSIGE)
PublicationTitleAbbrev Innov. Infrastruct. Solut
PublicationYear 2023
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Carbon Trust (2015) Floating offshore wind: Market and technology review. Prepared for the Scottish Government. Available at: https://www.carbontrust.com/media/670664/floating-offshore-wind-market-technology-review.pdf
Karimirad M, Moan T (2012b) Comparative study of spar-type wind turbines in deep and moderate water depths. In: ASME 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil, July 1–6, 2012, pp 551–560
ShafieeMDinmohammadiFAn FMEA-based risk assessment approach for wind turbine systems: a comparative study of onshore and offshoreEnergies20147261964210.3390/en7020619
Roddier D, Cermelli C, Weinstein A (2009) WindFloat: a floating foundation for offshore wind turbines Part I design basis and qualification process. In: 28th International conference on ocean, offshore and arctic engineering, Honolulu, Hawaii, USA, May 31–June 5 2009
BashettySOzcelikSReview on dynamics of offshore floating wind turbine platformsEnergies202114602610.3390/en14196026
KarimiradMMoanTFeasibility of the application of a spar-type wind turbine at a moderate water depthEnergy Procedia201224187634035010.1016/j.egypro.2012.06.117
AhnH-JShinHModel test and numerical simulation of OC3 spar type floating offshore wind turbineInt J Naval Archit Ocean Eng201911111010.1016/j.ijnaoe.2017.09.010
Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5 MW reference wind turbine for offshore system development. Technical Report, NREL/TP-500–38060, National Renewable Energy Laboratory, Colorado, USA, p 63
Global Wind Energy Council (GWEC) (2021) Global Wind Report 2021 Available at https://gwec.net/wp-content/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf
Jonkman J (2010) Definition of the floating system for phase IV of OC3. Technical Report, NREL/TP-500–47535, National Renewable Energy Laboratory, Colorado, USA, p 25
DinmohammadiFShafieeMA fuzzy-FMEA risk assessment approach for offshore wind turbinesInt J Progn Health Manag201344110
ShafieeMSørensenJDMaintenance optimization and inspection planning of wind energy assets: models, methods and strategiesReliab Eng Syst Saf201919210599310.1016/j.ress.2017.10.025
Skaare B (2017) Development of the Hywind concept. In: ASME 36th International Conference on ocean, Offshore and Arctic Engineering, Trondheim, Norway, 25–30 June, 2017
WeinzettelJReenaasMSolliCHertwichEGLife cycle assessment of a floating offshore wind turbineRenew Energy200934374274710.1016/j.renene.2008.04.004
ThiagarajanKPA review of floating platform concepts for offshore wind energy generationJ Offshore Mech Arctic Eng2014136202090310.1115/1.4026607
NematbakhshAOlingerDJTryggvasonGNonlinear simulation of a spar buoy floating wind turbine under extreme ocean conditionsJ Renew Sustain Energy2014603312110.1063/1.4880217
FaulstichSHahnBTavnerPJWind turbine downtime and its importance for offshore deploymentWind Energy201114332733710.1002/we.421
KangJSunLSoaresCGFault tree analysis of floating offshore wind turbinesRenew Energy20191331455146710.1016/j.renene.2018.08.097
SultaniaAManuelLReliability analysis for a spar-supported floating offshore wind turbineWind Eng2018421516510.1177/0309524X17723206
LiHDiazHSoaresCGA developed failure mode and effect analysis for floating offshore wind turbine support structuresRenew Energy202116413314510.1016/j.renene.2020.09.033
Kenneth G, William C (2018) Wind turbine foundations, ICE Themes, ISBN: 9780727763969
JonkmanJMMathaDDynamics of offshore floating wind turbines-analysis of three conceptsWind Energy201114455756910.1002/we.442
Arabian-HoseynabadiHOraeeHTavnerPJWind turbine productivity considering electrical subassembly reliabilityRenew Energy201035119019710.1016/j.renene.2009.04.014
Carbon Trust (2018) Floating wind joint industry project - summary report phase 1. Available at: https://prod-drupal-files.storage.googleapis.com/documents/resource/public/Floating%20Wind%20Joint%20Industry%20Project%20-%20Summary%20Report%20Phase%201%20REPORT.pdf
LinY-HKaoS-HYangC-HInvestigation of hydrodynamic forces for floating offshore wind turbines on spar buoys and tension leg platforms with the mooring systems in wavesAppl Sci20199360810.3390/app9030608
YangWTavnerPJCrabtreeCJFengYQiuYWind turbine condition monitoring: technical and commercial challengesWind Energy201417567369310.1002/we.1508
The Crown Estate (2012) UK market potential and technology assessment for floating offshore wind power. An assessment of the commercialization potential of the floating offshore wind industry. Available at: https://pelastar.com/wp-content/uploads/2015/04/uk-floating-offshore-wind-power-report.pdf.
KangJSunLSunHWuCRisk assessment of floating offshore wind turbine based on correlation-FMEAOcean Eng201712938238810.1016/j.oceaneng.2016.11.048
PérezJMPMárquezFPGTobiasAPapaeliasMWind turbine reliability analysisRenew Sustain Energy Rev20132346347210.1016/j.rser.2013.03.018
BurtonTJenkinsNSharpeDBossanyiEWind Energy Handbook20112Chichester UKWileyp. 78010.1002/9781119992714
Arabian-HoseynabadiHOraeeHTavnerPJFailure modes and effects analysis (FMEA) for wind turbinesInt J Electr Power Energy Syst201032781782410.1016/j.ijepes.2010.01.019
Guo Y, Sun L, Luo N, Liu Z (2015) Reliability allocation and fault tree qualitative analysis for floating wind turbines. In: The twenty-fifth International ocean and polar engineering conference, Kona, Hawaii, USA 21–26 June
MárquezFPGPérezJMPMarugánAPPapaeliasMIdentification of critical components of wind turbines using FTA over the timeRenew Energy20168786988310.1016/j.renene.2015.09.038
Equinor (2018) The market outlook for floating offshore wind. Available at: https://www.equinor.com/en/what-we-do/hywind-where-the-wind-takes-us/the-market-outlook-for-floating-offshore-wind.html
ZhangXSunLSunHGuoQBaicXFloating offshore wind turbine reliability analysis based on system grading and dynamic FTAJ Wind Eng Ind Aerodyn2016154213310.1016/j.jweia.2016.04.005
SunXHuangDWuGThe current state of offshore wind energy technology developmentEnergy201241129831210.1016/j.energy.2012.02.054
ChenJHuZDuanFComparisons of dynamical characteristics of a 5 MW floating wind turbine supported by a spar-buoy and a semi-submersible using model testing methodsJ Renew Sustain Energy20181005331110.1063/1.5048384
T Burton (982_CR1) 2011
X Sun (982_CR10) 2012; 41
J Chen (982_CR25) 2018; 10
J Kang (982_CR17) 2017; 129
982_CR23
H Arabian-Hoseynabadi (982_CR35) 2010; 35
Y-H Lin (982_CR28) 2019; 9
A Nematbakhsh (982_CR24) 2014; 6
JM Jonkman (982_CR9) 2011; 14
982_CR20
982_CR21
S Faulstich (982_CR37) 2011; 14
F Dinmohammadi (982_CR32) 2013; 4
H Li (982_CR19) 2021; 164
A Sultania (982_CR26) 2018; 42
M Shafiee (982_CR33) 2014; 7
JMP Pérez (982_CR36) 2013; 23
KP Thiagarajan (982_CR5) 2014; 136
982_CR7
982_CR6
982_CR4
982_CR3
982_CR2
982_CR12
H Arabian-Hoseynabadi (982_CR34) 2010; 32
982_CR13
M Shafiee (982_CR31) 2019; 192
X Zhang (982_CR16) 2016; 154
982_CR15
S Bashetty (982_CR29) 2021; 14
J Kang (982_CR18) 2019; 133
H-J Ahn (982_CR27) 2019; 11
982_CR11
M Karimirad (982_CR22) 2012; 24
J Weinzettel (982_CR8) 2009; 34
FPG Márquez (982_CR30) 2016; 87
W Yang (982_CR14) 2014; 17
References_xml – reference: Arabian-HoseynabadiHOraeeHTavnerPJFailure modes and effects analysis (FMEA) for wind turbinesInt J Electr Power Energy Syst201032781782410.1016/j.ijepes.2010.01.019
– reference: Equinor (2018) The market outlook for floating offshore wind. Available at: https://www.equinor.com/en/what-we-do/hywind-where-the-wind-takes-us/the-market-outlook-for-floating-offshore-wind.html
– reference: YangWTavnerPJCrabtreeCJFengYQiuYWind turbine condition monitoring: technical and commercial challengesWind Energy201417567369310.1002/we.1508
– reference: Arabian-HoseynabadiHOraeeHTavnerPJWind turbine productivity considering electrical subassembly reliabilityRenew Energy201035119019710.1016/j.renene.2009.04.014
– reference: ZhangXSunLSunHGuoQBaicXFloating offshore wind turbine reliability analysis based on system grading and dynamic FTAJ Wind Eng Ind Aerodyn2016154213310.1016/j.jweia.2016.04.005
– reference: Guo Y, Sun L, Luo N, Liu Z (2015) Reliability allocation and fault tree qualitative analysis for floating wind turbines. In: The twenty-fifth International ocean and polar engineering conference, Kona, Hawaii, USA 21–26 June
– reference: DinmohammadiFShafieeMA fuzzy-FMEA risk assessment approach for offshore wind turbinesInt J Progn Health Manag201344110
– reference: Kenneth G, William C (2018) Wind turbine foundations, ICE Themes, ISBN: 9780727763969
– reference: LinY-HKaoS-HYangC-HInvestigation of hydrodynamic forces for floating offshore wind turbines on spar buoys and tension leg platforms with the mooring systems in wavesAppl Sci20199360810.3390/app9030608
– reference: Karimirad M, Moan T (2012b) Comparative study of spar-type wind turbines in deep and moderate water depths. In: ASME 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil, July 1–6, 2012, pp 551–560
– reference: KangJSunLSunHWuCRisk assessment of floating offshore wind turbine based on correlation-FMEAOcean Eng201712938238810.1016/j.oceaneng.2016.11.048
– reference: BashettySOzcelikSReview on dynamics of offshore floating wind turbine platformsEnergies202114602610.3390/en14196026
– reference: WeinzettelJReenaasMSolliCHertwichEGLife cycle assessment of a floating offshore wind turbineRenew Energy200934374274710.1016/j.renene.2008.04.004
– reference: SunXHuangDWuGThe current state of offshore wind energy technology developmentEnergy201241129831210.1016/j.energy.2012.02.054
– reference: KangJSunLSoaresCGFault tree analysis of floating offshore wind turbinesRenew Energy20191331455146710.1016/j.renene.2018.08.097
– reference: JonkmanJMMathaDDynamics of offshore floating wind turbines-analysis of three conceptsWind Energy201114455756910.1002/we.442
– reference: Global Wind Energy Council (GWEC) (2021) Global Wind Report 2021 Available at https://gwec.net/wp-content/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf
– reference: KarimiradMMoanTFeasibility of the application of a spar-type wind turbine at a moderate water depthEnergy Procedia201224187634035010.1016/j.egypro.2012.06.117
– reference: ChenJHuZDuanFComparisons of dynamical characteristics of a 5 MW floating wind turbine supported by a spar-buoy and a semi-submersible using model testing methodsJ Renew Sustain Energy20181005331110.1063/1.5048384
– reference: Carbon Trust (2018) Floating wind joint industry project - summary report phase 1. Available at: https://prod-drupal-files.storage.googleapis.com/documents/resource/public/Floating%20Wind%20Joint%20Industry%20Project%20-%20Summary%20Report%20Phase%201%20REPORT.pdf
– reference: The Crown Estate (2012) UK market potential and technology assessment for floating offshore wind power. An assessment of the commercialization potential of the floating offshore wind industry. Available at: https://pelastar.com/wp-content/uploads/2015/04/uk-floating-offshore-wind-power-report.pdf.
– reference: LiHDiazHSoaresCGA developed failure mode and effect analysis for floating offshore wind turbine support structuresRenew Energy202116413314510.1016/j.renene.2020.09.033
– reference: Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5 MW reference wind turbine for offshore system development. Technical Report, NREL/TP-500–38060, National Renewable Energy Laboratory, Colorado, USA, p 63
– reference: ThiagarajanKPA review of floating platform concepts for offshore wind energy generationJ Offshore Mech Arctic Eng2014136202090310.1115/1.4026607
– reference: BurtonTJenkinsNSharpeDBossanyiEWind Energy Handbook20112Chichester UKWileyp. 78010.1002/9781119992714
– reference: PérezJMPMárquezFPGTobiasAPapaeliasMWind turbine reliability analysisRenew Sustain Energy Rev20132346347210.1016/j.rser.2013.03.018
– reference: FaulstichSHahnBTavnerPJWind turbine downtime and its importance for offshore deploymentWind Energy201114332733710.1002/we.421
– reference: AhnH-JShinHModel test and numerical simulation of OC3 spar type floating offshore wind turbineInt J Naval Archit Ocean Eng201911111010.1016/j.ijnaoe.2017.09.010
– reference: ShafieeMDinmohammadiFAn FMEA-based risk assessment approach for wind turbine systems: a comparative study of onshore and offshoreEnergies20147261964210.3390/en7020619
– reference: Jonkman J (2010) Definition of the floating system for phase IV of OC3. Technical Report, NREL/TP-500–47535, National Renewable Energy Laboratory, Colorado, USA, p 25
– reference: Roddier D, Cermelli C, Weinstein A (2009) WindFloat: a floating foundation for offshore wind turbines Part I design basis and qualification process. In: 28th International conference on ocean, offshore and arctic engineering, Honolulu, Hawaii, USA, May 31–June 5 2009
– reference: SultaniaAManuelLReliability analysis for a spar-supported floating offshore wind turbineWind Eng2018421516510.1177/0309524X17723206
– reference: MárquezFPGPérezJMPMarugánAPPapaeliasMIdentification of critical components of wind turbines using FTA over the timeRenew Energy20168786988310.1016/j.renene.2015.09.038
– reference: NematbakhshAOlingerDJTryggvasonGNonlinear simulation of a spar buoy floating wind turbine under extreme ocean conditionsJ Renew Sustain Energy2014603312110.1063/1.4880217
– reference: Carbon Trust (2015) Floating offshore wind: Market and technology review. Prepared for the Scottish Government. Available at: https://www.carbontrust.com/media/670664/floating-offshore-wind-market-technology-review.pdf
– reference: Skaare B (2017) Development of the Hywind concept. In: ASME 36th International Conference on ocean, Offshore and Arctic Engineering, Trondheim, Norway, 25–30 June, 2017
– reference: ShafieeMSørensenJDMaintenance optimization and inspection planning of wind energy assets: models, methods and strategiesReliab Eng Syst Saf201919210599310.1016/j.ress.2017.10.025
– ident: 982_CR15
– volume: 136
  start-page: 020903
  issue: 2
  year: 2014
  ident: 982_CR5
  publication-title: J Offshore Mech Arctic Eng
  doi: 10.1115/1.4026607
– ident: 982_CR7
  doi: 10.1115/OMAE2009-79229
– volume: 17
  start-page: 673
  issue: 5
  year: 2014
  ident: 982_CR14
  publication-title: Wind Energy
  doi: 10.1002/we.1508
– volume: 4
  start-page: 1
  issue: 4
  year: 2013
  ident: 982_CR32
  publication-title: Int J Progn Health Manag
– volume: 42
  start-page: 51
  issue: 1
  year: 2018
  ident: 982_CR26
  publication-title: Wind Eng
  doi: 10.1177/0309524X17723206
– volume: 35
  start-page: 190
  issue: 1
  year: 2010
  ident: 982_CR35
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2009.04.014
– volume: 10
  start-page: 053311
  year: 2018
  ident: 982_CR25
  publication-title: J Renew Sustain Energy
  doi: 10.1063/1.5048384
– start-page: p. 780
  volume-title: Wind Energy Handbook
  year: 2011
  ident: 982_CR1
  doi: 10.1002/9781119992714
– ident: 982_CR3
– volume: 14
  start-page: 327
  issue: 3
  year: 2011
  ident: 982_CR37
  publication-title: Wind Energy
  doi: 10.1002/we.421
– ident: 982_CR23
  doi: 10.1115/OMAE2012-83559
– ident: 982_CR21
  doi: 10.2172/979456
– volume: 133
  start-page: 1455
  year: 2019
  ident: 982_CR18
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.08.097
– volume: 23
  start-page: 463
  year: 2013
  ident: 982_CR36
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.03.018
– volume: 41
  start-page: 298
  issue: 1
  year: 2012
  ident: 982_CR10
  publication-title: Energy
  doi: 10.1016/j.energy.2012.02.054
– ident: 982_CR13
– ident: 982_CR11
– volume: 24
  start-page: 340
  issue: 1876
  year: 2012
  ident: 982_CR22
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2012.06.117
– volume: 11
  start-page: 1
  issue: 1
  year: 2019
  ident: 982_CR27
  publication-title: Int J Naval Archit Ocean Eng
  doi: 10.1016/j.ijnaoe.2017.09.010
– volume: 34
  start-page: 742
  issue: 3
  year: 2009
  ident: 982_CR8
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2008.04.004
– volume: 154
  start-page: 21
  year: 2016
  ident: 982_CR16
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2016.04.005
– ident: 982_CR2
– volume: 164
  start-page: 133
  year: 2021
  ident: 982_CR19
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.09.033
– ident: 982_CR20
  doi: 10.2172/947422
– volume: 6
  start-page: 033121
  year: 2014
  ident: 982_CR24
  publication-title: J Renew Sustain Energy
  doi: 10.1063/1.4880217
– ident: 982_CR6
– ident: 982_CR4
– volume: 7
  start-page: 619
  issue: 2
  year: 2014
  ident: 982_CR33
  publication-title: Energies
  doi: 10.3390/en7020619
– volume: 87
  start-page: 869
  year: 2016
  ident: 982_CR30
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.09.038
– volume: 9
  start-page: 608
  issue: 3
  year: 2019
  ident: 982_CR28
  publication-title: Appl Sci
  doi: 10.3390/app9030608
– volume: 129
  start-page: 382
  year: 2017
  ident: 982_CR17
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2016.11.048
– volume: 32
  start-page: 817
  issue: 7
  year: 2010
  ident: 982_CR34
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2010.01.019
– ident: 982_CR12
  doi: 10.1115/OMAE2017-62710
– volume: 14
  start-page: 6026
  year: 2021
  ident: 982_CR29
  publication-title: Energies
  doi: 10.3390/en14196026
– volume: 14
  start-page: 557
  issue: 4
  year: 2011
  ident: 982_CR9
  publication-title: Wind Energy
  doi: 10.1002/we.442
– volume: 192
  start-page: 105993
  year: 2019
  ident: 982_CR31
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.10.025
SSID ssj0002710278
Score 2.2781942
Snippet Floating offshore wind energy is a new form of marine renewable energy which is attracting a great deal of attention worldwide. However, the concepts of...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Earth and Environmental Science
Earth Sciences
Environmental Science and Engineering
Foundations
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
Hydraulics
Technical Paper
Title Failure analysis of spar buoy floating offshore wind turbine systems
URI https://link.springer.com/article/10.1007/s41062-022-00982-x
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMCDbBc9iJ84P0YO3jS4pknaHbdpGR52crBbSdIEhdHKuqH-977XdsOJDLyW10Jf07zP_B4ht2DxjHd9yRAmzoSJLYu11swgyUAIRH5VtM-JGk_F80zOGkwOnoX5Vb9_KAXELJxhzzmiLzkDf7Etg1DhCh6p0SafwtFUVhsvItGZCCLVnJH5-zHbdmi7CFrZluSIHDZOIR3UX_GY7Ln8hBz8QAWeksdEv2EHOdUNRYQWnsJusKBmVXxRPy80NjDDVV--FiD3AcE2BXsCka-jNa-5PCPT5OllNGbNBARmuZJLFgcqE9ioIo1z1lhuwCFSvTDksYmlxZRu7DIEvAibaefgXX1P-shGPWEjL8Nz0sqL3F0QqjRYcqU972dYz3XGir4G58FE3GbeuA4J1vpIbYMHxykV83QDNq50mIIO00qH6WeH3G3uea_hGDul79dqTpsfpdwhfvk_8Suyj5Pg6-zINWktFyt3A_7C0nRJe5AMh5NutWC-AWI5tn8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8IwFMAbgwf1YPyM-NmDN22E0nXjaFCCipwg4da0XRtNCCMMov73vrcVIsaQeF3eluyt6_vs7xFyDRbPeNeMGMLEmTCJZYnWmhkkGQiByK-C9tmTnYF4HkbDgMnBszC_6vd3uYCYhTPsOUf0JWfgL24KiJSxfa8lW8t8CkdTWWy8iERnoh7LcEbm78es2qHVImhhW9p7ZDc4hfS-_Ir7ZMOND8jOD1TgIXlo63fsIKc6UERo5insBlNq5tkX9aNMYwMzXPX5WwZyHxBsU7AnEPk6WvKa8yMyaD_2Wx0WJiAwy2U0Y0ldpgIbVSLjnDWWG3CIZK3R4IlJIosp3cSlCHgRNtXOwbv6WuRjG9eEjX3UOCaVcTZ2J4RKDZZcas-bKdZznbGiqcF5MDG3qTeuSuoLfSgb8OA4pWKklmDjQocKdKgKHarPKrlZ3jMp4RhrpW8XalbhR8nXiJ_-T_yKbHX6r13Vfeq9nJFtnApfZkrOSWU2nbsL8B1m5rJYNN9Y07fw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMCDTBA9iJ84P3PwpmFblqbdUTbH_GB4cLBbSdIEhdGOrUP9730v7coGMvBaXgt9TfO-fyHkFiyedrYTMISJM6EjwyKlFNNIMhACkV-e9jmUg5F4HgfjlSl-3-2-LEkWMw1IaUrzxjRxjWrwTUAkwxl2oiMQkzPwIrchUvGF2q7sVlkWjgbUb8cISmeiFcpycubvx6xbp_XSqLc4_QOyX7qK9KH4todky6ZHZG8FIHhMen31iX3lVJVsEZo5CnvEjOpF9kPdJFPY1gxX3fwjA7kvCMEpWBmIhy0tKM7zEzLqP753B6w8F4EZLoOcRS2ZCGxfCbS1RhuuwU2SzXabRzoKDCZ6I5sg9kWYRFkL7-qagQtN2BQmdEH7lNTSLLVnhEoF9l0qxzsJVnmtNqKjwKXQITeJ07ZOWkt9xKaEhuPZFZO4wh17Hcagw9jrMP6uk7vqnmmBzNgofb9Uc1z-PvMN4uf_E78hO2-9fvz6NHy5ILt4VHyRPrkktXy2sFfgUOT62q-ZX_EUwDc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Failure+analysis+of+spar+buoy+floating+offshore+wind+turbine+systems&rft.jtitle=Innovative+infrastructure+solutions+%3A+the+official+journal+of+the+Soil-Structure+Interaction+Group+in+Egypt+%28SSIGE%29&rft.au=Shafiee%2C+Mahmood&rft.date=2023-01-01&rft.pub=Springer+International+Publishing&rft.issn=2364-4176&rft.eissn=2364-4184&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1007%2Fs41062-022-00982-x&rft.externalDocID=10_1007_s41062_022_00982_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-4176&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-4176&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-4176&client=summon