Failure analysis of spar buoy floating offshore wind turbine systems
Floating offshore wind energy is a new form of marine renewable energy which is attracting a great deal of attention worldwide. However, the concepts of floating offshore wind turbines (FOWTs) are still in early stages of development and their failure properties are not yet fully understood. Compare...
Saved in:
Published in | Innovative infrastructure solutions : the official journal of the Soil-Structure Interaction Group in Egypt (SSIGE) Vol. 8; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Floating offshore wind energy is a new form of marine renewable energy which is attracting a great deal of attention worldwide. However, the concepts of floating offshore wind turbines (FOWTs) are still in early stages of development and their failure properties are not yet fully understood. Compared to bottom-fixed wind turbines, FOWTs are subject to more extreme environmental conditions and significant mechanical stresses which may cause a higher degradation rate and shorter mean-time-to-failure for components/structures. To fill the research gap, this paper aims to conduct qualitative and quantitative failure studies on an OC3 spar-type FOWT platform with 3 catenary mooring lines. The failure analyses are performed based on two well-established reliability engineering methodologies, namely, fault tree analysis (FTA) and failure mode and effects analysis (FMEA). The most critical FOWT components are prioritized according to their failure likelihood as well as the risk-priority-number. Our results show a good agreement between the two methods with regard to failure criticality rankings. However, some differences between the results are also observed that are attributed to the difference between FTA and FMEA methodologies as the former incorporates the causes of various failure modes into analysis, whereas the latter is mainly adopted for a single random failure analysis. The results obtained from the FMEA study for the FOWT system will also be compared with those reported for bottom-fixed offshore wind turbines and some interesting conclusions are derived. |
---|---|
AbstractList | Floating offshore wind energy is a new form of marine renewable energy which is attracting a great deal of attention worldwide. However, the concepts of floating offshore wind turbines (FOWTs) are still in early stages of development and their failure properties are not yet fully understood. Compared to bottom-fixed wind turbines, FOWTs are subject to more extreme environmental conditions and significant mechanical stresses which may cause a higher degradation rate and shorter mean-time-to-failure for components/structures. To fill the research gap, this paper aims to conduct qualitative and quantitative failure studies on an OC3 spar-type FOWT platform with 3 catenary mooring lines. The failure analyses are performed based on two well-established reliability engineering methodologies, namely, fault tree analysis (FTA) and failure mode and effects analysis (FMEA). The most critical FOWT components are prioritized according to their failure likelihood as well as the risk-priority-number. Our results show a good agreement between the two methods with regard to failure criticality rankings. However, some differences between the results are also observed that are attributed to the difference between FTA and FMEA methodologies as the former incorporates the causes of various failure modes into analysis, whereas the latter is mainly adopted for a single random failure analysis. The results obtained from the FMEA study for the FOWT system will also be compared with those reported for bottom-fixed offshore wind turbines and some interesting conclusions are derived. |
ArticleNumber | 28 |
Author | Shafiee, Mahmood |
Author_xml | – sequence: 1 givenname: Mahmood orcidid: 0000-0002-6122-5719 surname: Shafiee fullname: Shafiee, Mahmood email: m.shafiee@kent.ac.uk organization: Mechanical Engineering Group, School of Engineering, University of Kent |
BookMark | eNp9kNFOwyAUhonRxDn3Al71BaoHCi29NNOpyRJv9JpQCrNLBwunjevbi8544cUu_kBO-Dj5vyty7oO3hNxQuKUA1R1yCiXLgaVALVl-OCMzVpQ851Ty8797VV6SBeIWAFhFU-SMPKx014_RZtrrfsIOs-Ay3OuYNWOYMtcHPXR-k6YOP0J699n5NhvG2HTeZjjhYHd4TS6c7tEufs85eV89vi2f8_Xr08vyfp0bVoohl7RsuWBQi8Za0xjW1IKWUBRMNlIYEKyQtq25FNy02tpUzoFwlamAm8qJYk7Y8V8TA2K0Tu1jt9NxUhTUtwp1VKGSCvWjQh0SJP9BphtSqeCHmLqfRosjimmP39iotmGMSRSeor4AdLZ2HA |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2024_138840 crossref_primary_10_1016_j_engfailanal_2024_108929 crossref_primary_10_5194_wes_9_2175_2024 crossref_primary_10_1016_j_ocecoaman_2024_107316 crossref_primary_10_1016_j_oceaneng_2024_117424 crossref_primary_10_1016_j_rser_2024_114302 |
Cites_doi | 10.1115/1.4026607 10.1115/OMAE2009-79229 10.1002/we.1508 10.1177/0309524X17723206 10.1016/j.renene.2009.04.014 10.1063/1.5048384 10.1002/9781119992714 10.1002/we.421 10.1115/OMAE2012-83559 10.2172/979456 10.1016/j.renene.2018.08.097 10.1016/j.rser.2013.03.018 10.1016/j.energy.2012.02.054 10.1016/j.egypro.2012.06.117 10.1016/j.ijnaoe.2017.09.010 10.1016/j.renene.2008.04.004 10.1016/j.jweia.2016.04.005 10.1016/j.renene.2020.09.033 10.2172/947422 10.1063/1.4880217 10.3390/en7020619 10.1016/j.renene.2015.09.038 10.3390/app9030608 10.1016/j.oceaneng.2016.11.048 10.1016/j.ijepes.2010.01.019 10.1115/OMAE2017-62710 10.3390/en14196026 10.1002/we.442 10.1016/j.ress.2017.10.025 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 |
Copyright_xml | – notice: The Author(s) 2022 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s41062-022-00982-x |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2364-4184 |
ExternalDocumentID | 10_1007_s41062_022_00982_x |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/L014106/1 funderid: http://dx.doi.org/10.13039/501100000266 |
GroupedDBID | -EM 0R~ 203 406 AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG AVWKF AXYYD AZFZN BGNMA C6C CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW Z5O Z7Z ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c265t-816d452095beecbc2b951603328b85c05238ed94854cdaee100f05f7c704c7f53 |
IEDL.DBID | C6C |
ISSN | 2364-4176 |
IngestDate | Tue Jul 01 01:06:32 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Fri Feb 21 02:44:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Materials and structures Floating offshore wind turbine (FOWT) Failure mode and effects analysis (FMEA) Fault tree analysis (FTA) Mooring system Failure analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-816d452095beecbc2b951603328b85c05238ed94854cdaee100f05f7c704c7f53 |
ORCID | 0000-0002-6122-5719 |
OpenAccessLink | https://doi.org/10.1007/s41062-022-00982-x |
ParticipantIDs | crossref_primary_10_1007_s41062_022_00982_x crossref_citationtrail_10_1007_s41062_022_00982_x springer_journals_10_1007_s41062_022_00982_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230100 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Innovative infrastructure solutions : the official journal of the Soil-Structure Interaction Group in Egypt (SSIGE) |
PublicationTitleAbbrev | Innov. Infrastruct. Solut |
PublicationYear | 2023 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Carbon Trust (2015) Floating offshore wind: Market and technology review. Prepared for the Scottish Government. Available at: https://www.carbontrust.com/media/670664/floating-offshore-wind-market-technology-review.pdf Karimirad M, Moan T (2012b) Comparative study of spar-type wind turbines in deep and moderate water depths. In: ASME 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil, July 1–6, 2012, pp 551–560 ShafieeMDinmohammadiFAn FMEA-based risk assessment approach for wind turbine systems: a comparative study of onshore and offshoreEnergies20147261964210.3390/en7020619 Roddier D, Cermelli C, Weinstein A (2009) WindFloat: a floating foundation for offshore wind turbines Part I design basis and qualification process. In: 28th International conference on ocean, offshore and arctic engineering, Honolulu, Hawaii, USA, May 31–June 5 2009 BashettySOzcelikSReview on dynamics of offshore floating wind turbine platformsEnergies202114602610.3390/en14196026 KarimiradMMoanTFeasibility of the application of a spar-type wind turbine at a moderate water depthEnergy Procedia201224187634035010.1016/j.egypro.2012.06.117 AhnH-JShinHModel test and numerical simulation of OC3 spar type floating offshore wind turbineInt J Naval Archit Ocean Eng201911111010.1016/j.ijnaoe.2017.09.010 Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5 MW reference wind turbine for offshore system development. Technical Report, NREL/TP-500–38060, National Renewable Energy Laboratory, Colorado, USA, p 63 Global Wind Energy Council (GWEC) (2021) Global Wind Report 2021 Available at https://gwec.net/wp-content/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf Jonkman J (2010) Definition of the floating system for phase IV of OC3. Technical Report, NREL/TP-500–47535, National Renewable Energy Laboratory, Colorado, USA, p 25 DinmohammadiFShafieeMA fuzzy-FMEA risk assessment approach for offshore wind turbinesInt J Progn Health Manag201344110 ShafieeMSørensenJDMaintenance optimization and inspection planning of wind energy assets: models, methods and strategiesReliab Eng Syst Saf201919210599310.1016/j.ress.2017.10.025 Skaare B (2017) Development of the Hywind concept. In: ASME 36th International Conference on ocean, Offshore and Arctic Engineering, Trondheim, Norway, 25–30 June, 2017 WeinzettelJReenaasMSolliCHertwichEGLife cycle assessment of a floating offshore wind turbineRenew Energy200934374274710.1016/j.renene.2008.04.004 ThiagarajanKPA review of floating platform concepts for offshore wind energy generationJ Offshore Mech Arctic Eng2014136202090310.1115/1.4026607 NematbakhshAOlingerDJTryggvasonGNonlinear simulation of a spar buoy floating wind turbine under extreme ocean conditionsJ Renew Sustain Energy2014603312110.1063/1.4880217 FaulstichSHahnBTavnerPJWind turbine downtime and its importance for offshore deploymentWind Energy201114332733710.1002/we.421 KangJSunLSoaresCGFault tree analysis of floating offshore wind turbinesRenew Energy20191331455146710.1016/j.renene.2018.08.097 SultaniaAManuelLReliability analysis for a spar-supported floating offshore wind turbineWind Eng2018421516510.1177/0309524X17723206 LiHDiazHSoaresCGA developed failure mode and effect analysis for floating offshore wind turbine support structuresRenew Energy202116413314510.1016/j.renene.2020.09.033 Kenneth G, William C (2018) Wind turbine foundations, ICE Themes, ISBN: 9780727763969 JonkmanJMMathaDDynamics of offshore floating wind turbines-analysis of three conceptsWind Energy201114455756910.1002/we.442 Arabian-HoseynabadiHOraeeHTavnerPJWind turbine productivity considering electrical subassembly reliabilityRenew Energy201035119019710.1016/j.renene.2009.04.014 Carbon Trust (2018) Floating wind joint industry project - summary report phase 1. Available at: https://prod-drupal-files.storage.googleapis.com/documents/resource/public/Floating%20Wind%20Joint%20Industry%20Project%20-%20Summary%20Report%20Phase%201%20REPORT.pdf LinY-HKaoS-HYangC-HInvestigation of hydrodynamic forces for floating offshore wind turbines on spar buoys and tension leg platforms with the mooring systems in wavesAppl Sci20199360810.3390/app9030608 YangWTavnerPJCrabtreeCJFengYQiuYWind turbine condition monitoring: technical and commercial challengesWind Energy201417567369310.1002/we.1508 The Crown Estate (2012) UK market potential and technology assessment for floating offshore wind power. An assessment of the commercialization potential of the floating offshore wind industry. Available at: https://pelastar.com/wp-content/uploads/2015/04/uk-floating-offshore-wind-power-report.pdf. KangJSunLSunHWuCRisk assessment of floating offshore wind turbine based on correlation-FMEAOcean Eng201712938238810.1016/j.oceaneng.2016.11.048 PérezJMPMárquezFPGTobiasAPapaeliasMWind turbine reliability analysisRenew Sustain Energy Rev20132346347210.1016/j.rser.2013.03.018 BurtonTJenkinsNSharpeDBossanyiEWind Energy Handbook20112Chichester UKWileyp. 78010.1002/9781119992714 Arabian-HoseynabadiHOraeeHTavnerPJFailure modes and effects analysis (FMEA) for wind turbinesInt J Electr Power Energy Syst201032781782410.1016/j.ijepes.2010.01.019 Guo Y, Sun L, Luo N, Liu Z (2015) Reliability allocation and fault tree qualitative analysis for floating wind turbines. In: The twenty-fifth International ocean and polar engineering conference, Kona, Hawaii, USA 21–26 June MárquezFPGPérezJMPMarugánAPPapaeliasMIdentification of critical components of wind turbines using FTA over the timeRenew Energy20168786988310.1016/j.renene.2015.09.038 Equinor (2018) The market outlook for floating offshore wind. Available at: https://www.equinor.com/en/what-we-do/hywind-where-the-wind-takes-us/the-market-outlook-for-floating-offshore-wind.html ZhangXSunLSunHGuoQBaicXFloating offshore wind turbine reliability analysis based on system grading and dynamic FTAJ Wind Eng Ind Aerodyn2016154213310.1016/j.jweia.2016.04.005 SunXHuangDWuGThe current state of offshore wind energy technology developmentEnergy201241129831210.1016/j.energy.2012.02.054 ChenJHuZDuanFComparisons of dynamical characteristics of a 5 MW floating wind turbine supported by a spar-buoy and a semi-submersible using model testing methodsJ Renew Sustain Energy20181005331110.1063/1.5048384 T Burton (982_CR1) 2011 X Sun (982_CR10) 2012; 41 J Chen (982_CR25) 2018; 10 J Kang (982_CR17) 2017; 129 982_CR23 H Arabian-Hoseynabadi (982_CR35) 2010; 35 Y-H Lin (982_CR28) 2019; 9 A Nematbakhsh (982_CR24) 2014; 6 JM Jonkman (982_CR9) 2011; 14 982_CR20 982_CR21 S Faulstich (982_CR37) 2011; 14 F Dinmohammadi (982_CR32) 2013; 4 H Li (982_CR19) 2021; 164 A Sultania (982_CR26) 2018; 42 M Shafiee (982_CR33) 2014; 7 JMP Pérez (982_CR36) 2013; 23 KP Thiagarajan (982_CR5) 2014; 136 982_CR7 982_CR6 982_CR4 982_CR3 982_CR2 982_CR12 H Arabian-Hoseynabadi (982_CR34) 2010; 32 982_CR13 M Shafiee (982_CR31) 2019; 192 X Zhang (982_CR16) 2016; 154 982_CR15 S Bashetty (982_CR29) 2021; 14 J Kang (982_CR18) 2019; 133 H-J Ahn (982_CR27) 2019; 11 982_CR11 M Karimirad (982_CR22) 2012; 24 J Weinzettel (982_CR8) 2009; 34 FPG Márquez (982_CR30) 2016; 87 W Yang (982_CR14) 2014; 17 |
References_xml | – reference: Arabian-HoseynabadiHOraeeHTavnerPJFailure modes and effects analysis (FMEA) for wind turbinesInt J Electr Power Energy Syst201032781782410.1016/j.ijepes.2010.01.019 – reference: Equinor (2018) The market outlook for floating offshore wind. Available at: https://www.equinor.com/en/what-we-do/hywind-where-the-wind-takes-us/the-market-outlook-for-floating-offshore-wind.html – reference: YangWTavnerPJCrabtreeCJFengYQiuYWind turbine condition monitoring: technical and commercial challengesWind Energy201417567369310.1002/we.1508 – reference: Arabian-HoseynabadiHOraeeHTavnerPJWind turbine productivity considering electrical subassembly reliabilityRenew Energy201035119019710.1016/j.renene.2009.04.014 – reference: ZhangXSunLSunHGuoQBaicXFloating offshore wind turbine reliability analysis based on system grading and dynamic FTAJ Wind Eng Ind Aerodyn2016154213310.1016/j.jweia.2016.04.005 – reference: Guo Y, Sun L, Luo N, Liu Z (2015) Reliability allocation and fault tree qualitative analysis for floating wind turbines. In: The twenty-fifth International ocean and polar engineering conference, Kona, Hawaii, USA 21–26 June – reference: DinmohammadiFShafieeMA fuzzy-FMEA risk assessment approach for offshore wind turbinesInt J Progn Health Manag201344110 – reference: Kenneth G, William C (2018) Wind turbine foundations, ICE Themes, ISBN: 9780727763969 – reference: LinY-HKaoS-HYangC-HInvestigation of hydrodynamic forces for floating offshore wind turbines on spar buoys and tension leg platforms with the mooring systems in wavesAppl Sci20199360810.3390/app9030608 – reference: Karimirad M, Moan T (2012b) Comparative study of spar-type wind turbines in deep and moderate water depths. In: ASME 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil, July 1–6, 2012, pp 551–560 – reference: KangJSunLSunHWuCRisk assessment of floating offshore wind turbine based on correlation-FMEAOcean Eng201712938238810.1016/j.oceaneng.2016.11.048 – reference: BashettySOzcelikSReview on dynamics of offshore floating wind turbine platformsEnergies202114602610.3390/en14196026 – reference: WeinzettelJReenaasMSolliCHertwichEGLife cycle assessment of a floating offshore wind turbineRenew Energy200934374274710.1016/j.renene.2008.04.004 – reference: SunXHuangDWuGThe current state of offshore wind energy technology developmentEnergy201241129831210.1016/j.energy.2012.02.054 – reference: KangJSunLSoaresCGFault tree analysis of floating offshore wind turbinesRenew Energy20191331455146710.1016/j.renene.2018.08.097 – reference: JonkmanJMMathaDDynamics of offshore floating wind turbines-analysis of three conceptsWind Energy201114455756910.1002/we.442 – reference: Global Wind Energy Council (GWEC) (2021) Global Wind Report 2021 Available at https://gwec.net/wp-content/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf – reference: KarimiradMMoanTFeasibility of the application of a spar-type wind turbine at a moderate water depthEnergy Procedia201224187634035010.1016/j.egypro.2012.06.117 – reference: ChenJHuZDuanFComparisons of dynamical characteristics of a 5 MW floating wind turbine supported by a spar-buoy and a semi-submersible using model testing methodsJ Renew Sustain Energy20181005331110.1063/1.5048384 – reference: Carbon Trust (2018) Floating wind joint industry project - summary report phase 1. Available at: https://prod-drupal-files.storage.googleapis.com/documents/resource/public/Floating%20Wind%20Joint%20Industry%20Project%20-%20Summary%20Report%20Phase%201%20REPORT.pdf – reference: The Crown Estate (2012) UK market potential and technology assessment for floating offshore wind power. An assessment of the commercialization potential of the floating offshore wind industry. Available at: https://pelastar.com/wp-content/uploads/2015/04/uk-floating-offshore-wind-power-report.pdf. – reference: LiHDiazHSoaresCGA developed failure mode and effect analysis for floating offshore wind turbine support structuresRenew Energy202116413314510.1016/j.renene.2020.09.033 – reference: Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5 MW reference wind turbine for offshore system development. Technical Report, NREL/TP-500–38060, National Renewable Energy Laboratory, Colorado, USA, p 63 – reference: ThiagarajanKPA review of floating platform concepts for offshore wind energy generationJ Offshore Mech Arctic Eng2014136202090310.1115/1.4026607 – reference: BurtonTJenkinsNSharpeDBossanyiEWind Energy Handbook20112Chichester UKWileyp. 78010.1002/9781119992714 – reference: PérezJMPMárquezFPGTobiasAPapaeliasMWind turbine reliability analysisRenew Sustain Energy Rev20132346347210.1016/j.rser.2013.03.018 – reference: FaulstichSHahnBTavnerPJWind turbine downtime and its importance for offshore deploymentWind Energy201114332733710.1002/we.421 – reference: AhnH-JShinHModel test and numerical simulation of OC3 spar type floating offshore wind turbineInt J Naval Archit Ocean Eng201911111010.1016/j.ijnaoe.2017.09.010 – reference: ShafieeMDinmohammadiFAn FMEA-based risk assessment approach for wind turbine systems: a comparative study of onshore and offshoreEnergies20147261964210.3390/en7020619 – reference: Jonkman J (2010) Definition of the floating system for phase IV of OC3. Technical Report, NREL/TP-500–47535, National Renewable Energy Laboratory, Colorado, USA, p 25 – reference: Roddier D, Cermelli C, Weinstein A (2009) WindFloat: a floating foundation for offshore wind turbines Part I design basis and qualification process. In: 28th International conference on ocean, offshore and arctic engineering, Honolulu, Hawaii, USA, May 31–June 5 2009 – reference: SultaniaAManuelLReliability analysis for a spar-supported floating offshore wind turbineWind Eng2018421516510.1177/0309524X17723206 – reference: MárquezFPGPérezJMPMarugánAPPapaeliasMIdentification of critical components of wind turbines using FTA over the timeRenew Energy20168786988310.1016/j.renene.2015.09.038 – reference: NematbakhshAOlingerDJTryggvasonGNonlinear simulation of a spar buoy floating wind turbine under extreme ocean conditionsJ Renew Sustain Energy2014603312110.1063/1.4880217 – reference: Carbon Trust (2015) Floating offshore wind: Market and technology review. Prepared for the Scottish Government. Available at: https://www.carbontrust.com/media/670664/floating-offshore-wind-market-technology-review.pdf – reference: Skaare B (2017) Development of the Hywind concept. In: ASME 36th International Conference on ocean, Offshore and Arctic Engineering, Trondheim, Norway, 25–30 June, 2017 – reference: ShafieeMSørensenJDMaintenance optimization and inspection planning of wind energy assets: models, methods and strategiesReliab Eng Syst Saf201919210599310.1016/j.ress.2017.10.025 – ident: 982_CR15 – volume: 136 start-page: 020903 issue: 2 year: 2014 ident: 982_CR5 publication-title: J Offshore Mech Arctic Eng doi: 10.1115/1.4026607 – ident: 982_CR7 doi: 10.1115/OMAE2009-79229 – volume: 17 start-page: 673 issue: 5 year: 2014 ident: 982_CR14 publication-title: Wind Energy doi: 10.1002/we.1508 – volume: 4 start-page: 1 issue: 4 year: 2013 ident: 982_CR32 publication-title: Int J Progn Health Manag – volume: 42 start-page: 51 issue: 1 year: 2018 ident: 982_CR26 publication-title: Wind Eng doi: 10.1177/0309524X17723206 – volume: 35 start-page: 190 issue: 1 year: 2010 ident: 982_CR35 publication-title: Renew Energy doi: 10.1016/j.renene.2009.04.014 – volume: 10 start-page: 053311 year: 2018 ident: 982_CR25 publication-title: J Renew Sustain Energy doi: 10.1063/1.5048384 – start-page: p. 780 volume-title: Wind Energy Handbook year: 2011 ident: 982_CR1 doi: 10.1002/9781119992714 – ident: 982_CR3 – volume: 14 start-page: 327 issue: 3 year: 2011 ident: 982_CR37 publication-title: Wind Energy doi: 10.1002/we.421 – ident: 982_CR23 doi: 10.1115/OMAE2012-83559 – ident: 982_CR21 doi: 10.2172/979456 – volume: 133 start-page: 1455 year: 2019 ident: 982_CR18 publication-title: Renew Energy doi: 10.1016/j.renene.2018.08.097 – volume: 23 start-page: 463 year: 2013 ident: 982_CR36 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.03.018 – volume: 41 start-page: 298 issue: 1 year: 2012 ident: 982_CR10 publication-title: Energy doi: 10.1016/j.energy.2012.02.054 – ident: 982_CR13 – ident: 982_CR11 – volume: 24 start-page: 340 issue: 1876 year: 2012 ident: 982_CR22 publication-title: Energy Procedia doi: 10.1016/j.egypro.2012.06.117 – volume: 11 start-page: 1 issue: 1 year: 2019 ident: 982_CR27 publication-title: Int J Naval Archit Ocean Eng doi: 10.1016/j.ijnaoe.2017.09.010 – volume: 34 start-page: 742 issue: 3 year: 2009 ident: 982_CR8 publication-title: Renew Energy doi: 10.1016/j.renene.2008.04.004 – volume: 154 start-page: 21 year: 2016 ident: 982_CR16 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2016.04.005 – ident: 982_CR2 – volume: 164 start-page: 133 year: 2021 ident: 982_CR19 publication-title: Renew Energy doi: 10.1016/j.renene.2020.09.033 – ident: 982_CR20 doi: 10.2172/947422 – volume: 6 start-page: 033121 year: 2014 ident: 982_CR24 publication-title: J Renew Sustain Energy doi: 10.1063/1.4880217 – ident: 982_CR6 – ident: 982_CR4 – volume: 7 start-page: 619 issue: 2 year: 2014 ident: 982_CR33 publication-title: Energies doi: 10.3390/en7020619 – volume: 87 start-page: 869 year: 2016 ident: 982_CR30 publication-title: Renew Energy doi: 10.1016/j.renene.2015.09.038 – volume: 9 start-page: 608 issue: 3 year: 2019 ident: 982_CR28 publication-title: Appl Sci doi: 10.3390/app9030608 – volume: 129 start-page: 382 year: 2017 ident: 982_CR17 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2016.11.048 – volume: 32 start-page: 817 issue: 7 year: 2010 ident: 982_CR34 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2010.01.019 – ident: 982_CR12 doi: 10.1115/OMAE2017-62710 – volume: 14 start-page: 6026 year: 2021 ident: 982_CR29 publication-title: Energies doi: 10.3390/en14196026 – volume: 14 start-page: 557 issue: 4 year: 2011 ident: 982_CR9 publication-title: Wind Energy doi: 10.1002/we.442 – volume: 192 start-page: 105993 year: 2019 ident: 982_CR31 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.10.025 |
SSID | ssj0002710278 |
Score | 2.2781942 |
Snippet | Floating offshore wind energy is a new form of marine renewable energy which is attracting a great deal of attention worldwide. However, the concepts of... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Earth and Environmental Science Earth Sciences Environmental Science and Engineering Foundations Geoengineering Geotechnical Engineering & Applied Earth Sciences Hydraulics Technical Paper |
Title | Failure analysis of spar buoy floating offshore wind turbine systems |
URI | https://link.springer.com/article/10.1007/s41062-022-00982-x |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMCDbBc9iJ84P0YO3jS4pknaHbdpGR52crBbSdIEhdHKuqH-977XdsOJDLyW10Jf07zP_B4ht2DxjHd9yRAmzoSJLYu11swgyUAIRH5VtM-JGk_F80zOGkwOnoX5Vb9_KAXELJxhzzmiLzkDf7Etg1DhCh6p0SafwtFUVhsvItGZCCLVnJH5-zHbdmi7CFrZluSIHDZOIR3UX_GY7Ln8hBz8QAWeksdEv2EHOdUNRYQWnsJusKBmVXxRPy80NjDDVV--FiD3AcE2BXsCka-jNa-5PCPT5OllNGbNBARmuZJLFgcqE9ioIo1z1lhuwCFSvTDksYmlxZRu7DIEvAibaefgXX1P-shGPWEjL8Nz0sqL3F0QqjRYcqU972dYz3XGir4G58FE3GbeuA4J1vpIbYMHxykV83QDNq50mIIO00qH6WeH3G3uea_hGDul79dqTpsfpdwhfvk_8Suyj5Pg6-zINWktFyt3A_7C0nRJe5AMh5NutWC-AWI5tn8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8IwFMAbgwf1YPyM-NmDN22E0nXjaFCCipwg4da0XRtNCCMMov73vrcVIsaQeF3eluyt6_vs7xFyDRbPeNeMGMLEmTCJZYnWmhkkGQiByK-C9tmTnYF4HkbDgMnBszC_6vd3uYCYhTPsOUf0JWfgL24KiJSxfa8lW8t8CkdTWWy8iERnoh7LcEbm78es2qHVImhhW9p7ZDc4hfS-_Ir7ZMOND8jOD1TgIXlo63fsIKc6UERo5insBlNq5tkX9aNMYwMzXPX5WwZyHxBsU7AnEPk6WvKa8yMyaD_2Wx0WJiAwy2U0Y0ldpgIbVSLjnDWWG3CIZK3R4IlJIosp3cSlCHgRNtXOwbv6WuRjG9eEjX3UOCaVcTZ2J4RKDZZcas-bKdZznbGiqcF5MDG3qTeuSuoLfSgb8OA4pWKklmDjQocKdKgKHarPKrlZ3jMp4RhrpW8XalbhR8nXiJ_-T_yKbHX6r13Vfeq9nJFtnApfZkrOSWU2nbsL8B1m5rJYNN9Y07fw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMCDTBA9iJ84P3PwpmFblqbdUTbH_GB4cLBbSdIEhdGOrUP9730v7coGMvBaXgt9TfO-fyHkFiyedrYTMISJM6EjwyKlFNNIMhACkV-e9jmUg5F4HgfjlSl-3-2-LEkWMw1IaUrzxjRxjWrwTUAkwxl2oiMQkzPwIrchUvGF2q7sVlkWjgbUb8cISmeiFcpycubvx6xbp_XSqLc4_QOyX7qK9KH4todky6ZHZG8FIHhMen31iX3lVJVsEZo5CnvEjOpF9kPdJFPY1gxX3fwjA7kvCMEpWBmIhy0tKM7zEzLqP753B6w8F4EZLoOcRS2ZCGxfCbS1RhuuwU2SzXabRzoKDCZ6I5sg9kWYRFkL7-qagQtN2BQmdEH7lNTSLLVnhEoF9l0qxzsJVnmtNqKjwKXQITeJ07ZOWkt9xKaEhuPZFZO4wh17Hcagw9jrMP6uk7vqnmmBzNgofb9Uc1z-PvMN4uf_E78hO2-9fvz6NHy5ILt4VHyRPrkktXy2sFfgUOT62q-ZX_EUwDc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Failure+analysis+of+spar+buoy+floating+offshore+wind+turbine+systems&rft.jtitle=Innovative+infrastructure+solutions+%3A+the+official+journal+of+the+Soil-Structure+Interaction+Group+in+Egypt+%28SSIGE%29&rft.au=Shafiee%2C+Mahmood&rft.date=2023-01-01&rft.pub=Springer+International+Publishing&rft.issn=2364-4176&rft.eissn=2364-4184&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1007%2Fs41062-022-00982-x&rft.externalDocID=10_1007_s41062_022_00982_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-4176&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-4176&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-4176&client=summon |