Surface EMG Based Hand Manipulation Identification Via Nonlinear Feature Extraction and Classification

This paper proposes and evaluates methods of nonlinear feature extraction and nonlinear classification to identify different hand manipulations based on surface electromyography (sEMG) signals. The nonlinear measures are achieved based on the recurrence plot to represent dynamical characteristics of...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 13; no. 9; pp. 3302 - 3311
Main Authors Ju, Zhaojie, Ouyang, Gaoxiang, Wilamowska-Korsak, Marzena, Liu, Honghai
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2013
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2013.2259051

Cover

Abstract This paper proposes and evaluates methods of nonlinear feature extraction and nonlinear classification to identify different hand manipulations based on surface electromyography (sEMG) signals. The nonlinear measures are achieved based on the recurrence plot to represent dynamical characteristics of sEMG during hand movements. Fuzzy Gaussian Mixture Models (FGMMs) are proposed and employed as a nonlinear classifier to recognise different hand grasps and in-hand manipulations captured from different subjects. Various experiments are conducted to evaluate their performance by comparing 14 individual features, 19 multifeatures and 4 different classifiers. The experimental results demonstrate the proposed nonlinear measures provide important supplemental information and they are essential to the good performance in multifeatures. It is also shown that FGMMs outperform commonly used approaches including Linear Discriminant Analysis, Gaussian Mixture Models and Support Vector Machine in terms of the recognition rate. The best performance with the recognition rate of 96.7% is achieved by using FGMMs with the multifeature combining Willison Amplitude and Determinism.
AbstractList This paper proposes and evaluates methods of nonlinear feature extraction and nonlinear classification to identify different hand manipulations based on surface electromyography (sEMG) signals. The nonlinear measures are achieved based on the recurrence plot to represent dynamical characteristics of sEMG during hand movements. Fuzzy Gaussian Mixture Models (FGMMs) are proposed and employed as a nonlinear classifier to recognise different hand grasps and in-hand manipulations captured from different subjects. Various experiments are conducted to evaluate their performance by comparing 14 individual features, 19 multifeatures and 4 different classifiers. The experimental results demonstrate the proposed nonlinear measures provide important supplemental information and they are essential to the good performance in multifeatures. It is also shown that FGMMs outperform commonly used approaches including Linear Discriminant Analysis, Gaussian Mixture Models and Support Vector Machine in terms of the recognition rate. The best performance with the recognition rate of 96.7% is achieved by using FGMMs with the multifeature combining Willison Amplitude and Determinism.
Author Liu, Honghai
Ju, Zhaojie
Wilamowska-Korsak, Marzena
Ouyang, Gaoxiang
Author_xml – sequence: 1
  givenname: Zhaojie
  surname: Ju
  fullname: Ju, Zhaojie
  email: zhaojie.ju@port.ac.uk
  organization: Intelligent Systems & Biomedical Robotics Group, School of Creative Technologies, University of Portsmouth, Portsmouth, U.K
– sequence: 2
  givenname: Gaoxiang
  surname: Ouyang
  fullname: Ouyang, Gaoxiang
  email: gx.ouyang@gmail.com
  organization: Intelligent Systems & Biomedical Robotics Group, School of Creative Technologies, University of Portsmouth, Portsmouth, U.K
– sequence: 3
  givenname: Marzena
  surname: Wilamowska-Korsak
  fullname: Wilamowska-Korsak, Marzena
  email: wilam@uwm.edu.pl
  organization: Faculty of Engineering, Warmia and Mazury University at Olsztyn, Olsztyn, Poland
– sequence: 4
  givenname: Honghai
  surname: Liu
  fullname: Liu, Honghai
  email: honghai.liu@port.ac.uk
  organization: Intelligent Systems & Biomedical Robotics Group, School of Creative Technologies, University of Portsmouth, Portsmouth, U.K
BookMark eNp9kM1OwzAQhC1UJErhARCXvECKN7bzc4Sqf6gthwLiFjn2WjIKTmWnErw9SVv1wIHT7krzjWbnmgxc45CQO6BjAFo8PG-nm3FCgY2TRBRUwAUZghB5DBnPB_3OaMxZ9nFFrkP4pBSKTGRDYrZ7b6TCaLqeR08yoI4W0uloLZ3d7WvZ2sZFS42utcaq4_luZbRpXG0dSh_NULZ73xl8t16qg6A3mNQyhDNzQy6NrAPenuaIvM2mr5NFvHqZLyePq1glqWjjlIHs4uu0Mkx13yiTVFTlHCjnWiPPC0BqWG5kQjWgypROOaKoaAKcV5qNSHb0Vb4JwaMplW0PCbpwti6Bln1dZV9X2ddVnurqSPhD7rz9kv7nX-b-yFhEPOtTQXlGU_YLD1p5Qw
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_neucom_2015_05_058
crossref_primary_10_1007_s41315_024_00321_6
crossref_primary_10_1016_j_irbm_2024_100866
crossref_primary_10_1007_s10916_019_1166_z
crossref_primary_10_1016_j_bspc_2014_08_004
crossref_primary_10_1109_TBME_2015_2407491
crossref_primary_10_3390_app11041526
crossref_primary_10_1016_j_bspc_2020_101872
crossref_primary_10_1109_JBHI_2017_2766249
crossref_primary_10_1109_TIM_2021_3096789
crossref_primary_10_1016_j_bspc_2016_01_011
crossref_primary_10_1109_TII_2020_2971643
crossref_primary_10_1007_s12369_017_0412_0
crossref_primary_10_1016_j_neucom_2023_126963
crossref_primary_10_1049_iet_csr_2020_0008
crossref_primary_10_1108_IR_04_2014_0327
crossref_primary_10_1109_JSEN_2018_2883660
crossref_primary_10_1109_TIM_2024_3497179
crossref_primary_10_1109_JSEN_2017_2679806
crossref_primary_10_1186_s12938_017_0397_9
crossref_primary_10_3390_s150409022
crossref_primary_10_1080_10803548_2019_1568754
crossref_primary_10_1109_ACCESS_2020_2996667
crossref_primary_10_1142_S0219843614500029
crossref_primary_10_1109_TII_2018_2826064
crossref_primary_10_1109_JSEN_2018_2874724
crossref_primary_10_1016_j_ifacol_2015_12_239
crossref_primary_10_1016_j_biosystemseng_2019_04_021
crossref_primary_10_1007_s40846_016_0112_5
crossref_primary_10_1109_TSMC_2017_2694020
crossref_primary_10_1155_2018_9528313
crossref_primary_10_1016_j_bspc_2024_106219
crossref_primary_10_1016_j_robot_2014_08_012
crossref_primary_10_1109_TCDS_2018_2800167
crossref_primary_10_1007_s00521_019_04147_3
crossref_primary_10_1109_TCDS_2021_3131253
crossref_primary_10_1371_journal_pone_0157239
crossref_primary_10_1142_S0219843619410019
crossref_primary_10_1016_j_sna_2024_115687
crossref_primary_10_1109_TBME_2016_2641584
crossref_primary_10_1109_TCYB_2019_2940276
crossref_primary_10_1080_00140139_2020_1834148
crossref_primary_10_1016_j_ins_2021_11_065
crossref_primary_10_1109_ACCESS_2021_3099973
crossref_primary_10_1109_JSEN_2019_2910184
crossref_primary_10_1109_JSEN_2020_3017737
crossref_primary_10_1140_epjst_e2018_800001_8
crossref_primary_10_1109_TBME_2016_2517742
crossref_primary_10_1109_THMS_2016_2641389
crossref_primary_10_1016_j_bspc_2014_05_001
crossref_primary_10_1155_2014_140863
crossref_primary_10_1088_1741_2560_12_4_046005
crossref_primary_10_1007_s12652_020_01980_6
crossref_primary_10_1088_1741_2552_aa758e
crossref_primary_10_1109_TNSRE_2018_2813421
crossref_primary_10_1109_ACCESS_2019_2957668
crossref_primary_10_1142_S021951942340033X
crossref_primary_10_1109_JSEN_2015_2459067
crossref_primary_10_1007_s13534_023_00281_z
crossref_primary_10_1007_s40815_017_0401_3
crossref_primary_10_1109_TCDS_2016_2620156
crossref_primary_10_3390_act12040147
crossref_primary_10_1016_j_procs_2024_04_145
crossref_primary_10_1109_JBHI_2014_2330356
Cites_doi 10.1109/ROBOT.2003.1241599
10.1016/j.physleta.2011.03.003
10.1145/1961189.1961199
10.1109/TSMCB.2008.927274
10.1016/j.jneumeth.2008.09.023
10.1016/j.patcog.2011.08.028
10.1007/s11517-008-0369-0
10.1016/S0167-2789(97)00118-8
10.1007/s00422-008-0278-1
10.1163/156855309X462628
10.1109/IJCNN.2012.6252750
10.1088/0967-3334/30/12/008
10.1186/1475-925X-6-45
10.1016/j.clinph.2009.09.011
10.1007/BFb0091924
10.1109/TNSRE.2002.806831
10.1103/PhysRevLett.45.712
10.1109/TBME.2008.919734
10.1209/0295-5075/4/9/004
10.1109/CIT.2008.4594760
10.1016/S0167-2789(02)00586-9
10.1109/IEMBS.2006.260332
10.1016/j.medengphy.2009.10.016
10.1007/s10015-008-0607-4
10.1016/j.physleta.2004.10.028
10.4015/S1016237209001222
10.1109/TMECH.2007.897262
10.1016/j.jneumeth.2011.01.005
10.1371/journal.pone.0008876
10.1109/TFUZZ.2011.2150756
10.1109/ICRA.2011.5980079
10.1016/j.asoc.2012.03.035
10.1103/PhysRevE.65.021102
10.1016/S0375-9601(96)00741-4
10.1109/TBME.2009.2031242
10.1016/S1350-4533(99)00073-9
10.1109/TBME.2005.856295
10.1109/TBME.2004.836492
10.1103/PhysRevA.33.1134
10.1016/S0167-2789(98)00240-1
10.1016/j.clinph.2008.04.005
10.1615/CritRevBiomedEng.v38.i4.10
10.1109/TMECH.2007.897253
10.1109/LSP.2011.2157820
10.1103/PhysRevE.66.026702
10.1142/S0219843611002630
10.1016/j.physrep.2006.11.001
10.1109/TBME.2010.2063704
10.1109/TIE.2010.2053334
10.3390/s120201130
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSEN.2013.2259051
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 3311
ExternalDocumentID 10_1109_JSEN_2013_2259051
6504706
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
ZY4
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c265t-631a259d6bf3c201cf2b0c841044dde4891e0f38fa20d1ec7cd64ee5b02144bd3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Tue Jul 01 02:46:02 EDT 2025
Thu Apr 24 22:50:59 EDT 2025
Wed Aug 27 02:36:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-631a259d6bf3c201cf2b0c841044dde4891e0f38fa20d1ec7cd64ee5b02144bd3
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2013_2259051
ieee_primary_6504706
crossref_primary_10_1109_JSEN_2013_2259051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref56
ref12
ref58
ref53
ref52
ref11
ref54
ref17
ref16
ref19
ref18
ahsan (ref15) 2009; 33
akay (ref26) 2001; 2
ref51
ref50
arieta (ref3) 2006
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
chandrasekaran (ref57) 2007
ref7
ref9
ref4
ref6
ref5
ref40
ref35
yuan (ref28) 2008
ref34
ref37
ref36
ref31
ref30
ref33
zhang (ref8) 2011
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref25
ref20
ref22
ref21
bu (ref14) 2005; 88
ref27
phinyomark (ref10) 2009
ref29
steinwart (ref59) 2008
stark (ref55) 1968
ref60
References_xml – volume: 88
  start-page: 390
  year: 2005
  ident: ref14
  article-title: FPGA implementation of a probabilistic neural network
  publication-title: IEICE Trans Inf Syst
– ident: ref9
  doi: 10.1109/ROBOT.2003.1241599
– ident: ref32
  doi: 10.1016/j.physleta.2011.03.003
– ident: ref60
  doi: 10.1145/1961189.1961199
– ident: ref51
  doi: 10.1109/TSMCB.2008.927274
– ident: ref36
  doi: 10.1016/j.jneumeth.2008.09.023
– ident: ref53
  doi: 10.1016/j.patcog.2011.08.028
– ident: ref56
  doi: 10.1007/s11517-008-0369-0
– ident: ref43
  doi: 10.1016/S0167-2789(97)00118-8
– ident: ref1
  doi: 10.1007/s00422-008-0278-1
– start-page: 222
  year: 2011
  ident: ref8
  article-title: SEMG feature extraction methods for pattern recognition of upper limbs
  publication-title: Proc IEEE Int Conf Adv Mechatron Syst
– ident: ref50
  doi: 10.1163/156855309X462628
– ident: ref38
  doi: 10.1109/IJCNN.2012.6252750
– ident: ref7
  doi: 10.1088/0967-3334/30/12/008
– ident: ref19
  doi: 10.1186/1475-925X-6-45
– ident: ref34
  doi: 10.1016/j.clinph.2009.09.011
– start-page: 2106
  year: 2008
  ident: ref28
  article-title: Classification of the surface EMG signal using RQA based representations
  publication-title: Proc IEEE Int Joint Conf Neural Netw
– ident: ref40
  doi: 10.1007/BFb0091924
– ident: ref5
  doi: 10.1109/TNSRE.2002.806831
– ident: ref39
  doi: 10.1103/PhysRevLett.45.712
– ident: ref11
  doi: 10.1109/TBME.2008.919734
– ident: ref44
  doi: 10.1209/0295-5075/4/9/004
– ident: ref20
  doi: 10.1109/CIT.2008.4594760
– ident: ref49
  doi: 10.1016/S0167-2789(02)00586-9
– ident: ref16
  doi: 10.1109/IEMBS.2006.260332
– ident: ref12
  doi: 10.1016/j.medengphy.2009.10.016
– ident: ref21
  doi: 10.1007/s10015-008-0607-4
– ident: ref29
  doi: 10.1016/j.physleta.2004.10.028
– ident: ref58
  doi: 10.4015/S1016237209001222
– ident: ref6
  doi: 10.1109/TMECH.2007.897262
– ident: ref35
  doi: 10.1016/j.jneumeth.2011.01.005
– ident: ref31
  doi: 10.1371/journal.pone.0008876
– start-page: 289
  year: 2009
  ident: ref10
  article-title: EMG feature extraction for tolerance of 50 Hz interference
  publication-title: Proc PSU-UNS Inter Conf Eng Technol
– ident: ref54
  doi: 10.1109/TFUZZ.2011.2150756
– ident: ref4
  doi: 10.1109/ICRA.2011.5980079
– year: 1968
  ident: ref55
  publication-title: Neurological Control Systems Studies in Bioengineering
– ident: ref13
  doi: 10.1016/j.asoc.2012.03.035
– ident: ref48
  doi: 10.1103/PhysRevE.65.021102
– ident: ref46
  doi: 10.1016/S0375-9601(96)00741-4
– ident: ref2
  doi: 10.1109/TBME.2009.2031242
– start-page: 516
  year: 2007
  ident: ref57
  article-title: A nonlinear dynamic modelling for speech recognition using recurrence plot?A dynamic Bayesian approach
  publication-title: Proc IEEE Int Conf Signal Process Commun
– ident: ref27
  doi: 10.1016/S1350-4533(99)00073-9
– ident: ref18
  doi: 10.1109/TBME.2005.856295
– ident: ref17
  doi: 10.1109/TBME.2004.836492
– ident: ref42
  doi: 10.1103/PhysRevA.33.1134
– ident: ref41
  doi: 10.1016/S0167-2789(98)00240-1
– ident: ref30
  doi: 10.1016/j.clinph.2008.04.005
– ident: ref37
  doi: 10.1615/CritRevBiomedEng.v38.i4.10
– volume: 2
  year: 2001
  ident: ref26
  publication-title: Nonlinear Biomedical Signal Processing Dynamic Analysis and Modeling
– year: 2008
  ident: ref59
  publication-title: Support Vector Machines
– ident: ref23
  doi: 10.1109/TMECH.2007.897253
– volume: 33
  start-page: 480
  year: 2009
  ident: ref15
  article-title: EMG signal classification for human computer interaction: A review
  publication-title: Eur J Sci Res
– start-page: 6919
  year: 2006
  ident: ref3
  article-title: Study on the effects of electrical stimulation on the pattern recognition for an EMG prosthetic application
  publication-title: Proc IEEE Int Conf Eng Med Biol Soc
– ident: ref52
  doi: 10.1109/LSP.2011.2157820
– ident: ref45
  doi: 10.1103/PhysRevE.66.026702
– ident: ref22
  doi: 10.1142/S0219843611002630
– ident: ref47
  doi: 10.1016/j.physrep.2006.11.001
– ident: ref33
  doi: 10.1109/TBME.2010.2063704
– ident: ref24
  doi: 10.1109/TIE.2010.2053334
– ident: ref25
  doi: 10.3390/s120201130
SSID ssj0019757
Score 2.3660727
Snippet This paper proposes and evaluates methods of nonlinear feature extraction and nonlinear classification to identify different hand manipulations based on...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 3302
SubjectTerms Delay effects
Electromyography
Feature extraction
FGMMs
Gaussian mixture model
manipulation identification
Neural networks
nonlinear feature
sEMG recognition
Support vector machines
Title Surface EMG Based Hand Manipulation Identification Via Nonlinear Feature Extraction and Classification
URI https://ieeexplore.ieee.org/document/6504706
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zF_Xgx6Y4v8jBk9gtbbN-HFU2x2C7zMluJR8vOJROSgvqX2-SdmWKiLdSkjTkvea95L33-yF05flKuUpIJ9Lm1KGchE4cM1PsLilhPASXmnrnyTQYzel40V800E1dCwMANvkMuubRxvLlShTmqqynvQkaGnztLa1mZa1WHTGIQ4vqqX9g_Uk_XFQRTJfEvfFsMDVJXH5XK6_Bo_pmgzZIVaxNGe6jyXo2ZSrJS7fIeVd8_gBq_O90D9Be5Vzi21IbDlED0hba3YAcbKHtivX8-aON1KzIFBOAB5MHfKfNmcQjlko8YelyTeuFy0peVV3t4aclw9MSXoNl2DiQRaYHeM-zskICmwEs02bd5wjNh4PH-5FT8S44wgv6uRP4LtMLJQOufKHXTSiPExFRfXKjejekUewCUX6kmEekCyIUMqAAfW7x17j0j1EzXaVwgjAwDnor5jTiIdX7B5MxCO4BiTkDz_U7iKwlkYgKlNxwY7wm9nBC4sQILzHCSyrhddB13eWtROT4q3HbyKVuWInk9PfXZ2jHs2wXJoXsHDXzrIAL7XPk_NIq2xdRPdNx
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB6t4LDlUCgLKs_6wKlqFifx5nEEtHS7JXthF-0t8mMsVq0CihIJ-utrO9kIUIV6iyLbsTwTz9gz830AZ0Gota-l8hJjTj0maOylKbfF7opRLmL0ma13zmbRZMGmy9GyB9-6WhhEdMlnOLSPLpavHmRtr8rOjTfBYouvvWnsPhs11VpdzCCNHa6n-YXNR8N42cYwfZqeT2_HM5vGFQ6N-lpEqldW6AWtirMq19uQrefTJJP8GtaVGMo_b6Aa_3fCO_CxdS_JRaMPn6CHxS5svQAd3IV-y3t-_zwAfVuXmksk4-w7uTQGTZEJLxTJeLFaE3uRppZXt5d75G7FyawB2OAlsS5kXZoBnqqyqZEgdgDHtdn12YPF9Xh-NfFa5gVPBtGo8qLQ52ahVCR0KM26SR0IKhNmzm7M7IcsSX2kOkw0D6jyUcZSRQxxJBwCm1DhPmwUDwV-BoJcoNmMBUtEzMwOwlWKUgRIU8Ex8MMDoGtJ5LKFJbfsGL9zdzyhaW6Fl1vh5a3wDuBr1-WxweR4r_HAyqVr2Irk8N-vv0B_Ms9u8psfs59H8CFw3Bc2oewYNqqyxhPjgVTi1CneX4za1r4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+EMG+Based+Hand+Manipulation+Identification+Via+Nonlinear+Feature+Extraction+and+Classification&rft.jtitle=IEEE+sensors+journal&rft.au=Ju%2C+Zhaojie&rft.au=Ouyang%2C+Gaoxiang&rft.au=Wilamowska-Korsak%2C+Marzena&rft.au=Liu%2C+Honghai&rft.date=2013-09-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=13&rft.issue=9&rft.spage=3302&rft.epage=3311&rft_id=info:doi/10.1109%2FJSEN.2013.2259051&rft.externalDocID=6504706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon