Surface EMG Based Hand Manipulation Identification Via Nonlinear Feature Extraction and Classification
This paper proposes and evaluates methods of nonlinear feature extraction and nonlinear classification to identify different hand manipulations based on surface electromyography (sEMG) signals. The nonlinear measures are achieved based on the recurrence plot to represent dynamical characteristics of...
Saved in:
Published in | IEEE sensors journal Vol. 13; no. 9; pp. 3302 - 3311 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.09.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2013.2259051 |
Cover
Abstract | This paper proposes and evaluates methods of nonlinear feature extraction and nonlinear classification to identify different hand manipulations based on surface electromyography (sEMG) signals. The nonlinear measures are achieved based on the recurrence plot to represent dynamical characteristics of sEMG during hand movements. Fuzzy Gaussian Mixture Models (FGMMs) are proposed and employed as a nonlinear classifier to recognise different hand grasps and in-hand manipulations captured from different subjects. Various experiments are conducted to evaluate their performance by comparing 14 individual features, 19 multifeatures and 4 different classifiers. The experimental results demonstrate the proposed nonlinear measures provide important supplemental information and they are essential to the good performance in multifeatures. It is also shown that FGMMs outperform commonly used approaches including Linear Discriminant Analysis, Gaussian Mixture Models and Support Vector Machine in terms of the recognition rate. The best performance with the recognition rate of 96.7% is achieved by using FGMMs with the multifeature combining Willison Amplitude and Determinism. |
---|---|
AbstractList | This paper proposes and evaluates methods of nonlinear feature extraction and nonlinear classification to identify different hand manipulations based on surface electromyography (sEMG) signals. The nonlinear measures are achieved based on the recurrence plot to represent dynamical characteristics of sEMG during hand movements. Fuzzy Gaussian Mixture Models (FGMMs) are proposed and employed as a nonlinear classifier to recognise different hand grasps and in-hand manipulations captured from different subjects. Various experiments are conducted to evaluate their performance by comparing 14 individual features, 19 multifeatures and 4 different classifiers. The experimental results demonstrate the proposed nonlinear measures provide important supplemental information and they are essential to the good performance in multifeatures. It is also shown that FGMMs outperform commonly used approaches including Linear Discriminant Analysis, Gaussian Mixture Models and Support Vector Machine in terms of the recognition rate. The best performance with the recognition rate of 96.7% is achieved by using FGMMs with the multifeature combining Willison Amplitude and Determinism. |
Author | Liu, Honghai Ju, Zhaojie Wilamowska-Korsak, Marzena Ouyang, Gaoxiang |
Author_xml | – sequence: 1 givenname: Zhaojie surname: Ju fullname: Ju, Zhaojie email: zhaojie.ju@port.ac.uk organization: Intelligent Systems & Biomedical Robotics Group, School of Creative Technologies, University of Portsmouth, Portsmouth, U.K – sequence: 2 givenname: Gaoxiang surname: Ouyang fullname: Ouyang, Gaoxiang email: gx.ouyang@gmail.com organization: Intelligent Systems & Biomedical Robotics Group, School of Creative Technologies, University of Portsmouth, Portsmouth, U.K – sequence: 3 givenname: Marzena surname: Wilamowska-Korsak fullname: Wilamowska-Korsak, Marzena email: wilam@uwm.edu.pl organization: Faculty of Engineering, Warmia and Mazury University at Olsztyn, Olsztyn, Poland – sequence: 4 givenname: Honghai surname: Liu fullname: Liu, Honghai email: honghai.liu@port.ac.uk organization: Intelligent Systems & Biomedical Robotics Group, School of Creative Technologies, University of Portsmouth, Portsmouth, U.K |
BookMark | eNp9kM1OwzAQhC1UJErhARCXvECKN7bzc4Sqf6gthwLiFjn2WjIKTmWnErw9SVv1wIHT7krzjWbnmgxc45CQO6BjAFo8PG-nm3FCgY2TRBRUwAUZghB5DBnPB_3OaMxZ9nFFrkP4pBSKTGRDYrZ7b6TCaLqeR08yoI4W0uloLZ3d7WvZ2sZFS42utcaq4_luZbRpXG0dSh_NULZ73xl8t16qg6A3mNQyhDNzQy6NrAPenuaIvM2mr5NFvHqZLyePq1glqWjjlIHs4uu0Mkx13yiTVFTlHCjnWiPPC0BqWG5kQjWgypROOaKoaAKcV5qNSHb0Vb4JwaMplW0PCbpwti6Bln1dZV9X2ddVnurqSPhD7rz9kv7nX-b-yFhEPOtTQXlGU_YLD1p5Qw |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1016_j_neucom_2015_05_058 crossref_primary_10_1007_s41315_024_00321_6 crossref_primary_10_1016_j_irbm_2024_100866 crossref_primary_10_1007_s10916_019_1166_z crossref_primary_10_1016_j_bspc_2014_08_004 crossref_primary_10_1109_TBME_2015_2407491 crossref_primary_10_3390_app11041526 crossref_primary_10_1016_j_bspc_2020_101872 crossref_primary_10_1109_JBHI_2017_2766249 crossref_primary_10_1109_TIM_2021_3096789 crossref_primary_10_1016_j_bspc_2016_01_011 crossref_primary_10_1109_TII_2020_2971643 crossref_primary_10_1007_s12369_017_0412_0 crossref_primary_10_1016_j_neucom_2023_126963 crossref_primary_10_1049_iet_csr_2020_0008 crossref_primary_10_1108_IR_04_2014_0327 crossref_primary_10_1109_JSEN_2018_2883660 crossref_primary_10_1109_TIM_2024_3497179 crossref_primary_10_1109_JSEN_2017_2679806 crossref_primary_10_1186_s12938_017_0397_9 crossref_primary_10_3390_s150409022 crossref_primary_10_1080_10803548_2019_1568754 crossref_primary_10_1109_ACCESS_2020_2996667 crossref_primary_10_1142_S0219843614500029 crossref_primary_10_1109_TII_2018_2826064 crossref_primary_10_1109_JSEN_2018_2874724 crossref_primary_10_1016_j_ifacol_2015_12_239 crossref_primary_10_1016_j_biosystemseng_2019_04_021 crossref_primary_10_1007_s40846_016_0112_5 crossref_primary_10_1109_TSMC_2017_2694020 crossref_primary_10_1155_2018_9528313 crossref_primary_10_1016_j_bspc_2024_106219 crossref_primary_10_1016_j_robot_2014_08_012 crossref_primary_10_1109_TCDS_2018_2800167 crossref_primary_10_1007_s00521_019_04147_3 crossref_primary_10_1109_TCDS_2021_3131253 crossref_primary_10_1371_journal_pone_0157239 crossref_primary_10_1142_S0219843619410019 crossref_primary_10_1016_j_sna_2024_115687 crossref_primary_10_1109_TBME_2016_2641584 crossref_primary_10_1109_TCYB_2019_2940276 crossref_primary_10_1080_00140139_2020_1834148 crossref_primary_10_1016_j_ins_2021_11_065 crossref_primary_10_1109_ACCESS_2021_3099973 crossref_primary_10_1109_JSEN_2019_2910184 crossref_primary_10_1109_JSEN_2020_3017737 crossref_primary_10_1140_epjst_e2018_800001_8 crossref_primary_10_1109_TBME_2016_2517742 crossref_primary_10_1109_THMS_2016_2641389 crossref_primary_10_1016_j_bspc_2014_05_001 crossref_primary_10_1155_2014_140863 crossref_primary_10_1088_1741_2560_12_4_046005 crossref_primary_10_1007_s12652_020_01980_6 crossref_primary_10_1088_1741_2552_aa758e crossref_primary_10_1109_TNSRE_2018_2813421 crossref_primary_10_1109_ACCESS_2019_2957668 crossref_primary_10_1142_S021951942340033X crossref_primary_10_1109_JSEN_2015_2459067 crossref_primary_10_1007_s13534_023_00281_z crossref_primary_10_1007_s40815_017_0401_3 crossref_primary_10_1109_TCDS_2016_2620156 crossref_primary_10_3390_act12040147 crossref_primary_10_1016_j_procs_2024_04_145 crossref_primary_10_1109_JBHI_2014_2330356 |
Cites_doi | 10.1109/ROBOT.2003.1241599 10.1016/j.physleta.2011.03.003 10.1145/1961189.1961199 10.1109/TSMCB.2008.927274 10.1016/j.jneumeth.2008.09.023 10.1016/j.patcog.2011.08.028 10.1007/s11517-008-0369-0 10.1016/S0167-2789(97)00118-8 10.1007/s00422-008-0278-1 10.1163/156855309X462628 10.1109/IJCNN.2012.6252750 10.1088/0967-3334/30/12/008 10.1186/1475-925X-6-45 10.1016/j.clinph.2009.09.011 10.1007/BFb0091924 10.1109/TNSRE.2002.806831 10.1103/PhysRevLett.45.712 10.1109/TBME.2008.919734 10.1209/0295-5075/4/9/004 10.1109/CIT.2008.4594760 10.1016/S0167-2789(02)00586-9 10.1109/IEMBS.2006.260332 10.1016/j.medengphy.2009.10.016 10.1007/s10015-008-0607-4 10.1016/j.physleta.2004.10.028 10.4015/S1016237209001222 10.1109/TMECH.2007.897262 10.1016/j.jneumeth.2011.01.005 10.1371/journal.pone.0008876 10.1109/TFUZZ.2011.2150756 10.1109/ICRA.2011.5980079 10.1016/j.asoc.2012.03.035 10.1103/PhysRevE.65.021102 10.1016/S0375-9601(96)00741-4 10.1109/TBME.2009.2031242 10.1016/S1350-4533(99)00073-9 10.1109/TBME.2005.856295 10.1109/TBME.2004.836492 10.1103/PhysRevA.33.1134 10.1016/S0167-2789(98)00240-1 10.1016/j.clinph.2008.04.005 10.1615/CritRevBiomedEng.v38.i4.10 10.1109/TMECH.2007.897253 10.1109/LSP.2011.2157820 10.1103/PhysRevE.66.026702 10.1142/S0219843611002630 10.1016/j.physrep.2006.11.001 10.1109/TBME.2010.2063704 10.1109/TIE.2010.2053334 10.3390/s120201130 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/JSEN.2013.2259051 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 3311 |
ExternalDocumentID | 10_1109_JSEN_2013_2259051 6504706 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ ZY4 AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c265t-631a259d6bf3c201cf2b0c841044dde4891e0f38fa20d1ec7cd64ee5b02144bd3 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Tue Jul 01 02:46:02 EDT 2025 Thu Apr 24 22:50:59 EDT 2025 Wed Aug 27 02:36:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-631a259d6bf3c201cf2b0c841044dde4891e0f38fa20d1ec7cd64ee5b02144bd3 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2013_2259051 ieee_primary_6504706 crossref_primary_10_1109_JSEN_2013_2259051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref56 ref12 ref58 ref53 ref52 ref11 ref54 ref17 ref16 ref19 ref18 ahsan (ref15) 2009; 33 akay (ref26) 2001; 2 ref51 ref50 arieta (ref3) 2006 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 chandrasekaran (ref57) 2007 ref7 ref9 ref4 ref6 ref5 ref40 ref35 yuan (ref28) 2008 ref34 ref37 ref36 ref31 ref30 ref33 zhang (ref8) 2011 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref25 ref20 ref22 ref21 bu (ref14) 2005; 88 ref27 phinyomark (ref10) 2009 ref29 steinwart (ref59) 2008 stark (ref55) 1968 ref60 |
References_xml | – volume: 88 start-page: 390 year: 2005 ident: ref14 article-title: FPGA implementation of a probabilistic neural network publication-title: IEICE Trans Inf Syst – ident: ref9 doi: 10.1109/ROBOT.2003.1241599 – ident: ref32 doi: 10.1016/j.physleta.2011.03.003 – ident: ref60 doi: 10.1145/1961189.1961199 – ident: ref51 doi: 10.1109/TSMCB.2008.927274 – ident: ref36 doi: 10.1016/j.jneumeth.2008.09.023 – ident: ref53 doi: 10.1016/j.patcog.2011.08.028 – ident: ref56 doi: 10.1007/s11517-008-0369-0 – ident: ref43 doi: 10.1016/S0167-2789(97)00118-8 – ident: ref1 doi: 10.1007/s00422-008-0278-1 – start-page: 222 year: 2011 ident: ref8 article-title: SEMG feature extraction methods for pattern recognition of upper limbs publication-title: Proc IEEE Int Conf Adv Mechatron Syst – ident: ref50 doi: 10.1163/156855309X462628 – ident: ref38 doi: 10.1109/IJCNN.2012.6252750 – ident: ref7 doi: 10.1088/0967-3334/30/12/008 – ident: ref19 doi: 10.1186/1475-925X-6-45 – ident: ref34 doi: 10.1016/j.clinph.2009.09.011 – start-page: 2106 year: 2008 ident: ref28 article-title: Classification of the surface EMG signal using RQA based representations publication-title: Proc IEEE Int Joint Conf Neural Netw – ident: ref40 doi: 10.1007/BFb0091924 – ident: ref5 doi: 10.1109/TNSRE.2002.806831 – ident: ref39 doi: 10.1103/PhysRevLett.45.712 – ident: ref11 doi: 10.1109/TBME.2008.919734 – ident: ref44 doi: 10.1209/0295-5075/4/9/004 – ident: ref20 doi: 10.1109/CIT.2008.4594760 – ident: ref49 doi: 10.1016/S0167-2789(02)00586-9 – ident: ref16 doi: 10.1109/IEMBS.2006.260332 – ident: ref12 doi: 10.1016/j.medengphy.2009.10.016 – ident: ref21 doi: 10.1007/s10015-008-0607-4 – ident: ref29 doi: 10.1016/j.physleta.2004.10.028 – ident: ref58 doi: 10.4015/S1016237209001222 – ident: ref6 doi: 10.1109/TMECH.2007.897262 – ident: ref35 doi: 10.1016/j.jneumeth.2011.01.005 – ident: ref31 doi: 10.1371/journal.pone.0008876 – start-page: 289 year: 2009 ident: ref10 article-title: EMG feature extraction for tolerance of 50 Hz interference publication-title: Proc PSU-UNS Inter Conf Eng Technol – ident: ref54 doi: 10.1109/TFUZZ.2011.2150756 – ident: ref4 doi: 10.1109/ICRA.2011.5980079 – year: 1968 ident: ref55 publication-title: Neurological Control Systems Studies in Bioengineering – ident: ref13 doi: 10.1016/j.asoc.2012.03.035 – ident: ref48 doi: 10.1103/PhysRevE.65.021102 – ident: ref46 doi: 10.1016/S0375-9601(96)00741-4 – ident: ref2 doi: 10.1109/TBME.2009.2031242 – start-page: 516 year: 2007 ident: ref57 article-title: A nonlinear dynamic modelling for speech recognition using recurrence plot?A dynamic Bayesian approach publication-title: Proc IEEE Int Conf Signal Process Commun – ident: ref27 doi: 10.1016/S1350-4533(99)00073-9 – ident: ref18 doi: 10.1109/TBME.2005.856295 – ident: ref17 doi: 10.1109/TBME.2004.836492 – ident: ref42 doi: 10.1103/PhysRevA.33.1134 – ident: ref41 doi: 10.1016/S0167-2789(98)00240-1 – ident: ref30 doi: 10.1016/j.clinph.2008.04.005 – ident: ref37 doi: 10.1615/CritRevBiomedEng.v38.i4.10 – volume: 2 year: 2001 ident: ref26 publication-title: Nonlinear Biomedical Signal Processing Dynamic Analysis and Modeling – year: 2008 ident: ref59 publication-title: Support Vector Machines – ident: ref23 doi: 10.1109/TMECH.2007.897253 – volume: 33 start-page: 480 year: 2009 ident: ref15 article-title: EMG signal classification for human computer interaction: A review publication-title: Eur J Sci Res – start-page: 6919 year: 2006 ident: ref3 article-title: Study on the effects of electrical stimulation on the pattern recognition for an EMG prosthetic application publication-title: Proc IEEE Int Conf Eng Med Biol Soc – ident: ref52 doi: 10.1109/LSP.2011.2157820 – ident: ref45 doi: 10.1103/PhysRevE.66.026702 – ident: ref22 doi: 10.1142/S0219843611002630 – ident: ref47 doi: 10.1016/j.physrep.2006.11.001 – ident: ref33 doi: 10.1109/TBME.2010.2063704 – ident: ref24 doi: 10.1109/TIE.2010.2053334 – ident: ref25 doi: 10.3390/s120201130 |
SSID | ssj0019757 |
Score | 2.3660727 |
Snippet | This paper proposes and evaluates methods of nonlinear feature extraction and nonlinear classification to identify different hand manipulations based on... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3302 |
SubjectTerms | Delay effects Electromyography Feature extraction FGMMs Gaussian mixture model manipulation identification Neural networks nonlinear feature sEMG recognition Support vector machines |
Title | Surface EMG Based Hand Manipulation Identification Via Nonlinear Feature Extraction and Classification |
URI | https://ieeexplore.ieee.org/document/6504706 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zF_Xgx6Y4v8jBk9gtbbN-HFU2x2C7zMluJR8vOJROSgvqX2-SdmWKiLdSkjTkvea95L33-yF05flKuUpIJ9Lm1KGchE4cM1PsLilhPASXmnrnyTQYzel40V800E1dCwMANvkMuubRxvLlShTmqqynvQkaGnztLa1mZa1WHTGIQ4vqqX9g_Uk_XFQRTJfEvfFsMDVJXH5XK6_Bo_pmgzZIVaxNGe6jyXo2ZSrJS7fIeVd8_gBq_O90D9Be5Vzi21IbDlED0hba3YAcbKHtivX8-aON1KzIFBOAB5MHfKfNmcQjlko8YelyTeuFy0peVV3t4aclw9MSXoNl2DiQRaYHeM-zskICmwEs02bd5wjNh4PH-5FT8S44wgv6uRP4LtMLJQOufKHXTSiPExFRfXKjejekUewCUX6kmEekCyIUMqAAfW7x17j0j1EzXaVwgjAwDnor5jTiIdX7B5MxCO4BiTkDz_U7iKwlkYgKlNxwY7wm9nBC4sQILzHCSyrhddB13eWtROT4q3HbyKVuWInk9PfXZ2jHs2wXJoXsHDXzrIAL7XPk_NIq2xdRPdNx |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB6t4LDlUCgLKs_6wKlqFifx5nEEtHS7JXthF-0t8mMsVq0CihIJ-utrO9kIUIV6iyLbsTwTz9gz830AZ0Gota-l8hJjTj0maOylKbfF7opRLmL0ma13zmbRZMGmy9GyB9-6WhhEdMlnOLSPLpavHmRtr8rOjTfBYouvvWnsPhs11VpdzCCNHa6n-YXNR8N42cYwfZqeT2_HM5vGFQ6N-lpEqldW6AWtirMq19uQrefTJJP8GtaVGMo_b6Aa_3fCO_CxdS_JRaMPn6CHxS5svQAd3IV-y3t-_zwAfVuXmksk4-w7uTQGTZEJLxTJeLFaE3uRppZXt5d75G7FyawB2OAlsS5kXZoBnqqyqZEgdgDHtdn12YPF9Xh-NfFa5gVPBtGo8qLQ52ahVCR0KM26SR0IKhNmzm7M7IcsSX2kOkw0D6jyUcZSRQxxJBwCm1DhPmwUDwV-BoJcoNmMBUtEzMwOwlWKUgRIU8Ex8MMDoGtJ5LKFJbfsGL9zdzyhaW6Fl1vh5a3wDuBr1-WxweR4r_HAyqVr2Irk8N-vv0B_Ms9u8psfs59H8CFw3Bc2oewYNqqyxhPjgVTi1CneX4za1r4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+EMG+Based+Hand+Manipulation+Identification+Via+Nonlinear+Feature+Extraction+and+Classification&rft.jtitle=IEEE+sensors+journal&rft.au=Ju%2C+Zhaojie&rft.au=Ouyang%2C+Gaoxiang&rft.au=Wilamowska-Korsak%2C+Marzena&rft.au=Liu%2C+Honghai&rft.date=2013-09-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=13&rft.issue=9&rft.spage=3302&rft.epage=3311&rft_id=info:doi/10.1109%2FJSEN.2013.2259051&rft.externalDocID=6504706 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |