Reliable calibration and validation of phenomenological and hybrid models of high-cell-density fed-batch cultures subject to metabolic overflow

Fed-batch cultures are the preferred operation mode for industrial bioprocesses requiring high cellular densities. Avoids accumulation of major fermentation by-products due to metabolic overflow, increasing process productivity. Reproducible operation at high cell densities is challenging (>100 g...

Full description

Saved in:
Bibliographic Details
Published inComputers & chemical engineering Vol. 186; p. 108706
Main Authors Ibáñez, Francisco, Puentes-Cantor, Hernán, Bárzaga-Martell, Lisbel, Saa, Pedro A., Agosin, Eduardo, Pérez-Correa, José Ricardo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fed-batch cultures are the preferred operation mode for industrial bioprocesses requiring high cellular densities. Avoids accumulation of major fermentation by-products due to metabolic overflow, increasing process productivity. Reproducible operation at high cell densities is challenging (>100 gDCW/L), which has precluded rigorous model evaluation. Here, we evaluated three phenomenological models and proposed a novel hybrid model including a neural network. For this task, we generated highly reproducible fed-batch datasets of a recombinant yeast growing under oxidative, oxygen-limited, and respiro-fermentative metabolic regimes. The models were reliably calibrated using a systematic workflow based on pre-and post-regression diagnostics. Compared to the best-performing phenomenological model, the hybrid model substantially improved performance by 3.6- and 1.7-fold in the training and test data, respectively. This study illustrates how hybrid modeling approaches can advance our description of complex bioprocesses that could support more efficient operation strategies. •High-cell density fed-batch cultures were performed under different regimes.•Phenomenological models were calibrated and evaluated in different conditions.•Best performing model was expanded with a neural network model.•Hybrid model displayed superior accuracy for fitting training data and predicting test data.
AbstractList Fed-batch cultures are the preferred operation mode for industrial bioprocesses requiring high cellular densities. Avoids accumulation of major fermentation by-products due to metabolic overflow, increasing process productivity. Reproducible operation at high cell densities is challenging (>100 gDCW/L), which has precluded rigorous model evaluation. Here, we evaluated three phenomenological models and proposed a novel hybrid model including a neural network. For this task, we generated highly reproducible fed-batch datasets of a recombinant yeast growing under oxidative, oxygen-limited, and respiro-fermentative metabolic regimes. The models were reliably calibrated using a systematic workflow based on pre-and post-regression diagnostics. Compared to the best-performing phenomenological model, the hybrid model substantially improved performance by 3.6- and 1.7-fold in the training and test data, respectively. This study illustrates how hybrid modeling approaches can advance our description of complex bioprocesses that could support more efficient operation strategies. •High-cell density fed-batch cultures were performed under different regimes.•Phenomenological models were calibrated and evaluated in different conditions.•Best performing model was expanded with a neural network model.•Hybrid model displayed superior accuracy for fitting training data and predicting test data.
ArticleNumber 108706
Author Saa, Pedro A.
Ibáñez, Francisco
Pérez-Correa, José Ricardo
Agosin, Eduardo
Puentes-Cantor, Hernán
Bárzaga-Martell, Lisbel
Author_xml – sequence: 1
  givenname: Francisco
  orcidid: 0000-0002-5626-7615
  surname: Ibáñez
  fullname: Ibáñez, Francisco
  organization: Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306 Correo 22, Santiago, Chile
– sequence: 2
  givenname: Hernán
  orcidid: 0009-0009-5863-0594
  surname: Puentes-Cantor
  fullname: Puentes-Cantor, Hernán
  organization: Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá, D.C., Colombia
– sequence: 3
  givenname: Lisbel
  orcidid: 0000-0001-5354-945X
  surname: Bárzaga-Martell
  fullname: Bárzaga-Martell, Lisbel
  organization: Departamento de Electricidad, Universidad Tecnológica Metropolitana, José Pedro Alessandri 1242, Ñuñoa, Santiago, Chile
– sequence: 4
  givenname: Pedro A.
  orcidid: 0000-0002-1659-9041
  surname: Saa
  fullname: Saa, Pedro A.
  organization: Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306 Correo 22, Santiago, Chile
– sequence: 5
  givenname: Eduardo
  surname: Agosin
  fullname: Agosin, Eduardo
  organization: Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306 Correo 22, Santiago, Chile
– sequence: 6
  givenname: José Ricardo
  orcidid: 0000-0002-1278-7782
  surname: Pérez-Correa
  fullname: Pérez-Correa, José Ricardo
  email: jperezc@uc.cl
  organization: Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306 Correo 22, Santiago, Chile
BookMark eNqNkN2K2zAQhUXJQpPsvoP2AZxKtiXbl0voHwQKy-61kEajWEG2guSk5Cn6ynXqXvSyV8MZzpnhfBuyGuOIhDxztuOMy0-nHcThDD0OOB53JSvred82TH4ga942VVFXjViRNWNdW_BK1B_JJucTY7Ozbdfk1ysGr01ACjp4k_Tk40j1aOl11naR0dFzj2Ocf8QQj362_rH0N5O8pUO0GPLd1ftjXwCGUFgcs59u1KEtjJ6gp3AJ0yVhpvliTggTnSIdcNImBg80XjG5EH8-kgenQ8anv3NL3r98ftt_Kw4_vn7fvxwKKKWYCiGla2qnmehKbByC1nWneculxdKAEFAZp41tyhpa2VjLZMdBOiMq02Alqi3plruQYs4JnTonP-h0U5ypO1l1Uv-QVXeyaiE7Z_dLdm6NV49JZfA4Alqf5mLKRv8fV34D-CCOoQ
Cites_doi 10.1016/j.compchemeng.2023.108164
10.1002/bit.27568
10.1007/s00449-010-0438-2
10.1007/s00449-019-02181-y
10.1007/s00449-004-0385-x
10.1002/bit.28503
10.1016/j.bej.2022.108761
10.1002/bit.28262
10.3390/ai4010014
10.1099/00221287-44-2-149
10.3389/fbioe.2019.00171
10.3390/life11060557
10.1021/ie501298b
10.1016/0098-1354(96)00124-X
10.1016/S0168-1656(00)00211-X
10.1016/j.compchemeng.2022.107952
10.1016/j.biortech.2023.128826
10.3390/pr9091560
10.1042/bj0230536
10.1016/j.bej.2006.01.001
10.1016/j.tibtech.2010.03.006
10.1016/j.jprocont.2011.05.002
10.1007/s002530051412
10.1016/j.bej.2022.108499
10.1002/bit.28405
10.1016/j.watres.2021.117418
10.1016/j.bej.2017.05.013
10.1016/j.jbiotec.2015.02.030
10.1016/j.compchemeng.2021.107545
10.1016/j.biortech.2022.128451
10.1016/j.ymben.2014.07.004
10.1007/s00449-020-02478-3
10.3390/fermentation9100922
10.3390/fermentation9070643
10.1109/72.80202
10.1016/j.compchemeng.2021.107365
10.1016/j.compchemeng.2006.05.018
10.1023/A:1000198404007
10.1109/TLA.2014.6827863
10.1016/j.tibtech.2022.12.014
10.3390/pr8101321
10.1128/AEM.02305-12
10.1002/(SICI)1097-0290(19981120)60:4<474::AID-BIT9>3.0.CO;2-J
10.1016/j.biotechadv.2020.107660
10.1038/s41579-018-0002-7
10.1007/s00253-022-11826-0
10.1111/j.1574-6976.1994.tb00070.x
10.1016/j.biortech.2022.128523
10.1016/j.compchemeng.2011.12.010
10.1021/bp9801087
10.1016/j.bej.2018.03.012
10.1002/bit.27131
10.1038/s41540-023-00284-7
10.1007/s00449-019-02102-z
10.1093/femsyr/foac050
10.1016/j.jfoodeng.2010.01.033
10.1186/s12874-016-0267-3
10.1016/0168-1656(91)90032-Q
10.1007/s00449-012-0703-7
10.1016/j.biortech.2013.11.002
10.1002/jctb.6500
10.1002/bit.27454
10.1186/1475-2859-13-63
10.1016/0168-1656(94)90189-9
10.1002/bit.260280620
10.1002/bit.27950
10.1115/1.4031851
10.1016/j.ifacol.2015.09.112
10.1016/j.apenergy.2022.120289
10.1002/bit.27120
10.1016/j.biotechadv.2017.09.005
10.1016/j.bej.2023.108855
10.1016/S0098-1354(00)00419-1
10.1016/0167-7799(96)80930-9
10.1016/j.jprocont.2021.06.006
10.1002/aic.690381003
10.3390/s21041268
10.1002/bit.27190
10.1007/s00449-014-1264-8
10.1016/j.jprocont.2020.11.011
10.1007/s004499900110
10.1016/j.csbj.2023.11.033
10.1016/j.cherd.2022.01.041
10.1016/j.biotechadv.2022.108069
10.1002/bit.1068
10.1007/s10898-006-9075-3
10.1002/bit.27890
10.1016/j.cej.2022.135643
10.1016/j.biortech.2022.128518
10.1016/j.synbio.2022.11.002
10.1016/S0959-1524(00)00065-2
10.1016/j.compind.2010.10.001
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compchemeng.2024.108706
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
ExternalDocumentID 10_1016_j_compchemeng_2024_108706
S0098135424001248
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c265t-566f74fa0592e7fecaa49a1816de2bc55c3bfabd724c867dd0691c6fb53b7e353
IEDL.DBID .~1
ISSN 0098-1354
IngestDate Tue Jul 01 03:20:56 EDT 2025
Sat Aug 03 15:33:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Overflow metabolism
High-density cultures
Hybrid models
Physics-informed neural networks
Dynamic optimization
Fed-batch fermentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-566f74fa0592e7fecaa49a1816de2bc55c3bfabd724c867dd0691c6fb53b7e353
ORCID 0000-0001-5354-945X
0009-0009-5863-0594
0000-0002-1278-7782
0000-0002-1659-9041
0000-0002-5626-7615
ParticipantIDs crossref_primary_10_1016_j_compchemeng_2024_108706
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2024_108706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Computers & chemical engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shah, Sheriff, Bangi, Kravaris, Kwon, Botre, Hirota (b80) 2022; 441
Pham, Larsson, Enfors (b55) 1998; 60
Retamal, Dewasme, Hantson, Wouwer (b67) 2018; 135
Jin, Chuai, Li, Hou, Wu, Chen, Wang, Jia, Han, Hu (b28) 2021; 118
Sánchez, Pérez-Correa, Agosin (b74) 2014; 25
Rathore, Mishra, Nikita, Priyanka (b66) 2021; 11
Malairuang, Krajang, Sukna, Rattanapradit, Chamsart (b41) 2020; 8
Zorzetto, Filho, Wolf-Maciel (b97) 2000; 24
van Smeden, de Groot, Moons, Collins, Altman, Eijkemans, Reitsma (b88) 2016; 16
Appl, Moser, Baganz, Hass (b4) 2020
Grigs, Bolmanis, Galvanauskas (b23) 2021; 21
Cheng, Yao, Yuan (b11) 2021; 202
Lim, Son, Ki, Suh, Chung (b36) 2023; 370
Saa, Nielsen (b73) 2017; 35
Kim, Choi, Cho, Ahn, Lee (b31) 2023; 41
NIST (b49) 2020
Laursen, Webb, Ramirez (b34) 2007; 31
Sánchez, Soto, Jorquera, Gelmi, Pérez-Correa (b75) 2014; 53
Lee (b35) 1996; 14
Mahanty (b40) 2023; 120
Natarajan, Moghadam, Jagannathan (b48) 2021; 98
Pinto, de Azevedo, Oliveira, von Stosch (b58) 2019; 42
Riesenberg, Guthke (b68) 1999; 51
Zorzetto, Wilson (b98) 1996; 20
García, Alcaraz, Acosta-Cárdenas, Ochoa (b21) 2019
Bangi, Kao, Kwon (b5) 2022; 179
Sansana, Joswiak, Castillo, Wang, Rendall, Chiang, Reis (b76) 2021; 151
Fisher, Watson, Porcu, Bacon, Rigley, Gomes (b19) 2022; 185
Galvanauskas, Simutis, Lubbert (b20) 2004; 26
Möller, Pörtner (b42) 2017
Santos, Dewasme, Coutinho, Wouwer (b77) 2012; 39
Chang, Wu, Jiang, Tian, Wu, Chang, Wang (b9) 2014; 152
Zieringer, Wild, Takors (b96) 2021; 118
López, Cataldo, Peña, Saa, Saitua, Ibaceta, Agosin (b38) 2019; 7
Cárcamo, Saa, Torres, Torres, Mandujano, Correa, Agosin (b8) 2014; 12
James, Legge, Budman (b27) 2002; 12
Santos, Silva, Junior, de Oliveira, Anschau (b78) 2022; 106
Khanal, Tarafdar, You (b30) 2023; 375
Mondal, Galodha, Verma, Singh, Show, Awasthi, Lall, Anees, Pollmann, Jain (b43) 2023; 370
Pinto, Mestre, Ramos, Costa, Striedner, Oliveira (b59) 2022; 165
Pinto, Ramos, Costa, Oliveira (b61) 2023; 9
Sonnleitner, Käppeli (b84) 1986; 28
Riesenberg, Schulz, Knorre, Pohl, Korz, Sanders, Roß, Deckwer (b69) 1991; 20
Crabtree (b12) 1929; 23
Veloso, Rodrigues, Esperança, Batista, Cruz, Badino (b90) 2023; 193
Rackauckas, Innes, Ma, Bettencourt, White, Dixit (b64) 2019
Pearce (b54) 2015; 137
Jin, Zhang, Zhou, Li, Hou, Xu, Chuai, Zhang, Han, Hu (b29) 2020; 117
Narendra, Parthasarathy (b47) 1990; 1
Xu, Jahic, Enfors (b92) 1999; 15
Cheng, Bi, Xu, Liu, Li, Du, Lv, Liu (b10) 2023; 369
Gustavsson, Lukasser, Mandenius (b24) 2015; 200
Zhang, Liu, Li, Meng, Zhao (b94) 2023; 8
Pinsach, de Mas, López-Santín (b57) 2006; 29
Dong, Zhang (b17) 2014; 13
Slater, Orellana, Melo, Agosin, Mendoza, Aceituno, Torres (b83) 2012; 78
Andersson, Strandberg, iggstram, Enfors (b3) 1994; 14
Kovárová-Kovar, Gehlen, Kunze, Keller, von Däniken, Kolb, van Loon (b32) 2000; 79
Dewasme, Srinivasan, Perrier, Wouwer (b16) 2011; 21
Gernaey, Lantz, Tufvesson, Woodley, Sin (b22) 2010; 28
Rogers, Song, Ramon, Jing, Zhang (b71) 2023; 190
Ochoa, García, Alcaraz (b50) 2020; 95
Rackauckas, Ma, Martensen, Warner, Zubov, Supekar, Skinner, Ramadhan, Edelman (b65) 2020
Dewasme, Mäkinen, Chotteau (b15) 2023; 171
Saa, Moenne, Pérez-Correa, Agosin (b72) 2012; 35
Zhang, Rio-Chanona, Petsagkourakis, Wagner (b95) 2019; 116
Bárzaga-Martell, Duarte-Mermoud, nez Espinel, Gamboa-Labbé, Saa, Pérez-Correa (b6) 2021; 104
Pimentel, Benavides, Dewasme, Coutinho, Wouwer (b56) 2015; 28
Moser, Kuchemüller, Deppe, Rodríguez, Frahm, Pörtner, Hass, Möller (b44) 2021; 44
Shapiro, Chavez, Collins (b81) 2018; 16
Deken (b14) 1966; 44
Urniezius, Masaitis, Levisauskas, Survyla, Babilius, Godoladze (b87) 2023; 21
Brunner, Siegl, Geier, Becker (b7) 2020; 117
Egea, Rodríguez-Fernández, Banga, Martí (b18) 2007; 37
Landi, Paciello, Alteriis, Brambilla, Parascandola (b33) 2015; 38
Nadal-Rey, McClure, Kavanagh, Cornelissen, Fletcher, Gernaey (b46) 2021; 46
Paalme, Elken, Kahru, Vanatalu, Vilu (b51) 1997; 71
Precup, Hellendoorn (b62) 2011; 62
Rio-Chanona, Ahmed, Wagner, Lu, Zhang, Jing (b70) 2019; 116
Shen, He, Weng, Liu, Wu (b82) 2022; 22
Anane, C, Neubauer, Bournazou (b2) 2017; 125
Pinto, Ramos, Costa, Oliveira (b60) 2023; 4
Zenteno, Pérez-Correa, Gelmi, Agosin (b93) 2010; 99
Vega-Ramon, Zhu, Savage, Petsagkourakis, Jing, Zhang (b89) 2021; 118
Dabros, Schuler, Marison (b13) 2010; 33
Hashizume, Ozawa, Ying (b25) 2023; 9
Tu, Moura, Wang, Fang (b86) 2023; 329
Lin, Mathiszik, Xu, Enfors, Neubauer (b37) 2001; 73
Ibáñez, Saa, Bárzaga, Duarte-Mermoud, Fernández-Fernández, Agosin, Pérez-Correa (b26) 2021; 155
Patra, B.R., Kundu, Das, Ghosh (b53) 2023; 62
Psichogios, Ungar (b63) 1992; 38
Agharafeie, Ramos, Mendes, Oliveira (b1) 2023; 9
Luna, Ochsner, Amstutz, von Blarer, Sokolov, Arosio, Zinn (b39) 2021; 9
Villadsen, Nielsen, Lidén (b91) 2011
Mowbray, Wu, Rogers, Rio-Chanona, Zhang (b45) 2023; 120
Park, Kim, Park, Kim, Lee (b52) 2023; 120
Schubert, Simutis, Dors, Havlik, Lübbert (b79) 1994; 35
Thibault, Acuña, Pérez-Correa, Jorquera, Molin, Agosin (b85) 2000; 22
Pinto (10.1016/j.compchemeng.2024.108706_b61) 2023; 9
Slater (10.1016/j.compchemeng.2024.108706_b83) 2012; 78
López (10.1016/j.compchemeng.2024.108706_b38) 2019; 7
Dong (10.1016/j.compchemeng.2024.108706_b17) 2014; 13
Dewasme (10.1016/j.compchemeng.2024.108706_b16) 2011; 21
Gustavsson (10.1016/j.compchemeng.2024.108706_b24) 2015; 200
Gernaey (10.1016/j.compchemeng.2024.108706_b22) 2010; 28
Paalme (10.1016/j.compchemeng.2024.108706_b51) 1997; 71
Rathore (10.1016/j.compchemeng.2024.108706_b66) 2021; 11
Riesenberg (10.1016/j.compchemeng.2024.108706_b69) 1991; 20
Lim (10.1016/j.compchemeng.2024.108706_b36) 2023; 370
Pinto (10.1016/j.compchemeng.2024.108706_b60) 2023; 4
Jin (10.1016/j.compchemeng.2024.108706_b29) 2020; 117
Grigs (10.1016/j.compchemeng.2024.108706_b23) 2021; 21
Dabros (10.1016/j.compchemeng.2024.108706_b13) 2010; 33
Appl (10.1016/j.compchemeng.2024.108706_b4) 2020
Fisher (10.1016/j.compchemeng.2024.108706_b19) 2022; 185
Moser (10.1016/j.compchemeng.2024.108706_b44) 2021; 44
Pinto (10.1016/j.compchemeng.2024.108706_b59) 2022; 165
Cheng (10.1016/j.compchemeng.2024.108706_b11) 2021; 202
Patra (10.1016/j.compchemeng.2024.108706_b53) 2023; 62
Psichogios (10.1016/j.compchemeng.2024.108706_b63) 1992; 38
Santos (10.1016/j.compchemeng.2024.108706_b77) 2012; 39
Anane (10.1016/j.compchemeng.2024.108706_b2) 2017; 125
Pinsach (10.1016/j.compchemeng.2024.108706_b57) 2006; 29
Mahanty (10.1016/j.compchemeng.2024.108706_b40) 2023; 120
Saa (10.1016/j.compchemeng.2024.108706_b73) 2017; 35
Cárcamo (10.1016/j.compchemeng.2024.108706_b8) 2014; 12
Pearce (10.1016/j.compchemeng.2024.108706_b54) 2015; 137
Vega-Ramon (10.1016/j.compchemeng.2024.108706_b89) 2021; 118
Laursen (10.1016/j.compchemeng.2024.108706_b34) 2007; 31
Pinto (10.1016/j.compchemeng.2024.108706_b58) 2019; 42
Sánchez (10.1016/j.compchemeng.2024.108706_b75) 2014; 53
Galvanauskas (10.1016/j.compchemeng.2024.108706_b20) 2004; 26
Lee (10.1016/j.compchemeng.2024.108706_b35) 1996; 14
Zenteno (10.1016/j.compchemeng.2024.108706_b93) 2010; 99
Lin (10.1016/j.compchemeng.2024.108706_b37) 2001; 73
Rackauckas (10.1016/j.compchemeng.2024.108706_b64) 2019
Zhang (10.1016/j.compchemeng.2024.108706_b95) 2019; 116
Landi (10.1016/j.compchemeng.2024.108706_b33) 2015; 38
Shapiro (10.1016/j.compchemeng.2024.108706_b81) 2018; 16
Deken (10.1016/j.compchemeng.2024.108706_b14) 1966; 44
Ibáñez (10.1016/j.compchemeng.2024.108706_b26) 2021; 155
Luna (10.1016/j.compchemeng.2024.108706_b39) 2021; 9
Tu (10.1016/j.compchemeng.2024.108706_b86) 2023; 329
Malairuang (10.1016/j.compchemeng.2024.108706_b41) 2020; 8
Precup (10.1016/j.compchemeng.2024.108706_b62) 2011; 62
Veloso (10.1016/j.compchemeng.2024.108706_b90) 2023; 193
Brunner (10.1016/j.compchemeng.2024.108706_b7) 2020; 117
Zhang (10.1016/j.compchemeng.2024.108706_b94) 2023; 8
Zorzetto (10.1016/j.compchemeng.2024.108706_b97) 2000; 24
Mondal (10.1016/j.compchemeng.2024.108706_b43) 2023; 370
Bangi (10.1016/j.compchemeng.2024.108706_b5) 2022; 179
Santos (10.1016/j.compchemeng.2024.108706_b78) 2022; 106
Park (10.1016/j.compchemeng.2024.108706_b52) 2023; 120
Urniezius (10.1016/j.compchemeng.2024.108706_b87) 2023; 21
Dewasme (10.1016/j.compchemeng.2024.108706_b15) 2023; 171
García (10.1016/j.compchemeng.2024.108706_b21) 2019
NIST (10.1016/j.compchemeng.2024.108706_b49) 2020
Andersson (10.1016/j.compchemeng.2024.108706_b3) 1994; 14
Sánchez (10.1016/j.compchemeng.2024.108706_b74) 2014; 25
Zieringer (10.1016/j.compchemeng.2024.108706_b96) 2021; 118
Shah (10.1016/j.compchemeng.2024.108706_b80) 2022; 441
Mowbray (10.1016/j.compchemeng.2024.108706_b45) 2023; 120
Narendra (10.1016/j.compchemeng.2024.108706_b47) 1990; 1
Nadal-Rey (10.1016/j.compchemeng.2024.108706_b46) 2021; 46
Rio-Chanona (10.1016/j.compchemeng.2024.108706_b70) 2019; 116
Cheng (10.1016/j.compchemeng.2024.108706_b10) 2023; 369
Natarajan (10.1016/j.compchemeng.2024.108706_b48) 2021; 98
Chang (10.1016/j.compchemeng.2024.108706_b9) 2014; 152
Bárzaga-Martell (10.1016/j.compchemeng.2024.108706_b6) 2021; 104
Pham (10.1016/j.compchemeng.2024.108706_b55) 1998; 60
Rackauckas (10.1016/j.compchemeng.2024.108706_b65) 2020
Hashizume (10.1016/j.compchemeng.2024.108706_b25) 2023; 9
Ochoa (10.1016/j.compchemeng.2024.108706_b50) 2020; 95
Sansana (10.1016/j.compchemeng.2024.108706_b76) 2021; 151
van Smeden (10.1016/j.compchemeng.2024.108706_b88) 2016; 16
Shen (10.1016/j.compchemeng.2024.108706_b82) 2022; 22
Crabtree (10.1016/j.compchemeng.2024.108706_b12) 1929; 23
Saa (10.1016/j.compchemeng.2024.108706_b72) 2012; 35
James (10.1016/j.compchemeng.2024.108706_b27) 2002; 12
Thibault (10.1016/j.compchemeng.2024.108706_b85) 2000; 22
Retamal (10.1016/j.compchemeng.2024.108706_b67) 2018; 135
Sonnleitner (10.1016/j.compchemeng.2024.108706_b84) 1986; 28
Xu (10.1016/j.compchemeng.2024.108706_b92) 1999; 15
Rogers (10.1016/j.compchemeng.2024.108706_b71) 2023; 190
Zorzetto (10.1016/j.compchemeng.2024.108706_b98) 1996; 20
Jin (10.1016/j.compchemeng.2024.108706_b28) 2021; 118
Schubert (10.1016/j.compchemeng.2024.108706_b79) 1994; 35
Egea (10.1016/j.compchemeng.2024.108706_b18) 2007; 37
Khanal (10.1016/j.compchemeng.2024.108706_b30) 2023; 375
Möller (10.1016/j.compchemeng.2024.108706_b42) 2017
Agharafeie (10.1016/j.compchemeng.2024.108706_b1) 2023; 9
Kovárová-Kovar (10.1016/j.compchemeng.2024.108706_b32) 2000; 79
Riesenberg (10.1016/j.compchemeng.2024.108706_b68) 1999; 51
Villadsen (10.1016/j.compchemeng.2024.108706_b91) 2011
Kim (10.1016/j.compchemeng.2024.108706_b31) 2023; 41
Pimentel (10.1016/j.compchemeng.2024.108706_b56) 2015; 28
References_xml – volume: 60
  start-page: 474
  year: 1998
  end-page: 482
  ident: b55
  article-title: Growth and energy metabolism in aerobic fed-batch cultures of Saccharomyces cerevisiae: Simulation and model verification
  publication-title: Biotechnol. Bioeng.
– volume: 16
  start-page: 333
  year: 2018
  end-page: 339
  ident: b81
  article-title: CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms
  publication-title: Nat. Rev. Microbiol.
– volume: 116
  start-page: 2971
  year: 2019
  end-page: 2982
  ident: b70
  article-title: Comparison of physics-based and data-driven modelling techniques for dynamic optimisation of fed-batch bioprocesses
  publication-title: Biotechnol. Bioeng.
– volume: 35
  start-page: 1167
  year: 2012
  end-page: 1178
  ident: b72
  article-title: Modeling oxygen dissolution and biological uptake during pulse oxygen additions in oenological fermentations
  publication-title: Bioprocess Biosyst. Eng.
– volume: 95
  start-page: 3221
  year: 2020
  end-page: 3231
  ident: b50
  article-title: Real-time optimization and control for polyhydroxybutyrate fed-batch production at pilot plant scale
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 120
  start-page: 2072
  year: 2023
  end-page: 2091
  ident: b40
  article-title: Hybrid modeling in bioprocess dynamics: Structural variabilities, implementation strategies, and practical challenges
  publication-title: Biotechnol. Bioeng.
– year: 2019
  ident: b21
  article-title: Application of process system engineering tools to the fed-batch production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from a vinasses–molasses Mixture
  publication-title: Bioprocess Biosyst. Eng.
– volume: 71
  start-page: 217
  year: 1997
  end-page: 230
  ident: b51
  article-title: The growth rate control in Escherichia coli at near to maximum growth rates: the A-stat approach
  publication-title: Antonie Van Leeuwenhoek
– volume: 118
  start-page: 4138
  year: 2021
  end-page: 4151
  ident: b28
  article-title: Ultrahigh-cell-density heterotrophic cultivation of the unicellular green alga Chlorella sorokiniana for biomass production
  publication-title: Biotechnol. Bioeng.
– volume: 29
  start-page: 235
  year: 2006
  end-page: 242
  ident: b57
  article-title: A simple feedback control of Escherichia coli growth for recombinant aldolase production in fed-batch mode
  publication-title: Biochem. Eng. J.
– volume: 118
  start-page: 4854
  year: 2021
  end-page: 4866
  ident: b89
  article-title: Kinetic and hybrid modeling for yeast astaxanthin production under uncertainty
  publication-title: Biotechnol. Bioeng.
– volume: 38
  start-page: 251
  year: 2015
  end-page: 261
  ident: b33
  article-title: High cell density culture with S. cerevisiae CEN.PK113-5D for IL-1
  publication-title: Bioprocess Biosyst. Eng.
– volume: 329
  year: 2023
  ident: b86
  article-title: Integrating physics-based modeling with machine learning for lithium-ion batteries
  publication-title: Appl. Energy
– volume: 190
  year: 2023
  ident: b71
  article-title: Investigating ‘greyness’ of hybrid model for bioprocess predictive modelling
  publication-title: Biochem. Eng. J.
– volume: 98
  start-page: 41
  year: 2021
  end-page: 51
  ident: b48
  article-title: Online deep neural network-based feedback control of a Lutein bioprocess
  publication-title: J. Process Control
– volume: 369
  year: 2023
  ident: b10
  article-title: Artificial intelligence technologies in bioprocess: Opportunities and challenges
  publication-title: Bioresour. Technol.
– volume: 152
  start-page: 234
  year: 2014
  end-page: 240
  ident: b9
  article-title: The relationship of oxygen uptake rate and kLa with rheological properties in high cell density cultivation of docosahexaenoic acid by Schizochytrium sp. S31
  publication-title: Bioresour. Technol.
– volume: 25
  start-page: 159
  year: 2014
  end-page: 173
  ident: b74
  article-title: Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization
  publication-title: Metab. Eng.
– start-page: 63
  year: 2020
  end-page: 94
  ident: b4
  article-title: Digital twins for bioprocess control strategy development and realisation
– volume: 38
  start-page: 1499
  year: 1992
  end-page: 1511
  ident: b63
  article-title: A hybrid neural network-first principles approach to process modeling
  publication-title: AIChE J.
– volume: 171
  year: 2023
  ident: b15
  article-title: Practical data-driven modeling and robust predictive control of mammalian cell fed-batch process
  publication-title: Comput. Chem. Eng.
– volume: 16
  start-page: 163
  year: 2016
  ident: b88
  article-title: No rationale for 1 variable per 10 events criterion for binary logistic regression analysis
  publication-title: BMC Med. Res. Methodol.
– volume: 39
  start-page: 143
  year: 2012
  end-page: 151
  ident: b77
  article-title: Nonlinear model predictive control of fed-batch cultures of micro-organisms exhibiting overflow metabolism: Assessment and robustness
  publication-title: Comput. Chem. Eng.
– year: 2017
  ident: b42
  article-title: Model-based design of process strategies for cell culture bioprocesses: State of the art and new perspectives
  publication-title: New Insights into Cell Culture Technology
– volume: 370
  year: 2023
  ident: b36
  article-title: Opportunities and challenges of machine learning in bioprocesses: Categorization from different perspectives and future direction
  publication-title: Bioresour. Technol.
– volume: 62
  start-page: 213
  year: 2011
  end-page: 226
  ident: b62
  article-title: A survey on industrial applications of fuzzy control
  publication-title: Comput. Ind.
– volume: 4
  start-page: 303
  year: 2023
  end-page: 318
  ident: b60
  article-title: A general hybrid modeling framework for systems biology applications: Combining mechanistic knowledge with deep neural networks under the SBML standard
  publication-title: AI
– volume: 8
  start-page: 1321
  year: 2020
  ident: b41
  article-title: High cell density cultivation of Saccharomyces cerevisiae with intensive multiple sequential batches together with a novel technique of fed-batch at cell level (FBC)
  publication-title: Processes
– volume: 37
  start-page: 481
  year: 2007
  end-page: 503
  ident: b18
  article-title: Scatter search for chemical and bio-process optimization
  publication-title: J. Global Optim.
– volume: 9
  start-page: 1560
  year: 2021
  ident: b39
  article-title: Modeling of continuous PHA production by a hybrid approach based on first principles and machine learning
  publication-title: Processes
– volume: 41
  start-page: 425
  year: 2023
  end-page: 451
  ident: b31
  article-title: Metabolic engineering for sustainability and health
  publication-title: Trends Biotechnol.
– volume: 26
  start-page: 393
  year: 2004
  end-page: 400
  ident: b20
  article-title: Hybrid process models for process optimisation, monitoring and control
  publication-title: Bioprocess Biosyst. Eng.
– volume: 12
  start-page: 113
  year: 2002
  end-page: 121
  ident: b27
  article-title: Comparative study of black-box and hybrid estimation methods in fed-batch fermentation
  publication-title: J. Process Control
– volume: 14
  start-page: 39
  year: 1994
  end-page: 44
  ident: b3
  article-title: Modeling of high cell density fed batch cultivation
  publication-title: FEMS Microbiol. Rev.
– volume: 79
  start-page: 39
  year: 2000
  end-page: 52
  ident: b32
  article-title: Application of model-predictive control based on artificial neural networks to optimize the fed-batch process for riboflavin production
  publication-title: J. Biotechnol.
– volume: 44
  start-page: 683
  year: 2021
  end-page: 700
  ident: b44
  article-title: Model-assisted DoE software: optimization of growth and biocatalysis in Saccharomyces cerevisiae bioprocesses
  publication-title: Bioprocess Biosyst. Eng.
– volume: 22
  start-page: 547
  year: 2000
  end-page: 556
  ident: b85
  article-title: A hybrid representation approach for modelling complex dynamic bioprocesses
  publication-title: Bioprocess Eng.
– volume: 125
  start-page: 23
  year: 2017
  end-page: 30
  ident: b2
  article-title: Modelling overflow metabolism in Escherichia coli by acetate cycling
  publication-title: Biochem. Eng. J.
– volume: 24
  start-page: 1355
  year: 2000
  end-page: 1360
  ident: b97
  article-title: Processing modelling development through artificial neural networks and hybrid models
  publication-title: Comput. Chem. Eng.
– volume: 11
  start-page: 557
  year: 2021
  ident: b66
  article-title: Bioprocess control: Current progress and future perspectives
  publication-title: Life
– volume: 137
  year: 2015
  ident: b54
  article-title: Improving accuracy in Arrhenius models of cell death: Adding a temperature-dependent time delay
  publication-title: J. Biomech. Eng.
– volume: 78
  start-page: 8340
  year: 2012
  end-page: 8352
  ident: b83
  article-title: Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions
  publication-title: Appl. Environ. Microbiol.
– start-page: 561
  year: 2011
  ident: b91
  article-title: Bioreaction Engineering Principles
– volume: 31
  start-page: 163
  year: 2007
  end-page: 170
  ident: b34
  article-title: Dynamic hybrid neural network model of an industrial fed-batch fermentation process to produce foreign protein
  publication-title: Comput. Chem. Eng.
– volume: 117
  start-page: 2749
  year: 2020
  end-page: 2759
  ident: b7
  article-title: Biomass soft sensor for a Pichia pastoris fed-batch process based on phase detection and hybrid modeling
  publication-title: Biotechnol. Bioeng.
– volume: 62
  year: 2023
  ident: b53
  article-title: Recent advances in machine learning applications in metabolic engineering
  publication-title: Biotechnol. Adv.
– volume: 35
  start-page: 981
  year: 2017
  end-page: 1003
  ident: b73
  article-title: Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks
  publication-title: Biotechnol. Adv.
– volume: 116
  start-page: 2919
  year: 2019
  end-page: 2930
  ident: b95
  article-title: Hybrid physics-based and data-driven modeling for bioprocess online simulation and optimization
  publication-title: Biotechnol. Bioeng.
– volume: 28
  start-page: 346
  year: 2010
  end-page: 354
  ident: b22
  article-title: Application of mechanistic models to fermentation and biocatalysis for next-generation processes
  publication-title: Trends Biotechnol.
– volume: 35
  start-page: 51
  year: 1994
  end-page: 68
  ident: b79
  article-title: Bioprocess optimization and control: Application of hybrid modelling
  publication-title: J. Biotechnol.
– volume: 42
  start-page: 1853
  year: 2019
  end-page: 1865
  ident: b58
  article-title: A bootstrap-aggregated hybrid semi-parametric modeling framework for bioprocess development
  publication-title: Bioprocess Biosyst. Eng.
– volume: 151
  year: 2021
  ident: b76
  article-title: Recent trends on hybrid modeling for Industry 4.0
  publication-title: Comput. Chem. Eng.
– volume: 33
  start-page: 1109
  year: 2010
  end-page: 1118
  ident: b13
  article-title: Simple control of specific growth rate in biotechnological fed-batch processes based on enhanced online measurements of biomass
  publication-title: Bioprocess Biosyst. Eng.
– volume: 21
  start-page: 1268
  year: 2021
  ident: b23
  article-title: Application of in-situ and soft-sensors for estimation of recombinant P. pastoris GS115 biomass concentration: A case analysis of HBcAg (Mut+) and HBsAg (MutS) production processes under varying conditions
  publication-title: Sensors
– volume: 28
  start-page: 927
  year: 1986
  end-page: 937
  ident: b84
  article-title: Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis
  publication-title: Biotechnol. Bioeng.
– volume: 8
  start-page: 54
  year: 2023
  end-page: 60
  ident: b94
  article-title: Improvement of betanin biosynthesis in Saccharomyces cerevisiae by metabolic engineering
  publication-title: Synth. Syst. Biotechnol.
– volume: 53
  start-page: 18514
  year: 2014
  end-page: 18525
  ident: b75
  article-title: HIPPO: An iterative reparametrization method for identification and calibration of dynamic bioreactor models of complex processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 21
  start-page: 1092
  year: 2011
  end-page: 1104
  ident: b16
  article-title: Extremum-seeking algorithm design for fed-batch cultures of microorganisms with overflow metabolism
  publication-title: J. Process Control
– volume: 106
  start-page: 1879
  year: 2022
  end-page: 1894
  ident: b78
  article-title: Glutathione production by Saccharomyces cerevisiae: current state and perspectives
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 73
  start-page: 347
  year: 2001
  end-page: 357
  ident: b37
  article-title: Determination of the maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-batch cultivations ofEscherichia coli
  publication-title: Biotechnol. Bioeng.
– volume: 9
  start-page: 643
  year: 2023
  ident: b61
  article-title: Hybrid deep modeling of a GS115 (Mut+) Pichia pastoris culture with state–space reduction
  publication-title: Fermentation
– volume: 370
  year: 2023
  ident: b43
  article-title: Review on machine learning-based bioprocess optimization, monitoring, and control systems
  publication-title: Bioresour. Technol.
– volume: 120
  start-page: 2494
  year: 2023
  end-page: 2508
  ident: b52
  article-title: Data-driven prediction models for forecasting multistep ahead profiles of mammalian cell culture toward bioprocess digital twins
  publication-title: Biotechnol. Bioeng.
– volume: 165
  year: 2022
  ident: b59
  article-title: A general deep hybrid model for bioreactor systems: Combining first principles with deep neural networks
  publication-title: Comput. Chem. Eng.
– volume: 44
  start-page: 149
  year: 1966
  end-page: 156
  ident: b14
  article-title: The crabtree effect: A regulatory system in yeast
  publication-title: J. Gen. Microbiol.
– volume: 20
  start-page: S689
  year: 1996
  end-page: S694
  ident: b98
  article-title: Monitoring bioprocesses using hybrid models and an extended Kalman filter
  publication-title: Comput. Chem. Eng.
– volume: 7
  year: 2019
  ident: b38
  article-title: Build your bioprocess on a solid strain—Beta-carotene production in recombinant Saccharomyces cerevisiae
  publication-title: Front. Bioeng. Biotechnol.
– volume: 99
  start-page: 40
  year: 2010
  end-page: 48
  ident: b93
  article-title: Modeling temperature gradients in wine fermentation tanks
  publication-title: J. Food Eng.
– volume: 1
  start-page: 4
  year: 1990
  end-page: 27
  ident: b47
  article-title: Identification and control of dynamical systems using neural networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 23
  start-page: 536
  year: 1929
  end-page: 545
  ident: b12
  article-title: Observations on the carbohydrate metabolism of tumours
  publication-title: Biochem. J.
– volume: 441
  year: 2022
  ident: b80
  article-title: Deep neural network-based hybrid modeling and experimental validation for an industry-scale fermentation process: Identification of time-varying dependencies among parameters
  publication-title: Chem. Eng. J.
– volume: 118
  start-page: 265
  year: 2021
  end-page: 278
  ident: b96
  article-title: Data-driven in silico prediction of regulation heterogeneity and ATP demands of Escherichia coli in large-scale bioreactors
  publication-title: Biotechnol. Bioeng.
– volume: 200
  start-page: 44
  year: 2015
  end-page: 51
  ident: b24
  article-title: Control of specific carbon dioxide production in a fed-batch culture producing recombinant protein using a soft sensor
  publication-title: J. Biotechnol.
– volume: 117
  start-page: 96
  year: 2020
  end-page: 108
  ident: b29
  article-title: Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production
  publication-title: Biotechnol. Bioeng.
– volume: 104
  start-page: 112
  year: 2021
  end-page: 125
  ident: b6
  article-title: A robust hybrid observer for monitoring high-cell density cultures exhibiting overflow metabolism
  publication-title: J. Process Control
– volume: 28
  start-page: 1081
  year: 2015
  end-page: 1086
  ident: b56
  article-title: An observer-based robust control strategy for overflow metabolism cultures in fed-batch bioreactors
  publication-title: IFAC-PapersOnLine
– volume: 155
  year: 2021
  ident: b26
  article-title: Robust control of fed-batch high-cell density cultures: a simulation-based assessment: Simulation-based assessment of probing and model-based control strategies for robust operation of high-cell density cultures in fed-batch mode
  publication-title: Comput. Chem. Eng.
– volume: 22
  year: 2022
  ident: b82
  article-title: A review of yeast: High cell-density culture, molecular mechanisms of stress response and tolerance during fermentation
  publication-title: FEMS Yeast Res.
– volume: 46
  year: 2021
  ident: b46
  article-title: Understanding gradients in industrial bioreactors
  publication-title: Biotechnol. Adv.
– volume: 375
  year: 2023
  ident: b30
  article-title: Artificial intelligence and machine learning for smart bioprocesses
  publication-title: Bioresour. Technol.
– volume: 51
  start-page: 422
  year: 1999
  end-page: 430
  ident: b68
  article-title: High-cell-density cultivation of microorganisms
  publication-title: Appl. Microbiol. Biotechnol.
– year: 2020
  ident: b65
  article-title: Universal differential equations for scientific machine learning
– volume: 21
  start-page: 5785
  year: 2023
  end-page: 5795
  ident: b87
  article-title: Adaptive control of the E. coli-specific growth rate in fed-batch cultivation based on oxygen uptake rate
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 120
  start-page: 154
  year: 2023
  end-page: 168
  ident: b45
  article-title: A reinforcement learning-based hybrid modeling framework for bioprocess kinetics identification
  publication-title: Biotechnol. Bioeng.
– volume: 193
  year: 2023
  ident: b90
  article-title: A more accurate modeling for fed-batch ethanol fermentation with high cell density
  publication-title: Biochem. Eng. J.
– volume: 12
  start-page: 389
  year: 2014
  end-page: 394
  ident: b8
  article-title: Effective dissolved oxygen control strategy for high-cell-density cultures
  publication-title: IEEE Lat. Am. Trans.
– year: 2019
  ident: b64
  article-title: DiffEqFlux.jl - A julia library for neural differential equations
– volume: 185
  year: 2022
  ident: b19
  article-title: Data-driven modelling for resource recovery: Data volume, variability, and visualisation for an industrial bioprocess
  publication-title: Biochem. Eng. J.
– volume: 13
  start-page: 63
  year: 2014
  ident: b17
  article-title: Current development in genetic engineering strategies of Bacillus species
  publication-title: Microb. Cell Factories
– year: 2020
  ident: b49
  article-title: Oxygen
– volume: 14
  start-page: 98
  year: 1996
  end-page: 105
  ident: b35
  article-title: High cell-density culture of Escherichia coli
  publication-title: Trends Biotechnol.
– volume: 20
  start-page: 17
  year: 1991
  end-page: 27
  ident: b69
  article-title: High cell density cultivation of Escherichia coli at controlled specific growth rate
  publication-title: J. Biotechnol.
– volume: 135
  start-page: 22
  year: 2018
  end-page: 35
  ident: b67
  article-title: Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures
  publication-title: Biochem. Eng. J.
– volume: 179
  start-page: 415
  year: 2022
  end-page: 423
  ident: b5
  article-title: Physics-informed neural networks for hybrid modeling of lab-scale batch fermentation for beta-carotene production using Saccharomyces cerevisiae
  publication-title: Chem. Eng. Res. Des.
– volume: 9
  start-page: 20
  year: 2023
  ident: b25
  article-title: Employing active learning in the optimization of culture medium for mammalian cells
  publication-title: npj Syst. Biol. Appl.
– volume: 15
  start-page: 81
  year: 1999
  end-page: 90
  ident: b92
  article-title: Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli
  publication-title: Biotechnol. Prog.
– volume: 9
  start-page: 922
  year: 2023
  ident: b1
  article-title: From shallow to deep bioprocess hybrid modeling: Advances and future perspectives
  publication-title: Fermentation
– volume: 202
  year: 2021
  ident: b11
  article-title: Linking population dynamics to microbial kinetics for hybrid modeling of bioelectrochemical systems
  publication-title: Water Res.
– volume: 171
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b15
  article-title: Practical data-driven modeling and robust predictive control of mammalian cell fed-batch process
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108164
– volume: 118
  start-page: 265
  year: 2021
  ident: 10.1016/j.compchemeng.2024.108706_b96
  article-title: Data-driven in silico prediction of regulation heterogeneity and ATP demands of Escherichia coli in large-scale bioreactors
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27568
– volume: 33
  start-page: 1109
  year: 2010
  ident: 10.1016/j.compchemeng.2024.108706_b13
  article-title: Simple control of specific growth rate in biotechnological fed-batch processes based on enhanced online measurements of biomass
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-010-0438-2
– volume: 42
  start-page: 1853
  year: 2019
  ident: 10.1016/j.compchemeng.2024.108706_b58
  article-title: A bootstrap-aggregated hybrid semi-parametric modeling framework for bioprocess development
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-019-02181-y
– volume: 26
  start-page: 393
  year: 2004
  ident: 10.1016/j.compchemeng.2024.108706_b20
  article-title: Hybrid process models for process optimisation, monitoring and control
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-004-0385-x
– volume: 120
  start-page: 2072
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b40
  article-title: Hybrid modeling in bioprocess dynamics: Structural variabilities, implementation strategies, and practical challenges
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.28503
– volume: 190
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b71
  article-title: Investigating ‘greyness’ of hybrid model for bioprocess predictive modelling
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2022.108761
– volume: 120
  start-page: 154
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b45
  article-title: A reinforcement learning-based hybrid modeling framework for bioprocess kinetics identification
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.28262
– volume: 4
  start-page: 303
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b60
  article-title: A general hybrid modeling framework for systems biology applications: Combining mechanistic knowledge with deep neural networks under the SBML standard
  publication-title: AI
  doi: 10.3390/ai4010014
– year: 2019
  ident: 10.1016/j.compchemeng.2024.108706_b64
– volume: 44
  start-page: 149
  year: 1966
  ident: 10.1016/j.compchemeng.2024.108706_b14
  article-title: The crabtree effect: A regulatory system in yeast
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-44-2-149
– volume: 7
  year: 2019
  ident: 10.1016/j.compchemeng.2024.108706_b38
  article-title: Build your bioprocess on a solid strain—Beta-carotene production in recombinant Saccharomyces cerevisiae
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00171
– volume: 11
  start-page: 557
  year: 2021
  ident: 10.1016/j.compchemeng.2024.108706_b66
  article-title: Bioprocess control: Current progress and future perspectives
  publication-title: Life
  doi: 10.3390/life11060557
– volume: 53
  start-page: 18514
  year: 2014
  ident: 10.1016/j.compchemeng.2024.108706_b75
  article-title: HIPPO: An iterative reparametrization method for identification and calibration of dynamic bioreactor models of complex processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie501298b
– volume: 20
  start-page: S689
  year: 1996
  ident: 10.1016/j.compchemeng.2024.108706_b98
  article-title: Monitoring bioprocesses using hybrid models and an extended Kalman filter
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(96)00124-X
– volume: 79
  start-page: 39
  year: 2000
  ident: 10.1016/j.compchemeng.2024.108706_b32
  article-title: Application of model-predictive control based on artificial neural networks to optimize the fed-batch process for riboflavin production
  publication-title: J. Biotechnol.
  doi: 10.1016/S0168-1656(00)00211-X
– volume: 165
  year: 2022
  ident: 10.1016/j.compchemeng.2024.108706_b59
  article-title: A general deep hybrid model for bioreactor systems: Combining first principles with deep neural networks
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107952
– volume: 375
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b30
  article-title: Artificial intelligence and machine learning for smart bioprocesses
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2023.128826
– volume: 9
  start-page: 1560
  year: 2021
  ident: 10.1016/j.compchemeng.2024.108706_b39
  article-title: Modeling of continuous PHA production by a hybrid approach based on first principles and machine learning
  publication-title: Processes
  doi: 10.3390/pr9091560
– volume: 23
  start-page: 536
  year: 1929
  ident: 10.1016/j.compchemeng.2024.108706_b12
  article-title: Observations on the carbohydrate metabolism of tumours
  publication-title: Biochem. J.
  doi: 10.1042/bj0230536
– year: 2017
  ident: 10.1016/j.compchemeng.2024.108706_b42
  article-title: Model-based design of process strategies for cell culture bioprocesses: State of the art and new perspectives
– volume: 29
  start-page: 235
  year: 2006
  ident: 10.1016/j.compchemeng.2024.108706_b57
  article-title: A simple feedback control of Escherichia coli growth for recombinant aldolase production in fed-batch mode
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2006.01.001
– volume: 28
  start-page: 346
  year: 2010
  ident: 10.1016/j.compchemeng.2024.108706_b22
  article-title: Application of mechanistic models to fermentation and biocatalysis for next-generation processes
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2010.03.006
– volume: 21
  start-page: 1092
  year: 2011
  ident: 10.1016/j.compchemeng.2024.108706_b16
  article-title: Extremum-seeking algorithm design for fed-batch cultures of microorganisms with overflow metabolism
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2011.05.002
– volume: 51
  start-page: 422
  year: 1999
  ident: 10.1016/j.compchemeng.2024.108706_b68
  article-title: High-cell-density cultivation of microorganisms
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530051412
– volume: 185
  year: 2022
  ident: 10.1016/j.compchemeng.2024.108706_b19
  article-title: Data-driven modelling for resource recovery: Data volume, variability, and visualisation for an industrial bioprocess
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2022.108499
– volume: 120
  start-page: 2494
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b52
  article-title: Data-driven prediction models for forecasting multistep ahead profiles of mammalian cell culture toward bioprocess digital twins
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.28405
– volume: 202
  year: 2021
  ident: 10.1016/j.compchemeng.2024.108706_b11
  article-title: Linking population dynamics to microbial kinetics for hybrid modeling of bioelectrochemical systems
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117418
– volume: 125
  start-page: 23
  year: 2017
  ident: 10.1016/j.compchemeng.2024.108706_b2
  article-title: Modelling overflow metabolism in Escherichia coli by acetate cycling
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2017.05.013
– volume: 200
  start-page: 44
  year: 2015
  ident: 10.1016/j.compchemeng.2024.108706_b24
  article-title: Control of specific carbon dioxide production in a fed-batch culture producing recombinant protein using a soft sensor
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2015.02.030
– volume: 155
  year: 2021
  ident: 10.1016/j.compchemeng.2024.108706_b26
  article-title: Robust control of fed-batch high-cell density cultures: a simulation-based assessment: Simulation-based assessment of probing and model-based control strategies for robust operation of high-cell density cultures in fed-batch mode
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107545
– volume: 369
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b10
  article-title: Artificial intelligence technologies in bioprocess: Opportunities and challenges
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.128451
– volume: 25
  start-page: 159
  year: 2014
  ident: 10.1016/j.compchemeng.2024.108706_b74
  article-title: Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2014.07.004
– volume: 44
  start-page: 683
  year: 2021
  ident: 10.1016/j.compchemeng.2024.108706_b44
  article-title: Model-assisted DoE software: optimization of growth and biocatalysis in Saccharomyces cerevisiae bioprocesses
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-020-02478-3
– volume: 9
  start-page: 922
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b1
  article-title: From shallow to deep bioprocess hybrid modeling: Advances and future perspectives
  publication-title: Fermentation
  doi: 10.3390/fermentation9100922
– volume: 9
  start-page: 643
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b61
  article-title: Hybrid deep modeling of a GS115 (Mut+) Pichia pastoris culture with state–space reduction
  publication-title: Fermentation
  doi: 10.3390/fermentation9070643
– volume: 1
  start-page: 4
  year: 1990
  ident: 10.1016/j.compchemeng.2024.108706_b47
  article-title: Identification and control of dynamical systems using neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.80202
– volume: 151
  year: 2021
  ident: 10.1016/j.compchemeng.2024.108706_b76
  article-title: Recent trends on hybrid modeling for Industry 4.0
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107365
– volume: 31
  start-page: 163
  year: 2007
  ident: 10.1016/j.compchemeng.2024.108706_b34
  article-title: Dynamic hybrid neural network model of an industrial fed-batch fermentation process to produce foreign protein
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2006.05.018
– volume: 71
  start-page: 217
  year: 1997
  ident: 10.1016/j.compchemeng.2024.108706_b51
  article-title: The growth rate control in Escherichia coli at near to maximum growth rates: the A-stat approach
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1023/A:1000198404007
– volume: 12
  start-page: 389
  year: 2014
  ident: 10.1016/j.compchemeng.2024.108706_b8
  article-title: Effective dissolved oxygen control strategy for high-cell-density cultures
  publication-title: IEEE Lat. Am. Trans.
  doi: 10.1109/TLA.2014.6827863
– volume: 41
  start-page: 425
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b31
  article-title: Metabolic engineering for sustainability and health
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2022.12.014
– volume: 8
  start-page: 1321
  year: 2020
  ident: 10.1016/j.compchemeng.2024.108706_b41
  article-title: High cell density cultivation of Saccharomyces cerevisiae with intensive multiple sequential batches together with a novel technique of fed-batch at cell level (FBC)
  publication-title: Processes
  doi: 10.3390/pr8101321
– volume: 78
  start-page: 8340
  year: 2012
  ident: 10.1016/j.compchemeng.2024.108706_b83
  article-title: Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02305-12
– volume: 60
  start-page: 474
  year: 1998
  ident: 10.1016/j.compchemeng.2024.108706_b55
  article-title: Growth and energy metabolism in aerobic fed-batch cultures of Saccharomyces cerevisiae: Simulation and model verification
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/(SICI)1097-0290(19981120)60:4<474::AID-BIT9>3.0.CO;2-J
– start-page: 561
  year: 2011
  ident: 10.1016/j.compchemeng.2024.108706_b91
– volume: 46
  year: 2021
  ident: 10.1016/j.compchemeng.2024.108706_b46
  article-title: Understanding gradients in industrial bioreactors
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2020.107660
– volume: 16
  start-page: 333
  year: 2018
  ident: 10.1016/j.compchemeng.2024.108706_b81
  article-title: CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0002-7
– volume: 106
  start-page: 1879
  year: 2022
  ident: 10.1016/j.compchemeng.2024.108706_b78
  article-title: Glutathione production by Saccharomyces cerevisiae: current state and perspectives
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-022-11826-0
– volume: 14
  start-page: 39
  year: 1994
  ident: 10.1016/j.compchemeng.2024.108706_b3
  article-title: Modeling of high cell density fed batch cultivation
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.1994.tb00070.x
– volume: 370
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b43
  article-title: Review on machine learning-based bioprocess optimization, monitoring, and control systems
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.128523
– volume: 39
  start-page: 143
  year: 2012
  ident: 10.1016/j.compchemeng.2024.108706_b77
  article-title: Nonlinear model predictive control of fed-batch cultures of micro-organisms exhibiting overflow metabolism: Assessment and robustness
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2011.12.010
– volume: 15
  start-page: 81
  year: 1999
  ident: 10.1016/j.compchemeng.2024.108706_b92
  article-title: Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp9801087
– volume: 135
  start-page: 22
  year: 2018
  ident: 10.1016/j.compchemeng.2024.108706_b67
  article-title: Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2018.03.012
– volume: 116
  start-page: 2971
  year: 2019
  ident: 10.1016/j.compchemeng.2024.108706_b70
  article-title: Comparison of physics-based and data-driven modelling techniques for dynamic optimisation of fed-batch bioprocesses
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27131
– volume: 9
  start-page: 20
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b25
  article-title: Employing active learning in the optimization of culture medium for mammalian cells
  publication-title: npj Syst. Biol. Appl.
  doi: 10.1038/s41540-023-00284-7
– year: 2019
  ident: 10.1016/j.compchemeng.2024.108706_b21
  article-title: Application of process system engineering tools to the fed-batch production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from a vinasses–molasses Mixture
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-019-02102-z
– volume: 22
  year: 2022
  ident: 10.1016/j.compchemeng.2024.108706_b82
  article-title: A review of yeast: High cell-density culture, molecular mechanisms of stress response and tolerance during fermentation
  publication-title: FEMS Yeast Res.
  doi: 10.1093/femsyr/foac050
– volume: 99
  start-page: 40
  year: 2010
  ident: 10.1016/j.compchemeng.2024.108706_b93
  article-title: Modeling temperature gradients in wine fermentation tanks
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2010.01.033
– volume: 16
  start-page: 163
  year: 2016
  ident: 10.1016/j.compchemeng.2024.108706_b88
  article-title: No rationale for 1 variable per 10 events criterion for binary logistic regression analysis
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-016-0267-3
– volume: 20
  start-page: 17
  year: 1991
  ident: 10.1016/j.compchemeng.2024.108706_b69
  article-title: High cell density cultivation of Escherichia coli at controlled specific growth rate
  publication-title: J. Biotechnol.
  doi: 10.1016/0168-1656(91)90032-Q
– start-page: 63
  year: 2020
  ident: 10.1016/j.compchemeng.2024.108706_b4
– volume: 35
  start-page: 1167
  year: 2012
  ident: 10.1016/j.compchemeng.2024.108706_b72
  article-title: Modeling oxygen dissolution and biological uptake during pulse oxygen additions in oenological fermentations
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-012-0703-7
– volume: 152
  start-page: 234
  year: 2014
  ident: 10.1016/j.compchemeng.2024.108706_b9
  article-title: The relationship of oxygen uptake rate and kLa with rheological properties in high cell density cultivation of docosahexaenoic acid by Schizochytrium sp. S31
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.11.002
– volume: 95
  start-page: 3221
  year: 2020
  ident: 10.1016/j.compchemeng.2024.108706_b50
  article-title: Real-time optimization and control for polyhydroxybutyrate fed-batch production at pilot plant scale
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.6500
– volume: 117
  start-page: 2749
  year: 2020
  ident: 10.1016/j.compchemeng.2024.108706_b7
  article-title: Biomass soft sensor for a Pichia pastoris fed-batch process based on phase detection and hybrid modeling
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27454
– volume: 13
  start-page: 63
  year: 2014
  ident: 10.1016/j.compchemeng.2024.108706_b17
  article-title: Current development in genetic engineering strategies of Bacillus species
  publication-title: Microb. Cell Factories
  doi: 10.1186/1475-2859-13-63
– volume: 35
  start-page: 51
  year: 1994
  ident: 10.1016/j.compchemeng.2024.108706_b79
  article-title: Bioprocess optimization and control: Application of hybrid modelling
  publication-title: J. Biotechnol.
  doi: 10.1016/0168-1656(94)90189-9
– volume: 28
  start-page: 927
  year: 1986
  ident: 10.1016/j.compchemeng.2024.108706_b84
  article-title: Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260280620
– volume: 118
  start-page: 4854
  year: 2021
  ident: 10.1016/j.compchemeng.2024.108706_b89
  article-title: Kinetic and hybrid modeling for yeast astaxanthin production under uncertainty
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27950
– volume: 137
  year: 2015
  ident: 10.1016/j.compchemeng.2024.108706_b54
  article-title: Improving accuracy in Arrhenius models of cell death: Adding a temperature-dependent time delay
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4031851
– volume: 28
  start-page: 1081
  year: 2015
  ident: 10.1016/j.compchemeng.2024.108706_b56
  article-title: An observer-based robust control strategy for overflow metabolism cultures in fed-batch bioreactors
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.09.112
– volume: 329
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b86
  article-title: Integrating physics-based modeling with machine learning for lithium-ion batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120289
– volume: 116
  start-page: 2919
  year: 2019
  ident: 10.1016/j.compchemeng.2024.108706_b95
  article-title: Hybrid physics-based and data-driven modeling for bioprocess online simulation and optimization
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27120
– volume: 35
  start-page: 981
  year: 2017
  ident: 10.1016/j.compchemeng.2024.108706_b73
  article-title: Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2017.09.005
– volume: 193
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b90
  article-title: A more accurate modeling for fed-batch ethanol fermentation with high cell density
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2023.108855
– volume: 24
  start-page: 1355
  year: 2000
  ident: 10.1016/j.compchemeng.2024.108706_b97
  article-title: Processing modelling development through artificial neural networks and hybrid models
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(00)00419-1
– volume: 14
  start-page: 98
  year: 1996
  ident: 10.1016/j.compchemeng.2024.108706_b35
  article-title: High cell-density culture of Escherichia coli
  publication-title: Trends Biotechnol.
  doi: 10.1016/0167-7799(96)80930-9
– volume: 104
  start-page: 112
  year: 2021
  ident: 10.1016/j.compchemeng.2024.108706_b6
  article-title: A robust hybrid observer for monitoring high-cell density cultures exhibiting overflow metabolism
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2021.06.006
– volume: 38
  start-page: 1499
  year: 1992
  ident: 10.1016/j.compchemeng.2024.108706_b63
  article-title: A hybrid neural network-first principles approach to process modeling
  publication-title: AIChE J.
  doi: 10.1002/aic.690381003
– volume: 21
  start-page: 1268
  year: 2021
  ident: 10.1016/j.compchemeng.2024.108706_b23
  article-title: Application of in-situ and soft-sensors for estimation of recombinant P. pastoris GS115 biomass concentration: A case analysis of HBcAg (Mut+) and HBsAg (MutS) production processes under varying conditions
  publication-title: Sensors
  doi: 10.3390/s21041268
– volume: 117
  start-page: 96
  year: 2020
  ident: 10.1016/j.compchemeng.2024.108706_b29
  article-title: Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27190
– volume: 38
  start-page: 251
  year: 2015
  ident: 10.1016/j.compchemeng.2024.108706_b33
  article-title: High cell density culture with S. cerevisiae CEN.PK113-5D for IL-1β production: Optimization, modeling, and physiological aspects
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-014-1264-8
– volume: 98
  start-page: 41
  year: 2021
  ident: 10.1016/j.compchemeng.2024.108706_b48
  article-title: Online deep neural network-based feedback control of a Lutein bioprocess
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.11.011
– volume: 22
  start-page: 547
  year: 2000
  ident: 10.1016/j.compchemeng.2024.108706_b85
  article-title: A hybrid representation approach for modelling complex dynamic bioprocesses
  publication-title: Bioprocess Eng.
  doi: 10.1007/s004499900110
– volume: 21
  start-page: 5785
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b87
  article-title: Adaptive control of the E. coli-specific growth rate in fed-batch cultivation based on oxygen uptake rate
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2023.11.033
– volume: 179
  start-page: 415
  year: 2022
  ident: 10.1016/j.compchemeng.2024.108706_b5
  article-title: Physics-informed neural networks for hybrid modeling of lab-scale batch fermentation for beta-carotene production using Saccharomyces cerevisiae
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2022.01.041
– volume: 62
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b53
  article-title: Recent advances in machine learning applications in metabolic engineering
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2022.108069
– volume: 73
  start-page: 347
  year: 2001
  ident: 10.1016/j.compchemeng.2024.108706_b37
  article-title: Determination of the maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-batch cultivations ofEscherichia coli
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.1068
– year: 2020
  ident: 10.1016/j.compchemeng.2024.108706_b49
– volume: 37
  start-page: 481
  year: 2007
  ident: 10.1016/j.compchemeng.2024.108706_b18
  article-title: Scatter search for chemical and bio-process optimization
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-006-9075-3
– volume: 118
  start-page: 4138
  year: 2021
  ident: 10.1016/j.compchemeng.2024.108706_b28
  article-title: Ultrahigh-cell-density heterotrophic cultivation of the unicellular green alga Chlorella sorokiniana for biomass production
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27890
– volume: 441
  year: 2022
  ident: 10.1016/j.compchemeng.2024.108706_b80
  article-title: Deep neural network-based hybrid modeling and experimental validation for an industry-scale fermentation process: Identification of time-varying dependencies among parameters
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135643
– volume: 370
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b36
  article-title: Opportunities and challenges of machine learning in bioprocesses: Categorization from different perspectives and future direction
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.128518
– volume: 8
  start-page: 54
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108706_b94
  article-title: Improvement of betanin biosynthesis in Saccharomyces cerevisiae by metabolic engineering
  publication-title: Synth. Syst. Biotechnol.
  doi: 10.1016/j.synbio.2022.11.002
– volume: 12
  start-page: 113
  year: 2002
  ident: 10.1016/j.compchemeng.2024.108706_b27
  article-title: Comparative study of black-box and hybrid estimation methods in fed-batch fermentation
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(00)00065-2
– volume: 62
  start-page: 213
  year: 2011
  ident: 10.1016/j.compchemeng.2024.108706_b62
  article-title: A survey on industrial applications of fuzzy control
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2010.10.001
– year: 2020
  ident: 10.1016/j.compchemeng.2024.108706_b65
SSID ssj0002488
Score 2.4386985
Snippet Fed-batch cultures are the preferred operation mode for industrial bioprocesses requiring high cellular densities. Avoids accumulation of major fermentation...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 108706
SubjectTerms Dynamic optimization
Fed-batch fermentation
High-density cultures
Hybrid models
Overflow metabolism
Physics-informed neural networks
Title Reliable calibration and validation of phenomenological and hybrid models of high-cell-density fed-batch cultures subject to metabolic overflow
URI https://dx.doi.org/10.1016/j.compchemeng.2024.108706
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBdGD-MT6KCt4XZsmu5sGvJRiqYo9Wegt7NNW2qTYFOnFv-BfdicPrCB48JhkloSZyczs8s03CF1bYLH0REg8RQ2hhnrunwsEkcw3TIOHRdCc_DTkgxF9GLNxDfWqXhiAVZaxv4jpebQu77RKbbYW0yn0-EaddsAooCBdloKGX0pD8PKbj2-Yh3vQqXgzQXobXX1jvAC27XQzN8mL2yr6FBB3IQw_-i1HbeSd_j7aKwtG3C2-6QDVTHKIdjdoBI_QJ-CKoQUKO4XD9heUjUWisXOjaTE0CacWA5wLCBeqeJeLTNbQs4XziThLkAICYwLn-UQDuD1bY2s0kS5kT3DB02GWeLmScICDsxTPTeYcaTZVGNCgdpa-H6NR_-65NyDloAWifM4y4ko6G1IrnGF8E1qjhKCRcLmfa-NLxZgKpBVShz5VHR5q7fGorbiVLJChCVhwgupJmphThLl1NZXHFZWRocoGkacV54rDkHX3GtpAfqXaeFHwacQV0Ow13rBHDPaIC3s00G1lhPiHc8Qu7v-9_Ox_y8_RDlwVGN0LVM_eVubSVSKZbOau1kRb3fvHwfAL72riWg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60go-D-MS3K3hdmia7mwa8SLFUbXtqobeQfdlKmxYbEX-Ff9mdJtEKggev2R0SZiYzs8s33wBcW2Sx9JKQeooZygzz3D8XJFRy33CNHhZhc3KnK1p99jDggxVolL0wCKssYn8e0xfRunhSLbRZnY1G2OMb1WsBZ4iCdFmqvgpryE7FK7B2e__Y6n4FZLdWL6kzUWAdrr5hXojcduqZmPTJnRZ9hqC7EOcf_ZamllJPcwe2i5qR3OaftQsrJt2DrSUmwX34QGgxdkERp3M8AaO-SZJq4jxplM9NIlNLENGFnAtlyFtsGb5j2xZZDMWZ4y7kMKZ4pU814tuzd2KNptJF7SHJqTrMnMxfJd7hkGxKJiZzvjQeKYKAUDuevh1Av3nXa7RoMWuBKl_wjLqqzobMJs42vgmtUUnCosSlf6GNLxXnKpA2kTr0maqLUGtPRDUlrOSBDE3Ag0OopNPUHAER1pVVnlBMRoYpG0SeVkIogXPW3WvYMfilauNZTqkRl1iz53jJHjHaI87tcQw3pRHiH_4Ru9D_t_jJ_8QvYaPV67Tj9n338RQ2cSWH7J5BJXt5NeeuMMnkReF4n6zx5Qs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+calibration+and+validation+of+phenomenological+and+hybrid+models+of+high-cell-density+fed-batch+cultures+subject+to+metabolic+overflow&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Ib%C3%A1%C3%B1ez%2C+Francisco&rft.au=Puentes-Cantor%2C+Hern%C3%A1n&rft.au=B%C3%A1rzaga-Martell%2C+Lisbel&rft.au=Saa%2C+Pedro+A.&rft.date=2024-07-01&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.eissn=1873-4375&rft.volume=186&rft_id=info:doi/10.1016%2Fj.compchemeng.2024.108706&rft.externalDocID=S0098135424001248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon