Reliable calibration and validation of phenomenological and hybrid models of high-cell-density fed-batch cultures subject to metabolic overflow
Fed-batch cultures are the preferred operation mode for industrial bioprocesses requiring high cellular densities. Avoids accumulation of major fermentation by-products due to metabolic overflow, increasing process productivity. Reproducible operation at high cell densities is challenging (>100 g...
Saved in:
Published in | Computers & chemical engineering Vol. 186; p. 108706 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fed-batch cultures are the preferred operation mode for industrial bioprocesses requiring high cellular densities. Avoids accumulation of major fermentation by-products due to metabolic overflow, increasing process productivity. Reproducible operation at high cell densities is challenging (>100 gDCW/L), which has precluded rigorous model evaluation. Here, we evaluated three phenomenological models and proposed a novel hybrid model including a neural network. For this task, we generated highly reproducible fed-batch datasets of a recombinant yeast growing under oxidative, oxygen-limited, and respiro-fermentative metabolic regimes. The models were reliably calibrated using a systematic workflow based on pre-and post-regression diagnostics. Compared to the best-performing phenomenological model, the hybrid model substantially improved performance by 3.6- and 1.7-fold in the training and test data, respectively. This study illustrates how hybrid modeling approaches can advance our description of complex bioprocesses that could support more efficient operation strategies.
•High-cell density fed-batch cultures were performed under different regimes.•Phenomenological models were calibrated and evaluated in different conditions.•Best performing model was expanded with a neural network model.•Hybrid model displayed superior accuracy for fitting training data and predicting test data. |
---|---|
AbstractList | Fed-batch cultures are the preferred operation mode for industrial bioprocesses requiring high cellular densities. Avoids accumulation of major fermentation by-products due to metabolic overflow, increasing process productivity. Reproducible operation at high cell densities is challenging (>100 gDCW/L), which has precluded rigorous model evaluation. Here, we evaluated three phenomenological models and proposed a novel hybrid model including a neural network. For this task, we generated highly reproducible fed-batch datasets of a recombinant yeast growing under oxidative, oxygen-limited, and respiro-fermentative metabolic regimes. The models were reliably calibrated using a systematic workflow based on pre-and post-regression diagnostics. Compared to the best-performing phenomenological model, the hybrid model substantially improved performance by 3.6- and 1.7-fold in the training and test data, respectively. This study illustrates how hybrid modeling approaches can advance our description of complex bioprocesses that could support more efficient operation strategies.
•High-cell density fed-batch cultures were performed under different regimes.•Phenomenological models were calibrated and evaluated in different conditions.•Best performing model was expanded with a neural network model.•Hybrid model displayed superior accuracy for fitting training data and predicting test data. |
ArticleNumber | 108706 |
Author | Saa, Pedro A. Ibáñez, Francisco Pérez-Correa, José Ricardo Agosin, Eduardo Puentes-Cantor, Hernán Bárzaga-Martell, Lisbel |
Author_xml | – sequence: 1 givenname: Francisco orcidid: 0000-0002-5626-7615 surname: Ibáñez fullname: Ibáñez, Francisco organization: Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306 Correo 22, Santiago, Chile – sequence: 2 givenname: Hernán orcidid: 0009-0009-5863-0594 surname: Puentes-Cantor fullname: Puentes-Cantor, Hernán organization: Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá, D.C., Colombia – sequence: 3 givenname: Lisbel orcidid: 0000-0001-5354-945X surname: Bárzaga-Martell fullname: Bárzaga-Martell, Lisbel organization: Departamento de Electricidad, Universidad Tecnológica Metropolitana, José Pedro Alessandri 1242, Ñuñoa, Santiago, Chile – sequence: 4 givenname: Pedro A. orcidid: 0000-0002-1659-9041 surname: Saa fullname: Saa, Pedro A. organization: Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306 Correo 22, Santiago, Chile – sequence: 5 givenname: Eduardo surname: Agosin fullname: Agosin, Eduardo organization: Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306 Correo 22, Santiago, Chile – sequence: 6 givenname: José Ricardo orcidid: 0000-0002-1278-7782 surname: Pérez-Correa fullname: Pérez-Correa, José Ricardo email: jperezc@uc.cl organization: Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306 Correo 22, Santiago, Chile |
BookMark | eNqNkN2K2zAQhUXJQpPsvoP2AZxKtiXbl0voHwQKy-61kEajWEG2guSk5Cn6ynXqXvSyV8MZzpnhfBuyGuOIhDxztuOMy0-nHcThDD0OOB53JSvred82TH4ga942VVFXjViRNWNdW_BK1B_JJucTY7Ozbdfk1ysGr01ACjp4k_Tk40j1aOl11naR0dFzj2Ocf8QQj362_rH0N5O8pUO0GPLd1ftjXwCGUFgcs59u1KEtjJ6gp3AJ0yVhpvliTggTnSIdcNImBg80XjG5EH8-kgenQ8anv3NL3r98ftt_Kw4_vn7fvxwKKKWYCiGla2qnmehKbByC1nWneculxdKAEFAZp41tyhpa2VjLZMdBOiMq02Alqi3plruQYs4JnTonP-h0U5ypO1l1Uv-QVXeyaiE7Z_dLdm6NV49JZfA4Alqf5mLKRv8fV34D-CCOoQ |
Cites_doi | 10.1016/j.compchemeng.2023.108164 10.1002/bit.27568 10.1007/s00449-010-0438-2 10.1007/s00449-019-02181-y 10.1007/s00449-004-0385-x 10.1002/bit.28503 10.1016/j.bej.2022.108761 10.1002/bit.28262 10.3390/ai4010014 10.1099/00221287-44-2-149 10.3389/fbioe.2019.00171 10.3390/life11060557 10.1021/ie501298b 10.1016/0098-1354(96)00124-X 10.1016/S0168-1656(00)00211-X 10.1016/j.compchemeng.2022.107952 10.1016/j.biortech.2023.128826 10.3390/pr9091560 10.1042/bj0230536 10.1016/j.bej.2006.01.001 10.1016/j.tibtech.2010.03.006 10.1016/j.jprocont.2011.05.002 10.1007/s002530051412 10.1016/j.bej.2022.108499 10.1002/bit.28405 10.1016/j.watres.2021.117418 10.1016/j.bej.2017.05.013 10.1016/j.jbiotec.2015.02.030 10.1016/j.compchemeng.2021.107545 10.1016/j.biortech.2022.128451 10.1016/j.ymben.2014.07.004 10.1007/s00449-020-02478-3 10.3390/fermentation9100922 10.3390/fermentation9070643 10.1109/72.80202 10.1016/j.compchemeng.2021.107365 10.1016/j.compchemeng.2006.05.018 10.1023/A:1000198404007 10.1109/TLA.2014.6827863 10.1016/j.tibtech.2022.12.014 10.3390/pr8101321 10.1128/AEM.02305-12 10.1002/(SICI)1097-0290(19981120)60:4<474::AID-BIT9>3.0.CO;2-J 10.1016/j.biotechadv.2020.107660 10.1038/s41579-018-0002-7 10.1007/s00253-022-11826-0 10.1111/j.1574-6976.1994.tb00070.x 10.1016/j.biortech.2022.128523 10.1016/j.compchemeng.2011.12.010 10.1021/bp9801087 10.1016/j.bej.2018.03.012 10.1002/bit.27131 10.1038/s41540-023-00284-7 10.1007/s00449-019-02102-z 10.1093/femsyr/foac050 10.1016/j.jfoodeng.2010.01.033 10.1186/s12874-016-0267-3 10.1016/0168-1656(91)90032-Q 10.1007/s00449-012-0703-7 10.1016/j.biortech.2013.11.002 10.1002/jctb.6500 10.1002/bit.27454 10.1186/1475-2859-13-63 10.1016/0168-1656(94)90189-9 10.1002/bit.260280620 10.1002/bit.27950 10.1115/1.4031851 10.1016/j.ifacol.2015.09.112 10.1016/j.apenergy.2022.120289 10.1002/bit.27120 10.1016/j.biotechadv.2017.09.005 10.1016/j.bej.2023.108855 10.1016/S0098-1354(00)00419-1 10.1016/0167-7799(96)80930-9 10.1016/j.jprocont.2021.06.006 10.1002/aic.690381003 10.3390/s21041268 10.1002/bit.27190 10.1007/s00449-014-1264-8 10.1016/j.jprocont.2020.11.011 10.1007/s004499900110 10.1016/j.csbj.2023.11.033 10.1016/j.cherd.2022.01.041 10.1016/j.biotechadv.2022.108069 10.1002/bit.1068 10.1007/s10898-006-9075-3 10.1002/bit.27890 10.1016/j.cej.2022.135643 10.1016/j.biortech.2022.128518 10.1016/j.synbio.2022.11.002 10.1016/S0959-1524(00)00065-2 10.1016/j.compind.2010.10.001 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compchemeng.2024.108706 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4375 |
ExternalDocumentID | 10_1016_j_compchemeng_2024_108706 S0098135424001248 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SST SSZ T5K VH1 WUQ ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c265t-566f74fa0592e7fecaa49a1816de2bc55c3bfabd724c867dd0691c6fb53b7e353 |
IEDL.DBID | .~1 |
ISSN | 0098-1354 |
IngestDate | Tue Jul 01 03:20:56 EDT 2025 Sat Aug 03 15:33:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Overflow metabolism High-density cultures Hybrid models Physics-informed neural networks Dynamic optimization Fed-batch fermentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-566f74fa0592e7fecaa49a1816de2bc55c3bfabd724c867dd0691c6fb53b7e353 |
ORCID | 0000-0001-5354-945X 0009-0009-5863-0594 0000-0002-1278-7782 0000-0002-1659-9041 0000-0002-5626-7615 |
ParticipantIDs | crossref_primary_10_1016_j_compchemeng_2024_108706 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2024_108706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationTitle | Computers & chemical engineering |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Shah, Sheriff, Bangi, Kravaris, Kwon, Botre, Hirota (b80) 2022; 441 Pham, Larsson, Enfors (b55) 1998; 60 Retamal, Dewasme, Hantson, Wouwer (b67) 2018; 135 Jin, Chuai, Li, Hou, Wu, Chen, Wang, Jia, Han, Hu (b28) 2021; 118 Sánchez, Pérez-Correa, Agosin (b74) 2014; 25 Rathore, Mishra, Nikita, Priyanka (b66) 2021; 11 Malairuang, Krajang, Sukna, Rattanapradit, Chamsart (b41) 2020; 8 Zorzetto, Filho, Wolf-Maciel (b97) 2000; 24 van Smeden, de Groot, Moons, Collins, Altman, Eijkemans, Reitsma (b88) 2016; 16 Appl, Moser, Baganz, Hass (b4) 2020 Grigs, Bolmanis, Galvanauskas (b23) 2021; 21 Cheng, Yao, Yuan (b11) 2021; 202 Lim, Son, Ki, Suh, Chung (b36) 2023; 370 Saa, Nielsen (b73) 2017; 35 Kim, Choi, Cho, Ahn, Lee (b31) 2023; 41 NIST (b49) 2020 Laursen, Webb, Ramirez (b34) 2007; 31 Sánchez, Soto, Jorquera, Gelmi, Pérez-Correa (b75) 2014; 53 Lee (b35) 1996; 14 Mahanty (b40) 2023; 120 Natarajan, Moghadam, Jagannathan (b48) 2021; 98 Pinto, de Azevedo, Oliveira, von Stosch (b58) 2019; 42 Riesenberg, Guthke (b68) 1999; 51 Zorzetto, Wilson (b98) 1996; 20 García, Alcaraz, Acosta-Cárdenas, Ochoa (b21) 2019 Bangi, Kao, Kwon (b5) 2022; 179 Sansana, Joswiak, Castillo, Wang, Rendall, Chiang, Reis (b76) 2021; 151 Fisher, Watson, Porcu, Bacon, Rigley, Gomes (b19) 2022; 185 Galvanauskas, Simutis, Lubbert (b20) 2004; 26 Möller, Pörtner (b42) 2017 Santos, Dewasme, Coutinho, Wouwer (b77) 2012; 39 Chang, Wu, Jiang, Tian, Wu, Chang, Wang (b9) 2014; 152 Zieringer, Wild, Takors (b96) 2021; 118 López, Cataldo, Peña, Saa, Saitua, Ibaceta, Agosin (b38) 2019; 7 Cárcamo, Saa, Torres, Torres, Mandujano, Correa, Agosin (b8) 2014; 12 James, Legge, Budman (b27) 2002; 12 Santos, Silva, Junior, de Oliveira, Anschau (b78) 2022; 106 Khanal, Tarafdar, You (b30) 2023; 375 Mondal, Galodha, Verma, Singh, Show, Awasthi, Lall, Anees, Pollmann, Jain (b43) 2023; 370 Pinto, Mestre, Ramos, Costa, Striedner, Oliveira (b59) 2022; 165 Pinto, Ramos, Costa, Oliveira (b61) 2023; 9 Sonnleitner, Käppeli (b84) 1986; 28 Riesenberg, Schulz, Knorre, Pohl, Korz, Sanders, Roß, Deckwer (b69) 1991; 20 Crabtree (b12) 1929; 23 Veloso, Rodrigues, Esperança, Batista, Cruz, Badino (b90) 2023; 193 Rackauckas, Innes, Ma, Bettencourt, White, Dixit (b64) 2019 Pearce (b54) 2015; 137 Jin, Zhang, Zhou, Li, Hou, Xu, Chuai, Zhang, Han, Hu (b29) 2020; 117 Narendra, Parthasarathy (b47) 1990; 1 Xu, Jahic, Enfors (b92) 1999; 15 Cheng, Bi, Xu, Liu, Li, Du, Lv, Liu (b10) 2023; 369 Gustavsson, Lukasser, Mandenius (b24) 2015; 200 Zhang, Liu, Li, Meng, Zhao (b94) 2023; 8 Pinsach, de Mas, López-Santín (b57) 2006; 29 Dong, Zhang (b17) 2014; 13 Slater, Orellana, Melo, Agosin, Mendoza, Aceituno, Torres (b83) 2012; 78 Andersson, Strandberg, iggstram, Enfors (b3) 1994; 14 Kovárová-Kovar, Gehlen, Kunze, Keller, von Däniken, Kolb, van Loon (b32) 2000; 79 Dewasme, Srinivasan, Perrier, Wouwer (b16) 2011; 21 Gernaey, Lantz, Tufvesson, Woodley, Sin (b22) 2010; 28 Rogers, Song, Ramon, Jing, Zhang (b71) 2023; 190 Ochoa, García, Alcaraz (b50) 2020; 95 Rackauckas, Ma, Martensen, Warner, Zubov, Supekar, Skinner, Ramadhan, Edelman (b65) 2020 Dewasme, Mäkinen, Chotteau (b15) 2023; 171 Saa, Moenne, Pérez-Correa, Agosin (b72) 2012; 35 Zhang, Rio-Chanona, Petsagkourakis, Wagner (b95) 2019; 116 Bárzaga-Martell, Duarte-Mermoud, nez Espinel, Gamboa-Labbé, Saa, Pérez-Correa (b6) 2021; 104 Pimentel, Benavides, Dewasme, Coutinho, Wouwer (b56) 2015; 28 Moser, Kuchemüller, Deppe, Rodríguez, Frahm, Pörtner, Hass, Möller (b44) 2021; 44 Shapiro, Chavez, Collins (b81) 2018; 16 Deken (b14) 1966; 44 Urniezius, Masaitis, Levisauskas, Survyla, Babilius, Godoladze (b87) 2023; 21 Brunner, Siegl, Geier, Becker (b7) 2020; 117 Egea, Rodríguez-Fernández, Banga, Martí (b18) 2007; 37 Landi, Paciello, Alteriis, Brambilla, Parascandola (b33) 2015; 38 Nadal-Rey, McClure, Kavanagh, Cornelissen, Fletcher, Gernaey (b46) 2021; 46 Paalme, Elken, Kahru, Vanatalu, Vilu (b51) 1997; 71 Precup, Hellendoorn (b62) 2011; 62 Rio-Chanona, Ahmed, Wagner, Lu, Zhang, Jing (b70) 2019; 116 Shen, He, Weng, Liu, Wu (b82) 2022; 22 Anane, C, Neubauer, Bournazou (b2) 2017; 125 Pinto, Ramos, Costa, Oliveira (b60) 2023; 4 Zenteno, Pérez-Correa, Gelmi, Agosin (b93) 2010; 99 Vega-Ramon, Zhu, Savage, Petsagkourakis, Jing, Zhang (b89) 2021; 118 Dabros, Schuler, Marison (b13) 2010; 33 Hashizume, Ozawa, Ying (b25) 2023; 9 Tu, Moura, Wang, Fang (b86) 2023; 329 Lin, Mathiszik, Xu, Enfors, Neubauer (b37) 2001; 73 Ibáñez, Saa, Bárzaga, Duarte-Mermoud, Fernández-Fernández, Agosin, Pérez-Correa (b26) 2021; 155 Patra, B.R., Kundu, Das, Ghosh (b53) 2023; 62 Psichogios, Ungar (b63) 1992; 38 Agharafeie, Ramos, Mendes, Oliveira (b1) 2023; 9 Luna, Ochsner, Amstutz, von Blarer, Sokolov, Arosio, Zinn (b39) 2021; 9 Villadsen, Nielsen, Lidén (b91) 2011 Mowbray, Wu, Rogers, Rio-Chanona, Zhang (b45) 2023; 120 Park, Kim, Park, Kim, Lee (b52) 2023; 120 Schubert, Simutis, Dors, Havlik, Lübbert (b79) 1994; 35 Thibault, Acuña, Pérez-Correa, Jorquera, Molin, Agosin (b85) 2000; 22 Pinto (10.1016/j.compchemeng.2024.108706_b61) 2023; 9 Slater (10.1016/j.compchemeng.2024.108706_b83) 2012; 78 López (10.1016/j.compchemeng.2024.108706_b38) 2019; 7 Dong (10.1016/j.compchemeng.2024.108706_b17) 2014; 13 Dewasme (10.1016/j.compchemeng.2024.108706_b16) 2011; 21 Gustavsson (10.1016/j.compchemeng.2024.108706_b24) 2015; 200 Gernaey (10.1016/j.compchemeng.2024.108706_b22) 2010; 28 Paalme (10.1016/j.compchemeng.2024.108706_b51) 1997; 71 Rathore (10.1016/j.compchemeng.2024.108706_b66) 2021; 11 Riesenberg (10.1016/j.compchemeng.2024.108706_b69) 1991; 20 Lim (10.1016/j.compchemeng.2024.108706_b36) 2023; 370 Pinto (10.1016/j.compchemeng.2024.108706_b60) 2023; 4 Jin (10.1016/j.compchemeng.2024.108706_b29) 2020; 117 Grigs (10.1016/j.compchemeng.2024.108706_b23) 2021; 21 Dabros (10.1016/j.compchemeng.2024.108706_b13) 2010; 33 Appl (10.1016/j.compchemeng.2024.108706_b4) 2020 Fisher (10.1016/j.compchemeng.2024.108706_b19) 2022; 185 Moser (10.1016/j.compchemeng.2024.108706_b44) 2021; 44 Pinto (10.1016/j.compchemeng.2024.108706_b59) 2022; 165 Cheng (10.1016/j.compchemeng.2024.108706_b11) 2021; 202 Patra (10.1016/j.compchemeng.2024.108706_b53) 2023; 62 Psichogios (10.1016/j.compchemeng.2024.108706_b63) 1992; 38 Santos (10.1016/j.compchemeng.2024.108706_b77) 2012; 39 Anane (10.1016/j.compchemeng.2024.108706_b2) 2017; 125 Pinsach (10.1016/j.compchemeng.2024.108706_b57) 2006; 29 Mahanty (10.1016/j.compchemeng.2024.108706_b40) 2023; 120 Saa (10.1016/j.compchemeng.2024.108706_b73) 2017; 35 Cárcamo (10.1016/j.compchemeng.2024.108706_b8) 2014; 12 Pearce (10.1016/j.compchemeng.2024.108706_b54) 2015; 137 Vega-Ramon (10.1016/j.compchemeng.2024.108706_b89) 2021; 118 Laursen (10.1016/j.compchemeng.2024.108706_b34) 2007; 31 Pinto (10.1016/j.compchemeng.2024.108706_b58) 2019; 42 Sánchez (10.1016/j.compchemeng.2024.108706_b75) 2014; 53 Galvanauskas (10.1016/j.compchemeng.2024.108706_b20) 2004; 26 Lee (10.1016/j.compchemeng.2024.108706_b35) 1996; 14 Zenteno (10.1016/j.compchemeng.2024.108706_b93) 2010; 99 Lin (10.1016/j.compchemeng.2024.108706_b37) 2001; 73 Rackauckas (10.1016/j.compchemeng.2024.108706_b64) 2019 Zhang (10.1016/j.compchemeng.2024.108706_b95) 2019; 116 Landi (10.1016/j.compchemeng.2024.108706_b33) 2015; 38 Shapiro (10.1016/j.compchemeng.2024.108706_b81) 2018; 16 Deken (10.1016/j.compchemeng.2024.108706_b14) 1966; 44 Ibáñez (10.1016/j.compchemeng.2024.108706_b26) 2021; 155 Luna (10.1016/j.compchemeng.2024.108706_b39) 2021; 9 Tu (10.1016/j.compchemeng.2024.108706_b86) 2023; 329 Malairuang (10.1016/j.compchemeng.2024.108706_b41) 2020; 8 Precup (10.1016/j.compchemeng.2024.108706_b62) 2011; 62 Veloso (10.1016/j.compchemeng.2024.108706_b90) 2023; 193 Brunner (10.1016/j.compchemeng.2024.108706_b7) 2020; 117 Zhang (10.1016/j.compchemeng.2024.108706_b94) 2023; 8 Zorzetto (10.1016/j.compchemeng.2024.108706_b97) 2000; 24 Mondal (10.1016/j.compchemeng.2024.108706_b43) 2023; 370 Bangi (10.1016/j.compchemeng.2024.108706_b5) 2022; 179 Santos (10.1016/j.compchemeng.2024.108706_b78) 2022; 106 Park (10.1016/j.compchemeng.2024.108706_b52) 2023; 120 Urniezius (10.1016/j.compchemeng.2024.108706_b87) 2023; 21 Dewasme (10.1016/j.compchemeng.2024.108706_b15) 2023; 171 García (10.1016/j.compchemeng.2024.108706_b21) 2019 NIST (10.1016/j.compchemeng.2024.108706_b49) 2020 Andersson (10.1016/j.compchemeng.2024.108706_b3) 1994; 14 Sánchez (10.1016/j.compchemeng.2024.108706_b74) 2014; 25 Zieringer (10.1016/j.compchemeng.2024.108706_b96) 2021; 118 Shah (10.1016/j.compchemeng.2024.108706_b80) 2022; 441 Mowbray (10.1016/j.compchemeng.2024.108706_b45) 2023; 120 Narendra (10.1016/j.compchemeng.2024.108706_b47) 1990; 1 Nadal-Rey (10.1016/j.compchemeng.2024.108706_b46) 2021; 46 Rio-Chanona (10.1016/j.compchemeng.2024.108706_b70) 2019; 116 Cheng (10.1016/j.compchemeng.2024.108706_b10) 2023; 369 Natarajan (10.1016/j.compchemeng.2024.108706_b48) 2021; 98 Chang (10.1016/j.compchemeng.2024.108706_b9) 2014; 152 Bárzaga-Martell (10.1016/j.compchemeng.2024.108706_b6) 2021; 104 Pham (10.1016/j.compchemeng.2024.108706_b55) 1998; 60 Rackauckas (10.1016/j.compchemeng.2024.108706_b65) 2020 Hashizume (10.1016/j.compchemeng.2024.108706_b25) 2023; 9 Ochoa (10.1016/j.compchemeng.2024.108706_b50) 2020; 95 Sansana (10.1016/j.compchemeng.2024.108706_b76) 2021; 151 van Smeden (10.1016/j.compchemeng.2024.108706_b88) 2016; 16 Shen (10.1016/j.compchemeng.2024.108706_b82) 2022; 22 Crabtree (10.1016/j.compchemeng.2024.108706_b12) 1929; 23 Saa (10.1016/j.compchemeng.2024.108706_b72) 2012; 35 James (10.1016/j.compchemeng.2024.108706_b27) 2002; 12 Thibault (10.1016/j.compchemeng.2024.108706_b85) 2000; 22 Retamal (10.1016/j.compchemeng.2024.108706_b67) 2018; 135 Sonnleitner (10.1016/j.compchemeng.2024.108706_b84) 1986; 28 Xu (10.1016/j.compchemeng.2024.108706_b92) 1999; 15 Rogers (10.1016/j.compchemeng.2024.108706_b71) 2023; 190 Zorzetto (10.1016/j.compchemeng.2024.108706_b98) 1996; 20 Jin (10.1016/j.compchemeng.2024.108706_b28) 2021; 118 Schubert (10.1016/j.compchemeng.2024.108706_b79) 1994; 35 Egea (10.1016/j.compchemeng.2024.108706_b18) 2007; 37 Khanal (10.1016/j.compchemeng.2024.108706_b30) 2023; 375 Möller (10.1016/j.compchemeng.2024.108706_b42) 2017 Agharafeie (10.1016/j.compchemeng.2024.108706_b1) 2023; 9 Kovárová-Kovar (10.1016/j.compchemeng.2024.108706_b32) 2000; 79 Riesenberg (10.1016/j.compchemeng.2024.108706_b68) 1999; 51 Villadsen (10.1016/j.compchemeng.2024.108706_b91) 2011 Kim (10.1016/j.compchemeng.2024.108706_b31) 2023; 41 Pimentel (10.1016/j.compchemeng.2024.108706_b56) 2015; 28 |
References_xml | – volume: 60 start-page: 474 year: 1998 end-page: 482 ident: b55 article-title: Growth and energy metabolism in aerobic fed-batch cultures of Saccharomyces cerevisiae: Simulation and model verification publication-title: Biotechnol. Bioeng. – volume: 16 start-page: 333 year: 2018 end-page: 339 ident: b81 article-title: CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms publication-title: Nat. Rev. Microbiol. – volume: 116 start-page: 2971 year: 2019 end-page: 2982 ident: b70 article-title: Comparison of physics-based and data-driven modelling techniques for dynamic optimisation of fed-batch bioprocesses publication-title: Biotechnol. Bioeng. – volume: 35 start-page: 1167 year: 2012 end-page: 1178 ident: b72 article-title: Modeling oxygen dissolution and biological uptake during pulse oxygen additions in oenological fermentations publication-title: Bioprocess Biosyst. Eng. – volume: 95 start-page: 3221 year: 2020 end-page: 3231 ident: b50 article-title: Real-time optimization and control for polyhydroxybutyrate fed-batch production at pilot plant scale publication-title: J. Chem. Technol. Biotechnol. – volume: 120 start-page: 2072 year: 2023 end-page: 2091 ident: b40 article-title: Hybrid modeling in bioprocess dynamics: Structural variabilities, implementation strategies, and practical challenges publication-title: Biotechnol. Bioeng. – year: 2019 ident: b21 article-title: Application of process system engineering tools to the fed-batch production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from a vinasses–molasses Mixture publication-title: Bioprocess Biosyst. Eng. – volume: 71 start-page: 217 year: 1997 end-page: 230 ident: b51 article-title: The growth rate control in Escherichia coli at near to maximum growth rates: the A-stat approach publication-title: Antonie Van Leeuwenhoek – volume: 118 start-page: 4138 year: 2021 end-page: 4151 ident: b28 article-title: Ultrahigh-cell-density heterotrophic cultivation of the unicellular green alga Chlorella sorokiniana for biomass production publication-title: Biotechnol. Bioeng. – volume: 29 start-page: 235 year: 2006 end-page: 242 ident: b57 article-title: A simple feedback control of Escherichia coli growth for recombinant aldolase production in fed-batch mode publication-title: Biochem. Eng. J. – volume: 118 start-page: 4854 year: 2021 end-page: 4866 ident: b89 article-title: Kinetic and hybrid modeling for yeast astaxanthin production under uncertainty publication-title: Biotechnol. Bioeng. – volume: 38 start-page: 251 year: 2015 end-page: 261 ident: b33 article-title: High cell density culture with S. cerevisiae CEN.PK113-5D for IL-1 publication-title: Bioprocess Biosyst. Eng. – volume: 329 year: 2023 ident: b86 article-title: Integrating physics-based modeling with machine learning for lithium-ion batteries publication-title: Appl. Energy – volume: 190 year: 2023 ident: b71 article-title: Investigating ‘greyness’ of hybrid model for bioprocess predictive modelling publication-title: Biochem. Eng. J. – volume: 98 start-page: 41 year: 2021 end-page: 51 ident: b48 article-title: Online deep neural network-based feedback control of a Lutein bioprocess publication-title: J. Process Control – volume: 369 year: 2023 ident: b10 article-title: Artificial intelligence technologies in bioprocess: Opportunities and challenges publication-title: Bioresour. Technol. – volume: 152 start-page: 234 year: 2014 end-page: 240 ident: b9 article-title: The relationship of oxygen uptake rate and kLa with rheological properties in high cell density cultivation of docosahexaenoic acid by Schizochytrium sp. S31 publication-title: Bioresour. Technol. – volume: 25 start-page: 159 year: 2014 end-page: 173 ident: b74 article-title: Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization publication-title: Metab. Eng. – start-page: 63 year: 2020 end-page: 94 ident: b4 article-title: Digital twins for bioprocess control strategy development and realisation – volume: 38 start-page: 1499 year: 1992 end-page: 1511 ident: b63 article-title: A hybrid neural network-first principles approach to process modeling publication-title: AIChE J. – volume: 171 year: 2023 ident: b15 article-title: Practical data-driven modeling and robust predictive control of mammalian cell fed-batch process publication-title: Comput. Chem. Eng. – volume: 16 start-page: 163 year: 2016 ident: b88 article-title: No rationale for 1 variable per 10 events criterion for binary logistic regression analysis publication-title: BMC Med. Res. Methodol. – volume: 39 start-page: 143 year: 2012 end-page: 151 ident: b77 article-title: Nonlinear model predictive control of fed-batch cultures of micro-organisms exhibiting overflow metabolism: Assessment and robustness publication-title: Comput. Chem. Eng. – year: 2017 ident: b42 article-title: Model-based design of process strategies for cell culture bioprocesses: State of the art and new perspectives publication-title: New Insights into Cell Culture Technology – volume: 370 year: 2023 ident: b36 article-title: Opportunities and challenges of machine learning in bioprocesses: Categorization from different perspectives and future direction publication-title: Bioresour. Technol. – volume: 62 start-page: 213 year: 2011 end-page: 226 ident: b62 article-title: A survey on industrial applications of fuzzy control publication-title: Comput. Ind. – volume: 4 start-page: 303 year: 2023 end-page: 318 ident: b60 article-title: A general hybrid modeling framework for systems biology applications: Combining mechanistic knowledge with deep neural networks under the SBML standard publication-title: AI – volume: 8 start-page: 1321 year: 2020 ident: b41 article-title: High cell density cultivation of Saccharomyces cerevisiae with intensive multiple sequential batches together with a novel technique of fed-batch at cell level (FBC) publication-title: Processes – volume: 37 start-page: 481 year: 2007 end-page: 503 ident: b18 article-title: Scatter search for chemical and bio-process optimization publication-title: J. Global Optim. – volume: 9 start-page: 1560 year: 2021 ident: b39 article-title: Modeling of continuous PHA production by a hybrid approach based on first principles and machine learning publication-title: Processes – volume: 41 start-page: 425 year: 2023 end-page: 451 ident: b31 article-title: Metabolic engineering for sustainability and health publication-title: Trends Biotechnol. – volume: 26 start-page: 393 year: 2004 end-page: 400 ident: b20 article-title: Hybrid process models for process optimisation, monitoring and control publication-title: Bioprocess Biosyst. Eng. – volume: 12 start-page: 113 year: 2002 end-page: 121 ident: b27 article-title: Comparative study of black-box and hybrid estimation methods in fed-batch fermentation publication-title: J. Process Control – volume: 14 start-page: 39 year: 1994 end-page: 44 ident: b3 article-title: Modeling of high cell density fed batch cultivation publication-title: FEMS Microbiol. Rev. – volume: 79 start-page: 39 year: 2000 end-page: 52 ident: b32 article-title: Application of model-predictive control based on artificial neural networks to optimize the fed-batch process for riboflavin production publication-title: J. Biotechnol. – volume: 44 start-page: 683 year: 2021 end-page: 700 ident: b44 article-title: Model-assisted DoE software: optimization of growth and biocatalysis in Saccharomyces cerevisiae bioprocesses publication-title: Bioprocess Biosyst. Eng. – volume: 22 start-page: 547 year: 2000 end-page: 556 ident: b85 article-title: A hybrid representation approach for modelling complex dynamic bioprocesses publication-title: Bioprocess Eng. – volume: 125 start-page: 23 year: 2017 end-page: 30 ident: b2 article-title: Modelling overflow metabolism in Escherichia coli by acetate cycling publication-title: Biochem. Eng. J. – volume: 24 start-page: 1355 year: 2000 end-page: 1360 ident: b97 article-title: Processing modelling development through artificial neural networks and hybrid models publication-title: Comput. Chem. Eng. – volume: 11 start-page: 557 year: 2021 ident: b66 article-title: Bioprocess control: Current progress and future perspectives publication-title: Life – volume: 137 year: 2015 ident: b54 article-title: Improving accuracy in Arrhenius models of cell death: Adding a temperature-dependent time delay publication-title: J. Biomech. Eng. – volume: 78 start-page: 8340 year: 2012 end-page: 8352 ident: b83 article-title: Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions publication-title: Appl. Environ. Microbiol. – start-page: 561 year: 2011 ident: b91 article-title: Bioreaction Engineering Principles – volume: 31 start-page: 163 year: 2007 end-page: 170 ident: b34 article-title: Dynamic hybrid neural network model of an industrial fed-batch fermentation process to produce foreign protein publication-title: Comput. Chem. Eng. – volume: 117 start-page: 2749 year: 2020 end-page: 2759 ident: b7 article-title: Biomass soft sensor for a Pichia pastoris fed-batch process based on phase detection and hybrid modeling publication-title: Biotechnol. Bioeng. – volume: 62 year: 2023 ident: b53 article-title: Recent advances in machine learning applications in metabolic engineering publication-title: Biotechnol. Adv. – volume: 35 start-page: 981 year: 2017 end-page: 1003 ident: b73 article-title: Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks publication-title: Biotechnol. Adv. – volume: 116 start-page: 2919 year: 2019 end-page: 2930 ident: b95 article-title: Hybrid physics-based and data-driven modeling for bioprocess online simulation and optimization publication-title: Biotechnol. Bioeng. – volume: 28 start-page: 346 year: 2010 end-page: 354 ident: b22 article-title: Application of mechanistic models to fermentation and biocatalysis for next-generation processes publication-title: Trends Biotechnol. – volume: 35 start-page: 51 year: 1994 end-page: 68 ident: b79 article-title: Bioprocess optimization and control: Application of hybrid modelling publication-title: J. Biotechnol. – volume: 42 start-page: 1853 year: 2019 end-page: 1865 ident: b58 article-title: A bootstrap-aggregated hybrid semi-parametric modeling framework for bioprocess development publication-title: Bioprocess Biosyst. Eng. – volume: 151 year: 2021 ident: b76 article-title: Recent trends on hybrid modeling for Industry 4.0 publication-title: Comput. Chem. Eng. – volume: 33 start-page: 1109 year: 2010 end-page: 1118 ident: b13 article-title: Simple control of specific growth rate in biotechnological fed-batch processes based on enhanced online measurements of biomass publication-title: Bioprocess Biosyst. Eng. – volume: 21 start-page: 1268 year: 2021 ident: b23 article-title: Application of in-situ and soft-sensors for estimation of recombinant P. pastoris GS115 biomass concentration: A case analysis of HBcAg (Mut+) and HBsAg (MutS) production processes under varying conditions publication-title: Sensors – volume: 28 start-page: 927 year: 1986 end-page: 937 ident: b84 article-title: Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis publication-title: Biotechnol. Bioeng. – volume: 8 start-page: 54 year: 2023 end-page: 60 ident: b94 article-title: Improvement of betanin biosynthesis in Saccharomyces cerevisiae by metabolic engineering publication-title: Synth. Syst. Biotechnol. – volume: 53 start-page: 18514 year: 2014 end-page: 18525 ident: b75 article-title: HIPPO: An iterative reparametrization method for identification and calibration of dynamic bioreactor models of complex processes publication-title: Ind. Eng. Chem. Res. – volume: 21 start-page: 1092 year: 2011 end-page: 1104 ident: b16 article-title: Extremum-seeking algorithm design for fed-batch cultures of microorganisms with overflow metabolism publication-title: J. Process Control – volume: 106 start-page: 1879 year: 2022 end-page: 1894 ident: b78 article-title: Glutathione production by Saccharomyces cerevisiae: current state and perspectives publication-title: Appl. Microbiol. Biotechnol. – volume: 73 start-page: 347 year: 2001 end-page: 357 ident: b37 article-title: Determination of the maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-batch cultivations ofEscherichia coli publication-title: Biotechnol. Bioeng. – volume: 9 start-page: 643 year: 2023 ident: b61 article-title: Hybrid deep modeling of a GS115 (Mut+) Pichia pastoris culture with state–space reduction publication-title: Fermentation – volume: 370 year: 2023 ident: b43 article-title: Review on machine learning-based bioprocess optimization, monitoring, and control systems publication-title: Bioresour. Technol. – volume: 120 start-page: 2494 year: 2023 end-page: 2508 ident: b52 article-title: Data-driven prediction models for forecasting multistep ahead profiles of mammalian cell culture toward bioprocess digital twins publication-title: Biotechnol. Bioeng. – volume: 165 year: 2022 ident: b59 article-title: A general deep hybrid model for bioreactor systems: Combining first principles with deep neural networks publication-title: Comput. Chem. Eng. – volume: 44 start-page: 149 year: 1966 end-page: 156 ident: b14 article-title: The crabtree effect: A regulatory system in yeast publication-title: J. Gen. Microbiol. – volume: 20 start-page: S689 year: 1996 end-page: S694 ident: b98 article-title: Monitoring bioprocesses using hybrid models and an extended Kalman filter publication-title: Comput. Chem. Eng. – volume: 7 year: 2019 ident: b38 article-title: Build your bioprocess on a solid strain—Beta-carotene production in recombinant Saccharomyces cerevisiae publication-title: Front. Bioeng. Biotechnol. – volume: 99 start-page: 40 year: 2010 end-page: 48 ident: b93 article-title: Modeling temperature gradients in wine fermentation tanks publication-title: J. Food Eng. – volume: 1 start-page: 4 year: 1990 end-page: 27 ident: b47 article-title: Identification and control of dynamical systems using neural networks publication-title: IEEE Trans. Neural Netw. – volume: 23 start-page: 536 year: 1929 end-page: 545 ident: b12 article-title: Observations on the carbohydrate metabolism of tumours publication-title: Biochem. J. – volume: 441 year: 2022 ident: b80 article-title: Deep neural network-based hybrid modeling and experimental validation for an industry-scale fermentation process: Identification of time-varying dependencies among parameters publication-title: Chem. Eng. J. – volume: 118 start-page: 265 year: 2021 end-page: 278 ident: b96 article-title: Data-driven in silico prediction of regulation heterogeneity and ATP demands of Escherichia coli in large-scale bioreactors publication-title: Biotechnol. Bioeng. – volume: 200 start-page: 44 year: 2015 end-page: 51 ident: b24 article-title: Control of specific carbon dioxide production in a fed-batch culture producing recombinant protein using a soft sensor publication-title: J. Biotechnol. – volume: 117 start-page: 96 year: 2020 end-page: 108 ident: b29 article-title: Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production publication-title: Biotechnol. Bioeng. – volume: 104 start-page: 112 year: 2021 end-page: 125 ident: b6 article-title: A robust hybrid observer for monitoring high-cell density cultures exhibiting overflow metabolism publication-title: J. Process Control – volume: 28 start-page: 1081 year: 2015 end-page: 1086 ident: b56 article-title: An observer-based robust control strategy for overflow metabolism cultures in fed-batch bioreactors publication-title: IFAC-PapersOnLine – volume: 155 year: 2021 ident: b26 article-title: Robust control of fed-batch high-cell density cultures: a simulation-based assessment: Simulation-based assessment of probing and model-based control strategies for robust operation of high-cell density cultures in fed-batch mode publication-title: Comput. Chem. Eng. – volume: 22 year: 2022 ident: b82 article-title: A review of yeast: High cell-density culture, molecular mechanisms of stress response and tolerance during fermentation publication-title: FEMS Yeast Res. – volume: 46 year: 2021 ident: b46 article-title: Understanding gradients in industrial bioreactors publication-title: Biotechnol. Adv. – volume: 375 year: 2023 ident: b30 article-title: Artificial intelligence and machine learning for smart bioprocesses publication-title: Bioresour. Technol. – volume: 51 start-page: 422 year: 1999 end-page: 430 ident: b68 article-title: High-cell-density cultivation of microorganisms publication-title: Appl. Microbiol. Biotechnol. – year: 2020 ident: b65 article-title: Universal differential equations for scientific machine learning – volume: 21 start-page: 5785 year: 2023 end-page: 5795 ident: b87 article-title: Adaptive control of the E. coli-specific growth rate in fed-batch cultivation based on oxygen uptake rate publication-title: Comput. Struct. Biotechnol. J. – volume: 120 start-page: 154 year: 2023 end-page: 168 ident: b45 article-title: A reinforcement learning-based hybrid modeling framework for bioprocess kinetics identification publication-title: Biotechnol. Bioeng. – volume: 193 year: 2023 ident: b90 article-title: A more accurate modeling for fed-batch ethanol fermentation with high cell density publication-title: Biochem. Eng. J. – volume: 12 start-page: 389 year: 2014 end-page: 394 ident: b8 article-title: Effective dissolved oxygen control strategy for high-cell-density cultures publication-title: IEEE Lat. Am. Trans. – year: 2019 ident: b64 article-title: DiffEqFlux.jl - A julia library for neural differential equations – volume: 185 year: 2022 ident: b19 article-title: Data-driven modelling for resource recovery: Data volume, variability, and visualisation for an industrial bioprocess publication-title: Biochem. Eng. J. – volume: 13 start-page: 63 year: 2014 ident: b17 article-title: Current development in genetic engineering strategies of Bacillus species publication-title: Microb. Cell Factories – year: 2020 ident: b49 article-title: Oxygen – volume: 14 start-page: 98 year: 1996 end-page: 105 ident: b35 article-title: High cell-density culture of Escherichia coli publication-title: Trends Biotechnol. – volume: 20 start-page: 17 year: 1991 end-page: 27 ident: b69 article-title: High cell density cultivation of Escherichia coli at controlled specific growth rate publication-title: J. Biotechnol. – volume: 135 start-page: 22 year: 2018 end-page: 35 ident: b67 article-title: Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures publication-title: Biochem. Eng. J. – volume: 179 start-page: 415 year: 2022 end-page: 423 ident: b5 article-title: Physics-informed neural networks for hybrid modeling of lab-scale batch fermentation for beta-carotene production using Saccharomyces cerevisiae publication-title: Chem. Eng. Res. Des. – volume: 9 start-page: 20 year: 2023 ident: b25 article-title: Employing active learning in the optimization of culture medium for mammalian cells publication-title: npj Syst. Biol. Appl. – volume: 15 start-page: 81 year: 1999 end-page: 90 ident: b92 article-title: Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli publication-title: Biotechnol. Prog. – volume: 9 start-page: 922 year: 2023 ident: b1 article-title: From shallow to deep bioprocess hybrid modeling: Advances and future perspectives publication-title: Fermentation – volume: 202 year: 2021 ident: b11 article-title: Linking population dynamics to microbial kinetics for hybrid modeling of bioelectrochemical systems publication-title: Water Res. – volume: 171 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b15 article-title: Practical data-driven modeling and robust predictive control of mammalian cell fed-batch process publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2023.108164 – volume: 118 start-page: 265 year: 2021 ident: 10.1016/j.compchemeng.2024.108706_b96 article-title: Data-driven in silico prediction of regulation heterogeneity and ATP demands of Escherichia coli in large-scale bioreactors publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27568 – volume: 33 start-page: 1109 year: 2010 ident: 10.1016/j.compchemeng.2024.108706_b13 article-title: Simple control of specific growth rate in biotechnological fed-batch processes based on enhanced online measurements of biomass publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-010-0438-2 – volume: 42 start-page: 1853 year: 2019 ident: 10.1016/j.compchemeng.2024.108706_b58 article-title: A bootstrap-aggregated hybrid semi-parametric modeling framework for bioprocess development publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-019-02181-y – volume: 26 start-page: 393 year: 2004 ident: 10.1016/j.compchemeng.2024.108706_b20 article-title: Hybrid process models for process optimisation, monitoring and control publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-004-0385-x – volume: 120 start-page: 2072 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b40 article-title: Hybrid modeling in bioprocess dynamics: Structural variabilities, implementation strategies, and practical challenges publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.28503 – volume: 190 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b71 article-title: Investigating ‘greyness’ of hybrid model for bioprocess predictive modelling publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2022.108761 – volume: 120 start-page: 154 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b45 article-title: A reinforcement learning-based hybrid modeling framework for bioprocess kinetics identification publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.28262 – volume: 4 start-page: 303 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b60 article-title: A general hybrid modeling framework for systems biology applications: Combining mechanistic knowledge with deep neural networks under the SBML standard publication-title: AI doi: 10.3390/ai4010014 – year: 2019 ident: 10.1016/j.compchemeng.2024.108706_b64 – volume: 44 start-page: 149 year: 1966 ident: 10.1016/j.compchemeng.2024.108706_b14 article-title: The crabtree effect: A regulatory system in yeast publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-44-2-149 – volume: 7 year: 2019 ident: 10.1016/j.compchemeng.2024.108706_b38 article-title: Build your bioprocess on a solid strain—Beta-carotene production in recombinant Saccharomyces cerevisiae publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2019.00171 – volume: 11 start-page: 557 year: 2021 ident: 10.1016/j.compchemeng.2024.108706_b66 article-title: Bioprocess control: Current progress and future perspectives publication-title: Life doi: 10.3390/life11060557 – volume: 53 start-page: 18514 year: 2014 ident: 10.1016/j.compchemeng.2024.108706_b75 article-title: HIPPO: An iterative reparametrization method for identification and calibration of dynamic bioreactor models of complex processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie501298b – volume: 20 start-page: S689 year: 1996 ident: 10.1016/j.compchemeng.2024.108706_b98 article-title: Monitoring bioprocesses using hybrid models and an extended Kalman filter publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(96)00124-X – volume: 79 start-page: 39 year: 2000 ident: 10.1016/j.compchemeng.2024.108706_b32 article-title: Application of model-predictive control based on artificial neural networks to optimize the fed-batch process for riboflavin production publication-title: J. Biotechnol. doi: 10.1016/S0168-1656(00)00211-X – volume: 165 year: 2022 ident: 10.1016/j.compchemeng.2024.108706_b59 article-title: A general deep hybrid model for bioreactor systems: Combining first principles with deep neural networks publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107952 – volume: 375 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b30 article-title: Artificial intelligence and machine learning for smart bioprocesses publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2023.128826 – volume: 9 start-page: 1560 year: 2021 ident: 10.1016/j.compchemeng.2024.108706_b39 article-title: Modeling of continuous PHA production by a hybrid approach based on first principles and machine learning publication-title: Processes doi: 10.3390/pr9091560 – volume: 23 start-page: 536 year: 1929 ident: 10.1016/j.compchemeng.2024.108706_b12 article-title: Observations on the carbohydrate metabolism of tumours publication-title: Biochem. J. doi: 10.1042/bj0230536 – year: 2017 ident: 10.1016/j.compchemeng.2024.108706_b42 article-title: Model-based design of process strategies for cell culture bioprocesses: State of the art and new perspectives – volume: 29 start-page: 235 year: 2006 ident: 10.1016/j.compchemeng.2024.108706_b57 article-title: A simple feedback control of Escherichia coli growth for recombinant aldolase production in fed-batch mode publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2006.01.001 – volume: 28 start-page: 346 year: 2010 ident: 10.1016/j.compchemeng.2024.108706_b22 article-title: Application of mechanistic models to fermentation and biocatalysis for next-generation processes publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2010.03.006 – volume: 21 start-page: 1092 year: 2011 ident: 10.1016/j.compchemeng.2024.108706_b16 article-title: Extremum-seeking algorithm design for fed-batch cultures of microorganisms with overflow metabolism publication-title: J. Process Control doi: 10.1016/j.jprocont.2011.05.002 – volume: 51 start-page: 422 year: 1999 ident: 10.1016/j.compchemeng.2024.108706_b68 article-title: High-cell-density cultivation of microorganisms publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530051412 – volume: 185 year: 2022 ident: 10.1016/j.compchemeng.2024.108706_b19 article-title: Data-driven modelling for resource recovery: Data volume, variability, and visualisation for an industrial bioprocess publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2022.108499 – volume: 120 start-page: 2494 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b52 article-title: Data-driven prediction models for forecasting multistep ahead profiles of mammalian cell culture toward bioprocess digital twins publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.28405 – volume: 202 year: 2021 ident: 10.1016/j.compchemeng.2024.108706_b11 article-title: Linking population dynamics to microbial kinetics for hybrid modeling of bioelectrochemical systems publication-title: Water Res. doi: 10.1016/j.watres.2021.117418 – volume: 125 start-page: 23 year: 2017 ident: 10.1016/j.compchemeng.2024.108706_b2 article-title: Modelling overflow metabolism in Escherichia coli by acetate cycling publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2017.05.013 – volume: 200 start-page: 44 year: 2015 ident: 10.1016/j.compchemeng.2024.108706_b24 article-title: Control of specific carbon dioxide production in a fed-batch culture producing recombinant protein using a soft sensor publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2015.02.030 – volume: 155 year: 2021 ident: 10.1016/j.compchemeng.2024.108706_b26 article-title: Robust control of fed-batch high-cell density cultures: a simulation-based assessment: Simulation-based assessment of probing and model-based control strategies for robust operation of high-cell density cultures in fed-batch mode publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107545 – volume: 369 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b10 article-title: Artificial intelligence technologies in bioprocess: Opportunities and challenges publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.128451 – volume: 25 start-page: 159 year: 2014 ident: 10.1016/j.compchemeng.2024.108706_b74 article-title: Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization publication-title: Metab. Eng. doi: 10.1016/j.ymben.2014.07.004 – volume: 44 start-page: 683 year: 2021 ident: 10.1016/j.compchemeng.2024.108706_b44 article-title: Model-assisted DoE software: optimization of growth and biocatalysis in Saccharomyces cerevisiae bioprocesses publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-020-02478-3 – volume: 9 start-page: 922 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b1 article-title: From shallow to deep bioprocess hybrid modeling: Advances and future perspectives publication-title: Fermentation doi: 10.3390/fermentation9100922 – volume: 9 start-page: 643 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b61 article-title: Hybrid deep modeling of a GS115 (Mut+) Pichia pastoris culture with state–space reduction publication-title: Fermentation doi: 10.3390/fermentation9070643 – volume: 1 start-page: 4 year: 1990 ident: 10.1016/j.compchemeng.2024.108706_b47 article-title: Identification and control of dynamical systems using neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.80202 – volume: 151 year: 2021 ident: 10.1016/j.compchemeng.2024.108706_b76 article-title: Recent trends on hybrid modeling for Industry 4.0 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107365 – volume: 31 start-page: 163 year: 2007 ident: 10.1016/j.compchemeng.2024.108706_b34 article-title: Dynamic hybrid neural network model of an industrial fed-batch fermentation process to produce foreign protein publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2006.05.018 – volume: 71 start-page: 217 year: 1997 ident: 10.1016/j.compchemeng.2024.108706_b51 article-title: The growth rate control in Escherichia coli at near to maximum growth rates: the A-stat approach publication-title: Antonie Van Leeuwenhoek doi: 10.1023/A:1000198404007 – volume: 12 start-page: 389 year: 2014 ident: 10.1016/j.compchemeng.2024.108706_b8 article-title: Effective dissolved oxygen control strategy for high-cell-density cultures publication-title: IEEE Lat. Am. Trans. doi: 10.1109/TLA.2014.6827863 – volume: 41 start-page: 425 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b31 article-title: Metabolic engineering for sustainability and health publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2022.12.014 – volume: 8 start-page: 1321 year: 2020 ident: 10.1016/j.compchemeng.2024.108706_b41 article-title: High cell density cultivation of Saccharomyces cerevisiae with intensive multiple sequential batches together with a novel technique of fed-batch at cell level (FBC) publication-title: Processes doi: 10.3390/pr8101321 – volume: 78 start-page: 8340 year: 2012 ident: 10.1016/j.compchemeng.2024.108706_b83 article-title: Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02305-12 – volume: 60 start-page: 474 year: 1998 ident: 10.1016/j.compchemeng.2024.108706_b55 article-title: Growth and energy metabolism in aerobic fed-batch cultures of Saccharomyces cerevisiae: Simulation and model verification publication-title: Biotechnol. Bioeng. doi: 10.1002/(SICI)1097-0290(19981120)60:4<474::AID-BIT9>3.0.CO;2-J – start-page: 561 year: 2011 ident: 10.1016/j.compchemeng.2024.108706_b91 – volume: 46 year: 2021 ident: 10.1016/j.compchemeng.2024.108706_b46 article-title: Understanding gradients in industrial bioreactors publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2020.107660 – volume: 16 start-page: 333 year: 2018 ident: 10.1016/j.compchemeng.2024.108706_b81 article-title: CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0002-7 – volume: 106 start-page: 1879 year: 2022 ident: 10.1016/j.compchemeng.2024.108706_b78 article-title: Glutathione production by Saccharomyces cerevisiae: current state and perspectives publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-022-11826-0 – volume: 14 start-page: 39 year: 1994 ident: 10.1016/j.compchemeng.2024.108706_b3 article-title: Modeling of high cell density fed batch cultivation publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.1994.tb00070.x – volume: 370 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b43 article-title: Review on machine learning-based bioprocess optimization, monitoring, and control systems publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.128523 – volume: 39 start-page: 143 year: 2012 ident: 10.1016/j.compchemeng.2024.108706_b77 article-title: Nonlinear model predictive control of fed-batch cultures of micro-organisms exhibiting overflow metabolism: Assessment and robustness publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2011.12.010 – volume: 15 start-page: 81 year: 1999 ident: 10.1016/j.compchemeng.2024.108706_b92 article-title: Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli publication-title: Biotechnol. Prog. doi: 10.1021/bp9801087 – volume: 135 start-page: 22 year: 2018 ident: 10.1016/j.compchemeng.2024.108706_b67 article-title: Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2018.03.012 – volume: 116 start-page: 2971 year: 2019 ident: 10.1016/j.compchemeng.2024.108706_b70 article-title: Comparison of physics-based and data-driven modelling techniques for dynamic optimisation of fed-batch bioprocesses publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27131 – volume: 9 start-page: 20 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b25 article-title: Employing active learning in the optimization of culture medium for mammalian cells publication-title: npj Syst. Biol. Appl. doi: 10.1038/s41540-023-00284-7 – year: 2019 ident: 10.1016/j.compchemeng.2024.108706_b21 article-title: Application of process system engineering tools to the fed-batch production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from a vinasses–molasses Mixture publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-019-02102-z – volume: 22 year: 2022 ident: 10.1016/j.compchemeng.2024.108706_b82 article-title: A review of yeast: High cell-density culture, molecular mechanisms of stress response and tolerance during fermentation publication-title: FEMS Yeast Res. doi: 10.1093/femsyr/foac050 – volume: 99 start-page: 40 year: 2010 ident: 10.1016/j.compchemeng.2024.108706_b93 article-title: Modeling temperature gradients in wine fermentation tanks publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2010.01.033 – volume: 16 start-page: 163 year: 2016 ident: 10.1016/j.compchemeng.2024.108706_b88 article-title: No rationale for 1 variable per 10 events criterion for binary logistic regression analysis publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-016-0267-3 – volume: 20 start-page: 17 year: 1991 ident: 10.1016/j.compchemeng.2024.108706_b69 article-title: High cell density cultivation of Escherichia coli at controlled specific growth rate publication-title: J. Biotechnol. doi: 10.1016/0168-1656(91)90032-Q – start-page: 63 year: 2020 ident: 10.1016/j.compchemeng.2024.108706_b4 – volume: 35 start-page: 1167 year: 2012 ident: 10.1016/j.compchemeng.2024.108706_b72 article-title: Modeling oxygen dissolution and biological uptake during pulse oxygen additions in oenological fermentations publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-012-0703-7 – volume: 152 start-page: 234 year: 2014 ident: 10.1016/j.compchemeng.2024.108706_b9 article-title: The relationship of oxygen uptake rate and kLa with rheological properties in high cell density cultivation of docosahexaenoic acid by Schizochytrium sp. S31 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.11.002 – volume: 95 start-page: 3221 year: 2020 ident: 10.1016/j.compchemeng.2024.108706_b50 article-title: Real-time optimization and control for polyhydroxybutyrate fed-batch production at pilot plant scale publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.6500 – volume: 117 start-page: 2749 year: 2020 ident: 10.1016/j.compchemeng.2024.108706_b7 article-title: Biomass soft sensor for a Pichia pastoris fed-batch process based on phase detection and hybrid modeling publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27454 – volume: 13 start-page: 63 year: 2014 ident: 10.1016/j.compchemeng.2024.108706_b17 article-title: Current development in genetic engineering strategies of Bacillus species publication-title: Microb. Cell Factories doi: 10.1186/1475-2859-13-63 – volume: 35 start-page: 51 year: 1994 ident: 10.1016/j.compchemeng.2024.108706_b79 article-title: Bioprocess optimization and control: Application of hybrid modelling publication-title: J. Biotechnol. doi: 10.1016/0168-1656(94)90189-9 – volume: 28 start-page: 927 year: 1986 ident: 10.1016/j.compchemeng.2024.108706_b84 article-title: Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260280620 – volume: 118 start-page: 4854 year: 2021 ident: 10.1016/j.compchemeng.2024.108706_b89 article-title: Kinetic and hybrid modeling for yeast astaxanthin production under uncertainty publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27950 – volume: 137 year: 2015 ident: 10.1016/j.compchemeng.2024.108706_b54 article-title: Improving accuracy in Arrhenius models of cell death: Adding a temperature-dependent time delay publication-title: J. Biomech. Eng. doi: 10.1115/1.4031851 – volume: 28 start-page: 1081 year: 2015 ident: 10.1016/j.compchemeng.2024.108706_b56 article-title: An observer-based robust control strategy for overflow metabolism cultures in fed-batch bioreactors publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.09.112 – volume: 329 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b86 article-title: Integrating physics-based modeling with machine learning for lithium-ion batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120289 – volume: 116 start-page: 2919 year: 2019 ident: 10.1016/j.compchemeng.2024.108706_b95 article-title: Hybrid physics-based and data-driven modeling for bioprocess online simulation and optimization publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27120 – volume: 35 start-page: 981 year: 2017 ident: 10.1016/j.compchemeng.2024.108706_b73 article-title: Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2017.09.005 – volume: 193 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b90 article-title: A more accurate modeling for fed-batch ethanol fermentation with high cell density publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2023.108855 – volume: 24 start-page: 1355 year: 2000 ident: 10.1016/j.compchemeng.2024.108706_b97 article-title: Processing modelling development through artificial neural networks and hybrid models publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(00)00419-1 – volume: 14 start-page: 98 year: 1996 ident: 10.1016/j.compchemeng.2024.108706_b35 article-title: High cell-density culture of Escherichia coli publication-title: Trends Biotechnol. doi: 10.1016/0167-7799(96)80930-9 – volume: 104 start-page: 112 year: 2021 ident: 10.1016/j.compchemeng.2024.108706_b6 article-title: A robust hybrid observer for monitoring high-cell density cultures exhibiting overflow metabolism publication-title: J. Process Control doi: 10.1016/j.jprocont.2021.06.006 – volume: 38 start-page: 1499 year: 1992 ident: 10.1016/j.compchemeng.2024.108706_b63 article-title: A hybrid neural network-first principles approach to process modeling publication-title: AIChE J. doi: 10.1002/aic.690381003 – volume: 21 start-page: 1268 year: 2021 ident: 10.1016/j.compchemeng.2024.108706_b23 article-title: Application of in-situ and soft-sensors for estimation of recombinant P. pastoris GS115 biomass concentration: A case analysis of HBcAg (Mut+) and HBsAg (MutS) production processes under varying conditions publication-title: Sensors doi: 10.3390/s21041268 – volume: 117 start-page: 96 year: 2020 ident: 10.1016/j.compchemeng.2024.108706_b29 article-title: Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27190 – volume: 38 start-page: 251 year: 2015 ident: 10.1016/j.compchemeng.2024.108706_b33 article-title: High cell density culture with S. cerevisiae CEN.PK113-5D for IL-1β production: Optimization, modeling, and physiological aspects publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-014-1264-8 – volume: 98 start-page: 41 year: 2021 ident: 10.1016/j.compchemeng.2024.108706_b48 article-title: Online deep neural network-based feedback control of a Lutein bioprocess publication-title: J. Process Control doi: 10.1016/j.jprocont.2020.11.011 – volume: 22 start-page: 547 year: 2000 ident: 10.1016/j.compchemeng.2024.108706_b85 article-title: A hybrid representation approach for modelling complex dynamic bioprocesses publication-title: Bioprocess Eng. doi: 10.1007/s004499900110 – volume: 21 start-page: 5785 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b87 article-title: Adaptive control of the E. coli-specific growth rate in fed-batch cultivation based on oxygen uptake rate publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2023.11.033 – volume: 179 start-page: 415 year: 2022 ident: 10.1016/j.compchemeng.2024.108706_b5 article-title: Physics-informed neural networks for hybrid modeling of lab-scale batch fermentation for beta-carotene production using Saccharomyces cerevisiae publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2022.01.041 – volume: 62 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b53 article-title: Recent advances in machine learning applications in metabolic engineering publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2022.108069 – volume: 73 start-page: 347 year: 2001 ident: 10.1016/j.compchemeng.2024.108706_b37 article-title: Determination of the maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-batch cultivations ofEscherichia coli publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.1068 – year: 2020 ident: 10.1016/j.compchemeng.2024.108706_b49 – volume: 37 start-page: 481 year: 2007 ident: 10.1016/j.compchemeng.2024.108706_b18 article-title: Scatter search for chemical and bio-process optimization publication-title: J. Global Optim. doi: 10.1007/s10898-006-9075-3 – volume: 118 start-page: 4138 year: 2021 ident: 10.1016/j.compchemeng.2024.108706_b28 article-title: Ultrahigh-cell-density heterotrophic cultivation of the unicellular green alga Chlorella sorokiniana for biomass production publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27890 – volume: 441 year: 2022 ident: 10.1016/j.compchemeng.2024.108706_b80 article-title: Deep neural network-based hybrid modeling and experimental validation for an industry-scale fermentation process: Identification of time-varying dependencies among parameters publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135643 – volume: 370 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b36 article-title: Opportunities and challenges of machine learning in bioprocesses: Categorization from different perspectives and future direction publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.128518 – volume: 8 start-page: 54 year: 2023 ident: 10.1016/j.compchemeng.2024.108706_b94 article-title: Improvement of betanin biosynthesis in Saccharomyces cerevisiae by metabolic engineering publication-title: Synth. Syst. Biotechnol. doi: 10.1016/j.synbio.2022.11.002 – volume: 12 start-page: 113 year: 2002 ident: 10.1016/j.compchemeng.2024.108706_b27 article-title: Comparative study of black-box and hybrid estimation methods in fed-batch fermentation publication-title: J. Process Control doi: 10.1016/S0959-1524(00)00065-2 – volume: 62 start-page: 213 year: 2011 ident: 10.1016/j.compchemeng.2024.108706_b62 article-title: A survey on industrial applications of fuzzy control publication-title: Comput. Ind. doi: 10.1016/j.compind.2010.10.001 – year: 2020 ident: 10.1016/j.compchemeng.2024.108706_b65 |
SSID | ssj0002488 |
Score | 2.4386985 |
Snippet | Fed-batch cultures are the preferred operation mode for industrial bioprocesses requiring high cellular densities. Avoids accumulation of major fermentation... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 108706 |
SubjectTerms | Dynamic optimization Fed-batch fermentation High-density cultures Hybrid models Overflow metabolism Physics-informed neural networks |
Title | Reliable calibration and validation of phenomenological and hybrid models of high-cell-density fed-batch cultures subject to metabolic overflow |
URI | https://dx.doi.org/10.1016/j.compchemeng.2024.108706 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBdGD-MT6KCt4XZsmu5sGvJRiqYo9Wegt7NNW2qTYFOnFv-BfdicPrCB48JhkloSZyczs8s03CF1bYLH0REg8RQ2hhnrunwsEkcw3TIOHRdCc_DTkgxF9GLNxDfWqXhiAVZaxv4jpebQu77RKbbYW0yn0-EaddsAooCBdloKGX0pD8PKbj2-Yh3vQqXgzQXobXX1jvAC27XQzN8mL2yr6FBB3IQw_-i1HbeSd_j7aKwtG3C2-6QDVTHKIdjdoBI_QJ-CKoQUKO4XD9heUjUWisXOjaTE0CacWA5wLCBeqeJeLTNbQs4XziThLkAICYwLn-UQDuD1bY2s0kS5kT3DB02GWeLmScICDsxTPTeYcaTZVGNCgdpa-H6NR_-65NyDloAWifM4y4ko6G1IrnGF8E1qjhKCRcLmfa-NLxZgKpBVShz5VHR5q7fGorbiVLJChCVhwgupJmphThLl1NZXHFZWRocoGkacV54rDkHX3GtpAfqXaeFHwacQV0Ow13rBHDPaIC3s00G1lhPiHc8Qu7v-9_Ox_y8_RDlwVGN0LVM_eVubSVSKZbOau1kRb3fvHwfAL72riWg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60go-D-MS3K3hdmia7mwa8SLFUbXtqobeQfdlKmxYbEX-Ff9mdJtEKggev2R0SZiYzs8s33wBcW2Sx9JKQeooZygzz3D8XJFRy33CNHhZhc3KnK1p99jDggxVolL0wCKssYn8e0xfRunhSLbRZnY1G2OMb1WsBZ4iCdFmqvgpryE7FK7B2e__Y6n4FZLdWL6kzUWAdrr5hXojcduqZmPTJnRZ9hqC7EOcf_ZamllJPcwe2i5qR3OaftQsrJt2DrSUmwX34QGgxdkERp3M8AaO-SZJq4jxplM9NIlNLENGFnAtlyFtsGb5j2xZZDMWZ4y7kMKZ4pU814tuzd2KNptJF7SHJqTrMnMxfJd7hkGxKJiZzvjQeKYKAUDuevh1Av3nXa7RoMWuBKl_wjLqqzobMJs42vgmtUUnCosSlf6GNLxXnKpA2kTr0maqLUGtPRDUlrOSBDE3Ag0OopNPUHAER1pVVnlBMRoYpG0SeVkIogXPW3WvYMfilauNZTqkRl1iz53jJHjHaI87tcQw3pRHiH_4Ru9D_t_jJ_8QvYaPV67Tj9n338RQ2cSWH7J5BJXt5NeeuMMnkReF4n6zx5Qs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+calibration+and+validation+of+phenomenological+and+hybrid+models+of+high-cell-density+fed-batch+cultures+subject+to+metabolic+overflow&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Ib%C3%A1%C3%B1ez%2C+Francisco&rft.au=Puentes-Cantor%2C+Hern%C3%A1n&rft.au=B%C3%A1rzaga-Martell%2C+Lisbel&rft.au=Saa%2C+Pedro+A.&rft.date=2024-07-01&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.eissn=1873-4375&rft.volume=186&rft_id=info:doi/10.1016%2Fj.compchemeng.2024.108706&rft.externalDocID=S0098135424001248 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |